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Abstract13

Habitat specific patterns reflected by microbial communities, as well as complex14

interactions between the community and their environments or hosts' characteristics, have15

created obstacles for microbial source tracking: diverse and context-dependent16

applications are asking for quantification of the contributions of different niches (biomes),17

which have already overwhelmed existing methods. Moreover, existing source tracking18

methods could not extend well for source tracking samples from understudied biomes, as19

well as samples from longitudinal studies.20

Here, we introduce EXPERT (https://github.com/HUST-NingKang-Lab/EXPERT), an21

exact and pervasive expert model for source tracking microbial communities based on22

transfer learning. Built upon the biome ontology information and transfer learning23

techniques, EXPERT has acquired the context-aware flexibility and could easily expand24

the supervised model's search scope to include the context-dependent community25

samples and understudied biomes. While at the same time, it is superior to current26
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approaches in source tracking accuracy and speed. EXPERT's superiority has been27

demonstrated on multiple source tracking tasks, including source tracking samples28

collected at different disease stages and longitudinal samples. For example, when dealing29

with 635 samples from a recent study of colorectal cancer, EXPERT could achieve an30

AUROC of 0.977 when predicting the host's phenotypical status. In summary, EXPERT31

has unleashed the potential of model-based source tracking approaches, enabling source32

tracking in versatile context-dependent settings, accomplishing pervasive and in-depth33

knowledge discovery from microbiome.34

35

Introduction36

Advances in sequencing technology and informatics are producing an exponential37

increase in data acquisition and integration, and revolutionizing our understanding of the38

roles microbes play in health and disease, biogeochemical cycling, etc.1–4. Hundreds of39

thousands of microbial community samples have been accumulated yearly, corresponding40

to hundreds of niches (biomes) around the globe5–7, and continuously completing the41

grand picture about the microbiome world. However, currently annotated biomes only42

represented the pick of an iceberg of such a grand picture, while a considerable amount of43

these samples are from understudied and newly discovered biomes, including (1) newly44

discovered biomes from where microbial community samples were only collected45

recently, (2) the biomes which were more context-dependent such as those representing46

the development of gut microbial communities, or those representing different stages of47

diseases, and (3) the biomes which include the longitudinal samples. These understudied48

biomes represent a grand pool of unexplored and previously less studied microbiome49

research sphere, have created huddles for sample comparison and source tracking8. The50

microbial community dark matters, referring to those samples and niches that have been51

unseen or understudied, have grown exponentially, which urged the context-aware52

method to source track the biomes. However, there is no context-aware method for such53

purposes, as such context-dependent investigations requiring both comprehensiveness54

(serving for characterizing (1)) and scalability (serving for characterizing both (2) and55

(3)).56
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Previous approaches for community-wide microbial source tracking (MST) have serious57

tradeoffs regarding efficiency, accuracy and scalability. Markov Chain Monte Carlo58

(MCMC)9 and Expectation-Maximization (EM)10 methods have a tradeoff between59

accuracy and efficiency when facing an increasing number of possible sources (referred60

to Supplementary Note 1 for a detailed discussion). They can hardly serve for source61

tracking among thousands of samples, which often requires weeks to years to complete62

(linearly extrapolated based on results in L. Shenhav et al.10). Whereas for Neural63

Network (NN) method11, the tradeoff lies in scalability: It can hardly be expanded to64

context-dependent applications and longitudinal analyses, limiting its utility in current65

microbiome studies.66

We have developed EXPERT, an exact and pervasive expert model for source tracking67

microbial community samples to address these limitations. EXPERT combines the68

superior efficiency and accuracy of the Neural Network method, as well as the transfer69

learning approach's inherent scalability, enabling knowledge transfer into context-70

dependent settings to better understand the microbial community dark matters. EXPERT71

is designed to quantitatively assign the contribution of biomes to a specific microbial72

community, in both ontology-aware and context-aware manners. EXPERT's advantages73

include its ability to rapidly infer the contributions from multiple sources via ontology-74

aware forward propagation, and its ability to adapt to emerging research via alterable75

biome ontology structure (i.e., a hierarchy of biomes involved in the target application).76

EXPERT has made it possible to look into the dark matter of microbial communities that77

include millions of samples from hundreds of context-dependent biomes. Thus it has78

enabled fast, accurate, flexible, and interpretable source tracking at an unprecedented79

scale towards deeper knowledge discovery from microbial communities.80

EXPERT has demonstrated superior performance on a diverse set of source tracking tasks:81

