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Abstract. The purpose of the work is to calculate the evolutionarily
stable strategy of zooplankton diel vertical migrations from known data
of the environment using principles of evolutionary optimality and selec-
tion.
At the first stage of the research, the fitness function is identified us-
ing artificial neural network technologies. The training sample is formed
based on empirical observations. It includes pairwise comparison results
of the selective advantages of a certain set of species. Key parameters of
each strategy are calculated: energy gain from ingested food, metabolic
losses, energy costs on movement, population losses from predation and
unfavorable living conditions. The problem of finding coefficients of the
fitness function is reduced to a classification problem. The single-layer
neural network is built to solve this problem. The use of this technol-
ogy allows one to construct the fitness function in the form of a linear
convolution of key parameters with identified coefficients.
At the second stage, an evolutionarily stable strategy of the zooplankton
behavior is found by maximizing the identified fitness function. The max-
imization problem is solved using optimal control methods. A feature of
this work is the use of piecewise linear approximations of environmental
factors: the distribution of food and predator depending on the depth.
As a result of the study, mathematical and software tools have been
created for modeling and analyzing the hereditary behavior of living or-
ganisms in an aquatic ecosystem. Mathematical modeling of diel vertical
migrations of zooplankton in Saanich Bay has been carried out.

Keywords: Diel vertical migrations of zooplankton · Fitness function ·
Ranking order · Machine-learned ranking · Pattern recognition · Optimal
control.

1 Introduction

The phenomena of daily recurring vertical migrations of zooplankton were dis-
covered more than two hundred years ago [1]. The study of the marine zooplank-
ton’s behavior is of great importance due to zooplancton is a key link in the food
chain. It plays a decisive role in the aquatic ecosystem; its diel migrations rep-
resent one of the most significant synchronous movements of biomass on earth.
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As a result, they affect carbon exchange and the climate of the planet [2–5]. In
this regard, the problem of mathematical modeling of zooplankton’s diel vertical
migrations is of great importance [6–12].

Currently, Darwin’s idea “survival of the fittest” is effectively used for mod-
eling biological processes [13, 14]. It is possible to predict the results of evo-
lution and to study the direction of changes in ecological systems comparing
fitness of different biological species. Maximizing the fitness function provides
the possibility to identify evolutionarily stable hereditary behavioral strategies
(i.e. strategies that persist in the community against the appearance of possible
mutations [15]). In particular, the use of the fitness concept for modeling diel
migrations of zooplankton provides the opportunity to explain the quantitative
characteristics of the behavior and its dependence on the age of an individ-
ual [16–18]. In this case, the main difficulty is the identification of the fitness
function and its parameters.

There is a general approach to solving this problem based on studying the
dynamics of a population distribution over the space of hereditary elements.
This approach was proposed in [19] and was further developed in a series of
works [20–22]. It was shown that on the set of hereditary elements it is possible
to introduce a partial ranking order reflecting selective advantages by analyzing
the long-term dynamics of the corresponding numbers of individuals [23]. The
fitness function is introduced as a comparison function expressing the given
ranking order. Then the problem of identifying the fitness function is reduced to
expressing this function through the known hereditary features of elements.

In [24], the methodology for deriving the mathematical expression of the
fitness function was developed for wide classes of population models, taking
into account age heterogeneity. However, the parameters and coefficients of the
model cannot quite often be measured empirically, and by themselves presuppose
identification making the restoration of the fitness function much more difficult.
Therefore, it seems interesting to construct the fitness function directly on the
basis of the known population dynamics. In this case, the problem of restoring
the fitness function is a special case of the well-known ranking problem [25].
For its solution, there is a wide arsenal of computer methods, in particular,
machine learning methods (learning-to-rank) [26–32]. In [33, 34], the problem of
ranking hereditary elements and identifying the corresponding fitness function
was reduced to the problem of classification - dividing ordered pairs of elements
into two classes: “the first element is better than the second” and “the second
element is better than the first”.

In this work, this technique is used to identify the fitness function of diel ver-
tical migrations of zooplankton. Parameters of the fitness function are identified
on the basis of empirical observations. A feature of this work is the use of piece-
wise linear approximations of the distribution of food and predator depending
on the depth of immersion. An evolutionarily stable behavior strategy is found
by maximizing the identified fitness function using optimal control methods. As
a result, mathematical modeling of diel vertical migrations of zooplankton in
Saanich Bay is carried out.
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2 Materials and methods

The present study is based on the following methodology for comparing the
selective advantages of hereditary elements (behavior strategies) [24]. Let some
compact metric space V of hereditary elements v be given. For example, such
elements v can be continuous functions. Each element v at each moment of time t
is assigned a certain number ρ(v, t) (indicator of presence), which numerically
characterizes the presence of v in the community at time t. The indicator of
presence satisfies the following requirements: it is zero when the element is not
present in the community; it is strictly larger than zero when the element is
presented to the community; the indicator is continuously dependent on time;
its tendency to zero corresponds to the loss (extinction, disappearance) of this
element in the community. This indicator can be the number, biomass of the
subpopulation with a given hereditary element, the density of distribution of
the population in the space of hereditary elements, etc.

Using the introduced indicator of presence, the selective advantages of various
hereditary elements are compared with each other, namely, it is considered that
the element v is better than the element w if

lim
t→∞

ρ(w, t)

ρ(v, t)
= 0. (1)

In the case when the presence indicator is uniformly above bounded (the
community size is uniformly above bounded), the limit (1) means that the ele-
ment v displaces the element w from the community over time. Thus, a partial
order of selective advantages is given on the set V .

It is assumed that the introduced order can be expressed using the compar-
ison functional J(v), that is, there is a functional that satisfies the condition
J(v) > J(w) if and only if v is better than w. Then the functional J is a fitness
function reflecting the selective advantages of hereditary elements.

If the change of the presence indicator in time is uniquely determined by a
finite set M(v) = (M1(v), . . . ,Mn(v)) of key hereditary parameters (features)
of the element v, then the functional J will be a function of these parameters:
J(v) = J(M(v)). If this function is sufficiently smooth, then it is expedient to
use Taylor’s expansions for its approximation. The simplest approximation is a
linear convolution of key parameters

J(M) =
n∑
i=1

λiMi.

Here, the weights λi reflect the impact of each key parameter on overall
fitness. The problem of identifying the fitness function is reduced to determining
the values of the convolution coefficients.

If it is known that the element v is better than the element w (from the analysis
of thedynamicsof thepresence indicator), then the inequalityJ(M(v)) > J(M(w))
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should be fulfilled, respectively, the coefficients λi should satisfy the inequality

n∑
i=1

λiMi(v) >
n∑
i=1

λiMi(w).

Knowing the results of comparing hereditary elements from a certain finite
set, one can build a system of linear inequalities with respect to the convolution
coefficients, which can be solved using linear programming methods [17].

Nevertheless, identification of these coefficients is also possible based on clas-
sification methods [33, 34]. Let us associate an ordered pair of elements (v, w)
with a point M(v) − M(w), a pair (w, v) with a point M(w) − M(v) in the
n-dimensional space of key parameters. Then the hyperplane

n∑
i=1

λiMi = 0

should separate these points from each other. A certain set of pairs of hereditary
elements with known comparison results defines in a n-dimensional space two sets
of points that must lie on opposite sides of this hyperplane. Thus, the problem
of finding the convolution coefficients is reduced to finding the components of
the normal to the separating hyperplane. This is the classification problem, for
the solution of which there is a sufficient arsenal of well-proven methods [26].
For example, the separating hyperplane can be constructed using the Fisher
determinant [35]. The classification problem is solved quite simply by the nearest
neighbors method, but this method has limited application here, since it does
not always allow one to find the coefficients of the separating hyperplane. One of
the promising methods for solving this problem is the construction of a learning
neural network [36, 37].

The formulated problem is also a special case of the pattern recognition
problem [33, 34]. But in contrast to classical problems of this type, here it is not
a simple assignment of an element to one of the two classes, but a comparison
of elements according to the principle ”better or worse”. Such a comparison
is equivalent to recognizing the belonging of ordered pairs of elements ”first,
second” to one of two classes: ”the first is better than the second” or ”the first
is worse than the second.”

As the experience of using various methods shows [34], the greatest effect
can be obtained by using neural networks to solve the set problem. The neural
networks technology provides greater flexibility of the algorithm with regard to
expanding the training set, adding new experimental results of pair comparison.
The use of neural networks provides a lower error rate compared to the nearest
neighbors method.

It is known from the results of numerous studies that the main environmental
factors affecting the behavior of zooplankton are: the degree of saturation of the
water layer (with a vertical coordinate x) with food (phytoplankton) E0(x),
metabolic costs E2(x) for maintaining viability in the water layer x (depends
on the temperature of the layer), the number of predators (fish) Sx(x) in the
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water layer x, the predator activity St(t) depending on the time of day t, the
presence of unfavorable factors G(x) in the water layer, such as temperature,
hydrogen sulfide concentration, etc. [1, 6]. All of these factors are mathematically
represented as functions of vertical coordinate or time.