For source tracking among newly discovered biomes, it has been shown to be able to82

adapt to emerging samples and biomes with unprecedented AUROC higher than 0.990.83

For the more context-dependent biomes such as those representing the progression of84

colorectal cancer, it has achieved an AUROC of 0.977 when predicting the host's85

phenotypical status, exhibiting its potential in disease diagnosis. It has also enabled the86
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longitudinal sample source tracking, revealed the compositional shifts of individuals' gut87

microbial communities along the timeline. In summary, EXPERT has enabled the88

flexibility of model-based method for context-aware source tracking, expanded the scope89

of source tracking to understudied biomes, and boosted in-depth knowledge discovery90

from the microbial communities.91

92

Results93

Rationale, modeling and multi-facet applications of EXPERT94

EXPERT is an efficient approach for microbial community source tracking employing95

both neural network modeling and transfer learning techniques12, enabling knowledge96

transfer from ontology-aware general knowledge to context-aware expert systems. The97

data preprocessing pipeline, the limitation of directly use of ontology-aware general98

knowledge, as well as knowledge transferring procedure of EXPERT are illustrated in Fig.99

1a-c. Firstly, EXPERT is agnostic to the sequencing data type (16S ribosomal RNA or100

shotgun sequencing) or the analysis pipeline. And before source tracking, EXPERT101

applies remapping, normalizing, aggregation (Supplementary Note 2), and Z-score102

standardization for the standardazation of microbial community data (Fig. 1a).103

Secondly, one of the fundamental models in EXPERT before transfer learning is a neural104

network model, which is either a general ontology-aware neural network (ONN) model105

ONN4MST11 (https://github.com/HUST-NingKang-Lab/ONN4MST) or any other neural106

network built for the same purpose. This neural network model is also referred to as the107

ontology-aware general knowledge. The model-based source tracking follows this108

rationale: For a community sample as query, by assuming that quantifying contributions109

from a set of independent biomes will also contribute to quantifying contributions from110

the biomes serving as the superset of these independent biomes (e.g., "Human" is the111

superset biome of "Human: Oral" and "Human: Fecal"), EXPERT quantifies the112

contributions of biomes along the ontology layers via a propagation procedure, where113

messages of higher layers are integrated into those of lower layers, namely ontology-114

aware forward propagation. The ontology-aware general knowledge modeling has115
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enabled EXPERT to efficiently source track among up to hundreds of sources biomes116

(containing sub-millions of source samples). However, the ontology-aware general117

knowledge comes with poor scalability and can hardly be expanded to context-dependent118

applications (Fig. 1b).119

Thirdly, EXPERT can adapt the general knowledge of an existing model to context-120

dependent applications through three steps, namely transfer, adaptation, and finetuning121

(Fig. 1c). It has achieved this by utilizing both ontology-aware general knowledge, and122

context-dependent biome ontology, which is essentially a hierarchy of biomes involved in123

the target application. During the transfer process, EXPERT reuses the existing model's124

parameters to optimize a context-aware model and encode context-dependent biome125

ontology into the model through reinitializing context-dependent layers (containing only126

5% parameters of the entire model) according to the knowledge of the application-127

dependent context. The phylogenetic tree from the existing model was also reused128

(Supplementary Table S1). During the adaptation process, EXPERT quickly optimizes129

only context-dependent layers to enable the model to become suitable for the context.130

During the finetuning process, EXPERT further optimizes the entire model to thoroughly131

adapt it to the application. Note that EXPERT can also learn from partially-labeled data132

by masking the losses of unlabeled layers (Supplementary Fig. 1, Supplementary Note133

3).134

The multi-facets of EXPERT applications are illustrated in Fig. 1c. First, we can quantify135

the contributions of biomes for any microbial community by using EXPERT with136

superior speed and accuracy (Fig. 1c ⅰ). Secondly, EXPERT is able to adapt to source137

tracking among merging microbiome data (also referred to as the "Grafting", Fig. 1c ⅱ).138

Thirdly, we can introduce more detailed biomes in order to investigate the small139

differences among these closely related biomes (i.e., the biomes representing the infant of140

different ages, Fig. 1c ⅲ), which is also referred to as the "Scattering". Fourthly, by141

introducing knowledge about diseases (disease ontology), we can build an EXPERT142

model for characterizing the health status of hosts. Alternatively, by introducing143

knowledge about disease progression, we can build a model for monitoring disease144

progression (Fig. 1c ⅳ). Finally, we can leverage time points and additional context-145
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aware knowledge to investigate dynamics of microbial communities along the timeline,146

such as longitudinal dynamics of communities in accordance with dietary shifts or147

seasonal shifts (Fig. 1c ⅴ). All of these context-aware applications were also implemented148

and assessed in details in the following parts of this work.149

150

Transferring general knowledge into context-dependent applications: systematic151

assessment152

We verified the utility of our transfer scheme by assessing the performance of tranfer153

learning under two application scenarios: quantification of contributions under general154

application scenario, as well as quantifying human-associated source contributions under155

context-dependent application scenario. We introduced two datasets to assess the156

performances systematically: a combined dataset consists of 118,592 samples collected157

from 132 biomes (Supplementary Table S2, Supplementary Table S3), and a human158

dataset consists of 52,538 samples collected from 28human-associated biomes159

(Supplementary Table S2, Supplementary Table S4). The general EXPERT model160

(also referred to as the general model) is generated based on using samples from the161

combined dataset, and we have first assessed the performance of the general model under162

general application scenario, namely on source tracking samples in the combined dataset.163

Through random cross-validation (see Methods), we found that the general model was164

able to quantify source contributions for communities with high AUROC of 0.971165

(Supplementary Fig. 2).166

We then evaluated the transfer learning approach in a context-dependent application. We167

examined the application of knowledge transfer and finetuning (refer to Methods for168

details) on quantifying human-associated source contributions under context-dependent169

application scenario, in three aspects: efficiency, accuracy, . In this context, the transfer170

models built based on transferring knowledge from the general model with and without171

finetune were referred to as Transfer (GM) and Transfer (GM0), respectively172

(Supplementary Table S5). These transfer models were compared with independent173

model, which was generated by general ontology-aware neural network approach11 based174

on the samples and biomes in the context-dependent application (Supplementary Table175
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S5). The results have shown that the knowledge transfer scheme with finetuning enabled176

more accurate quantification of source contributions for query samples (average AUROC177

of 0.960, Fig. 2c) compared to the independent model. We have also found that 95.7% of178

the parameters from the original general model has been transferred to Transfer (GM),179

representing 99.3% parameters of Transfer (GM), confirming that the high source180

tracking accuracy actually come from the transfer learning process (Supplementary181

Table S5). Notably, the finetune optimization process comes up with a cost: Three times182

as much time was spent on performing this optimization (Fig. 2d), primarily due to the183

low learning rate (1x10-5) utilized by finetuning. Nevertheless, considering the184

advantages in accuracy (Fig. 2c), we determined finetuning as a default setting in the185

following sections.186

We further compared the performance of EXPERT with FEAST10 in a flat setting, where187

the potential sources (only the bottom layer of the human ontology) are considered188

independent of each other (Fig. 2a), as FEAST cannot recognize the hierarchical189

relationships among biomes (Supplementary Note 4). Results have shown that EXPERT190

could perform source tracking with excellent performance (F-max of 0.914) and ultrahigh191

search speed (over 200 samples per second). However, though FEAST has been proven192

to be much faster than SourceTracker9 (Fig. 2e, Supplementary Note 1), we have193

noticed a severe tradeoff in FEAST between accuracy and running time, which is heavily194

depend on the number of sources: when the numbers of samples as sources for FEAST195

increase, the accuracies could reach those similar with EXPERT, but at the cost of196

magnitude more time (Fig. 2e, Supplementary Table S6).197

198

EXPERT enables adaptation for emerging microbiome data199

In this context, we aim to adapt the general model to emerging microbiome data from200

understudied or newly discovered biomes, which is also referred to as ”Grafting”. An201

increasing number of biomes are being studied in metagenomics, accompanied by tens of202

thousands of communities deposited into public databases. Many of these biomes are203

understudies, and a profound number of biomes are newly discovered, such as root: Host-204

associated: Fish and root: Host-associated: Birds, just in year 2020 (Fig. 3a). To assess205
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the capability of EXPERT on such emerging microbiome data, we collected 34,209206

samples, which were collected and analyzed by MGnify6 in 2020. Among them, there are207

3,419 samples originated from 8 newly discovered biomes (Supplementary Table S2,208