Let us introduce a coordinate system so that x = 0 coincides with the water
surface; x = −D is the level of the lethal hydrogen sulfide concentration (max-
imum immersion depth); x = −C is the level, below which there are neither
predators feeding on zooplankton, nor phytoplankton, which feeds on zooplank-
ton (D, C – positive constants, C < D). Let t be a time of day ranging from 0
to 1, with 0 being noon, 1/2 – midnight, 1 – next noon.

We take the following approximations of external factors:

E0 =

{
σ1(x+ C), x > −C,

0, x < −C;

Sx =

{
σ2(x+ C), x > −C,

0, x < −C;

St = cos 2πt+ ε cos 6πt+ 1; S = Sx · St; G = δ(x+D/2)2; E2 = σ3(x+D).
In addition, it is assumed that the metabolic costs of zooplankton vertical

migrations are proportional to the kinetic energy of movement, which in turn is
proportional to the square of the speed: E1 = ẋ2.

On the one hand, the introduced functions E0, E1, E2, S,G represent a good
approximation to the actually observed data, on the other hand, their relative
simplicity allows us to investigate and solve the optimization problem analyti-
cally.

Figures 1-4 show the graphs of the functions E0(x), G(x), Sx(x), St(t) atD=120,
C = 50, ε = −0.013, σ1 = 0.018, σ2 = 1.8, σ3 = 1, (which corresponds to the
data of empirical observations [1, 6, 18]).

3 Results

3.1 Fitness identification

The linear approximations of the fitness function were built using a neural net-
work.

Let x(t) be the hereditary strategy of the zooplankton behavior, the depth
of immersion depending on the time of day. It is obvious that the function x(t)
must be continuous periodic with a period T = 1 (one day). This implies the
condition x(0) = x(1). It is also assumed that this function is smooth.

It is possible to calculate the key parameters of the behavioral strategy v on
the base of known functions of external factors

M1(v) =

∫ 1

0

E0(x(t)) dt, M2(v) = −
∫ 1

0

Sx(x(t))St(t) dt,

M3(v) = −
∫ 1

0

E1(x(t)) dt = −
∫ 1

0

ẋ2 dt,
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Fig. 1. Amount of food (E0(x))
Fig. 2. Additional mortality caused by
approaching habitat boundaries (G(x))

Fig. 3. Mortality due to predation
Sx(x)

Fig. 4. Number of attacks in time
(St(t))
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M4(v) = −
∫ 1

0

G(x(t)) dt, M5(v) = −
∫ 1

0

E2(x(t)) dt

and the corresponding vector M(v) = (M1(v),M2(v),M3(v),M4(v),M5(v)).
It is assumed that the fitness function depends on these parameters linearly

as follows

J(v) = αM1(v) + γM2(v) + βM3(v) + δM4(v) + ξM5(v).

or

J(v) =

∫ 1

0

(αE0 − βE1 − γS − δG− ξE2)dt. (2)

Weighting coefficients α, γ, β, δ, ξ determine the impact of each factor on over-
all fitness. The problem is to find the values of these coefficients.

To solve this problem, it is necessary to use information about known strate-
gies of behavior. We can compare strategies v and w with each other, if we know
the long-term dynamics of corresponding indicators ρ(v, t) and ρ(w, t). Then we
can use the described above technology to estimate the coefficients α, γ, β, δ, ξ
on the base of comparison results for a certain set of pairs.

To solve this problem, a single-layer neural network was built, which allows
us to recognize pairs of hereditary strategies by their belonging to two classes -
”the first strategy is better than the second” or ”the second strategy is better
than the first”.

This mathematically corresponds to constructing a hyperplane in a five-
dimensional space separating two sets of points.

The coordinates of the normal of the constructed hyperplane correspond to
the values of the required coefficients α, γ, β, δ, ξ.

For the computer solution using neural network technologies, the following
standard free software was used: Scikit-learn machine learning library for the
Python programming language, Pandas software library in Python for data pro-
cessing and analysis.

The training sample was built taking into account the empirical results of
observing the behavior of zooplankton ([18, 38]). It contains comparing results
for 202 strategies or 2031 pairs.

The training sample was divided at a percentage of 70% for training by 30%
for testing using the train test split module from the sklearn.model selection
library. The quality of training was assessed using the Logloss metric. The learn-
ing error in this metric is 9.99e-16. The second check method was also used,
using the cross val score function from the sklearn.model selection library. The
recognition is performed with an accuracy of 96.3%.

Figure 5 shows a visualization of the solution to the corresponding classifi-
cation problem.