Supplementary Table S7). We used the hierarchical biome organization of these samples209

to construct a new biome ontology (Biome ontology (2020)), which included 36 biomes210

in total (Fig. 3a). When comparing the accuracy between the independent model211

(AUROC = 0.993, F-max = 0.986) and the Transfer (GM) model (AUROC = 0.991, F-212

max = 0.978), we confirmed that EXPERT is able to source track accurately among213

biomes in the Biome ontology (2020) (Fig. 3b). Again, we confirm that the high source214

tracking accuracy actually come from the transfer learning process (Supplementary215

Table S5). The average search time of the transfer model is also less than that of the216

independent model (Fig. 3c). Two understudied biomes (root: Host-associated: Fish and217

root: Host-associated: Birds: Digestive System: Ceca) were chosen to illustrate the source218

tracking accuracy of EXPERT at specific layers of the Biome ontology (2020). We219

noticed that the contribution of the correct biome (Fish and Birds) has a high value on220

multiple layers of the Biome ontology (2020) (Fig. 3d). In a nutshell, EXPERT could221

accurately source track samples from understudies or newly discovered biomes, enabling222

lifelong adaptation for the emerging microbiome data.223

224

EXPERT for monitoring the succession of infant gut microbial communities225

In this context, we aim to utilize knowledge transfer to source track among more detailed226

biomes, which is also referred to as ”Scattering”. Under this circumstance, we could227

explore the dynamic patterns of gut microbiota from a specific period of life. For instance,228

if infant samples from multiple time points and sources are offered, EXPERT could229

estimate how much of microbial community in the infant's gut is originated from birth230

and subsequent time points. To confirm this capability, we used longitudinal data from231

Backhed et al.13, which consists of fecal samples from 98 infants and their mothers,232

delivered by vaginal delivery or cesarean section (Fig. 4a, Supplementary Table S2,233

Supplementary Table S8). Except for the general EXPERT model, here we introduced234

the human EXPERT model (also referred to as the human model), which is generated235

based on using samples from the human dataset consists of 53,553 samples collected236
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from 27 human-associated biomes (Supplementary Table S2, Supplementary Table237

S4). The context-dependent ontology is organized by dividing samples by development238

stage first, followed by birth mode (Fig. 4a).239

In this part of the study, we considered samples from infants at 12 months of age as240

queries, and samples from early time points or mothers were treated as sources. Firstly,241

there is no significant difference among the samples from mothers (Wilcoxon test, p =242

0.388 for Transfer (GM), p = 0.929 for Transfer (HM), Fig. 4b), which is consistent with243

the results of J. Stokholm et al.14. This indistinguishable pattern is further supported by244

Principal Coordination Analysis (PCoA) using distance metric either in weighted-245

Unifrac15 or Jensen Shannon divergence16 (Fig. 4c and Supplementary Fig. 3), in which246

samples from mothers and infants at 12 months are indistinguishable.247

We then assessed the performances of different source tracking models via cross-248

validation. For infant gut microbial communities at 12 months of age, even samples were249

collected from hosts of different delivery modes, the maternal contribution is dominant250

(Fig. 4b). When comparing with other methods, we found that the transfer model built251

from the human model (Transfer (HM)) has the best performance (AUROC = 0.773)252

compared to the independent model ((AUROC = 0.738) and the Transfer (GM) model253

(AUROC = 0.720), indicating the outstanding performance of EXPERT for source254

tracking gut microbial communities for infants at different stages (Fig. 4d). Again, we255

confirm that the high source tracking accuracy actually come from the transfer learning256

process (Supplementary Table S5). When examining the results of source tracking on257

individual samples, we also observe that for quite a few samples the predicted biome258

contributions by independent model were not consistent with ground truth, while the259

predictions by Transfer (HM) were in agreement with ground truth, confirming the260

advantage of transfer learning in this context, especially when samples are difficult to261

distinguish (Fig. 4e). Furthermore, we made attempt by changed the context-dependent262

setting: we have used the infant gut microbial community sample at birth as queries263