Here the projections of the points of the training sample are shown. They cor-
respond to different pairs of strategies onto the plane of two key parameters that
have the meaning of food consumed per day – M1 and daily losses from predators
– M2. The projections have coordinates (M1(v)−M1(w),M2(v)−M2(w)). The
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Fig. 5. Solution of the linear classification problem for two classes of pairs of strategies.

crosses mark the points corresponding to the pairs (v, w) for which v is better
than w; the circles mark the points for which v is worse than w. The straight
line corresponds to the intersection of the separating hyperplane and the plane
of the parameters M1 and M2. The graph shows that the hyperplane accurately
separates two classes of points from each other.

Found values of fitness coefficients are α = 344.444, β = 3.25·10−5, γ = 1.461,
δ = 0.03, ξ = 2.24.

3.2 Optimization problem solution

The problem of constructing the evolutionarily stable strategy for zooplankton
was solved as an optimal control problem [16, 22, 39–41] by maximizing the fit-
ness function (2).

Let us introduce the notation

u(t) = ẋ(t)

then the function u can be regarded as a control.
The conjugate system and transversality conditions have the following form [39]

ψ̇ =

{
(ασ1 − γσ2(cos 2πt+ ε cos 6πt+ 1) − 2δ(x+D/2) − ξσ3, x > −C,

−2δ(x+D/2) − ξσ3, x < −C;

ψ(0) = ψ(1).
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According to the minimum principle [39], the Hamilton function

Hτ [u] = ψu+ βu2

attains its minimum at the optimal control u(τ) for almost all times τ . Hence
it follows that the optimal strategy x(t) of zooplankton behavior should satisfy
the following conditions

ẍ− δ
βx = 1

2β (γσ2(cos 2πt+ ε cos 6πt+ 1) − ασ1 + δD + ξσ3), x > −C
ẍ− δ

βx = 1
2β (δD + ξσ3), x < −C.

Note that the functional (2) is symmetric with respect to the replacement
of the variable t by τ = 1 − t. Therefore, the solution in the interval 0 ≤ t ≤ 1
must be symmetric with respect to the time instant t = 1/2 and satisfy the
condition ẋ(1) = −ẋ(0). Taking into account the periodicity of the solution, we
conclude that ẋ(1) = ẋ(0) = 0.

Then the optimal solution x(t) is a continuous connection of functions

x = C1 cosh
(√

δ
β (t− 1

2 )
)
− γσ2

2

(
cos 2πt
4π2β+δ + ε cos 6πt

32π2β+δ

)
− γσ2−ασ1+δD+ξσ3

2δ , x > −C

x = C2 cosh
(√

δ
β t
)
− δD+ξσ3

2δ , x < −C.

The constants C1 and C2 were calculated numerically to ensure a continuous
connection. One can calculate the value of the constant C2 with a fixed arbitrary
constant C1, at which two functions are continuously connected. Then one can
choose such C1, at which functional (2) reaches its maximum. The standard
Maple 17 package was used to solve the problem numerically.

Fig.6 shows the calculated trajectory of zooplankton movement in compari-
son with the empirically observed strategy of vertical movement of zooplankton
in Saanich Bay [38]. Found constants are C1 = −0.003, C2 = 0.054.

4 Summary

This study continues a series of works by the authors devoted to modeling the
behavior of a zooplankton population using the principles of evolutionary op-
timality and selection. It is shown how artificial neural networks can be used
to identify the fitness function of living organisms. The fitness function is built
on the basis of pairwise comparison of the selective advantages of a certain set
of species. The problem of finding the coefficients of the fitness function is re-
duced to the problem of classification. The parameters of the fitness function are
identified on the basis of empirical observations.

Mathematical and software tools have been created for modeling and an-
alyzing the hereditary behavior of living organisms in an aquatic ecosystem,
determining their evolutionarily stable strategy and predicting changes in the
system.
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Fig. 6. Comparison with experimental data obtained on 01.04.2010 from Saanich. The
dotted line indicates the path most likely followed by zooplankton, and the continuous
line is the line obtained by our model with D=120, C=50, α=344.444, β=3.25 ·10−5,
γ = 1.461, δ = 0.03, ξ = 2.24, ε = −0.013, σ1 = 0.018, σ2 = 1.8, σ3 = 1 and constants
C1 = −0.003, C2 = 0.054.

A feature of this work is the use of piecewise linear approximations of the
distribution of food and predator depending on the depth of immersion. An evo-
lutionarily stable strategy of zooplankton behavior is found by maximizing the
identified fitness function by optimal control methods. As a result, mathematical
modeling of diel vertical migrations of zooplankton in Saanich Bay is carried out.

It should be noted that results of work were implemented in the educa-
tional process of Lobachevsky State University of Nizhny Novgorod. The results
are used within studying of the discipline “Mathematical modeling of selection
processes” [42, 43]. They are used for the providing final qualification works of
bachelors and masters. It provides the close connection of science and education
and corresponds to the modern trends of the education modernization [44].
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