(Supplementary Fig. 4), with results showing that samples from infant at birth have264

most contributions from infant of 4 months, consistent with the results of J. Stokholm et265

al.14. We have also changed the biome ontology, by means of dividing samples by birth266
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mode first, followed by development stage (Supplementary Fig. 5), and the source267

tracking results of Transfer (HM) is still superior than other models.268

269

EXPERT for disease diagnosis and monitoring270

It has been reported that the human gut microbiota is potentially strongly associated with271

a vast array of complex, chronic diseases17–21. Considering these potential associations272

between the human gut microbial community and diseases, we also attempted to273

characterize disease phenotypes (Fig. 5a). We collected 13,642 microbial community274

samples from the GMrepo database7 and retrieved their corresponding disease275

classification from the NCBI MeSH database22 (Supplementary Table S2,276

Supplementary Table S9, and Fig. 5b). Except for the general EXPERT model and the277

human EXPERT model, here we introduced the disease EXPERT model (also referred to278

as the disease model), which is generated based on using samples from these 13,642279

samples collected from 20 disease-assiciated biomes. Built based on the disease-related280

biome ontology, EXPERT can precisely distinguish 20 phenotypes, including health and281

19 gut-associated hematologic diseases, liver diseases, intestinal diseases, and bacterial282

infections (over 0.8 AUROC for most phenotypes, Fig. 5c). Notably, a high AUROC283

(over 0.8) was also observed when the model was rebuilt based on the human model284

(Transfer (HM), Fig. 5d), suggesting the potential of EXPERT in host health status285

prediction. To the best of our knowledge, this is the most comprehensive study in terms286

of multiple disease diagnosis (13,642 samples, 20 health-associated phenotypes) with287

superior accuracy23. Again, we confirm that the high source tracking accuracy actually288

come from the transfer learning process (Supplementary Table S5). These results also289

suggests the potential role of the gut microbes in the alteration of host health status24,25.290

One confirmed association is that the gut microbiota is involved in colorectal cancer291

(CRC) progression26. It holds great potential to investigate whether CRC progression292

could be monitored through gut microbiota. We assessed such applicability of EXPERT293

by introducing CRC knowledge from Zeller, G. et al.23: we considered five stages in the294

progression of CRC: 0 (Healthy control) I, II, III, and IV according to the study of Zeller295
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G. et al.23 (Fig. 5f, Supplementary Table S2, Supplementary Table S10). We first296

found that the compositional shifts of the human gut within such progression are297

indistinguishable by traditional methods, exemplified by Principle Coordination Analysis298

(PCoA) using distance metric either in weighted-Unifrac15 or Jensen Shannon299

divergence16 (Fig. 5g, Supplementary Fig. 6). Then we have compared the performance300

of the independent model and transfer models built from the human model (Transfer301

(DM)) and that from the disease mode (Transfer (DM)). Results have shown that Transfer302

(DM) achieved a better performance (AUROC over 0.95, Fig. 5h, i) among these three303

models, proving the superior applicability of EXPERT as a method for early detection of304

the occurrence of colorectal cancers. We also notice that the samples used for this305

analysis is not from a prospective study, and we expected that for an actual prospective306

study on the development of cancers, more insights could be gained through such a307

knowledge transfer approach.308

309

EXPERT implicates dynamic patterns of microbial communities in longitudinal310

studies311

Using EXPERT for time-series analysis offers a quantitative way to characterize time-312

related microbial compositional shifts, such as the dynamics of gut microbial313

communities during international travel. In this context, by leveraging additional314

metadata such as geographic regions and time points, we can characterize the315

community's compositional shifts associated with exceptional events. To demonstrate this316

capability, we used longitudinal samples from Liu H. et al.27, including samples from ten317

Chinese travelers (MT1-9 normally returned, while MT10 returned with an exceptional318

early-back, Fig. 6a,b) who had a six-month long-stay from China to Trinidad and Tobago,319

as well as both China and Trinidad and Tobago native persons (Supplementary Table S2320

and Supplementary Table S11). Specifically, we performed an individual (people)-level321

leave-one-out experiment for these ten travelers: each time considering all samples from322

a specific traveler as queries and the rest samples (except for samples from MT10) as323

sources (referred to Methods for details), ten times. And we generated a transfer model324

based on transferring knowledge from the disease model (containing samples all from325
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human gut) for source tracking in this context. In these settings, our model can reveal the326

compositional shifts of Chinese travelers gut microbial communities over time and327

accurately pinpoint the early return timepoint of MT10 (Fig. 6c). These results are328

consistent with their travel trajectory within ten months (from Dec 2015 to Sep 2016)27.329

And the significant difference (p-value 1.9x10-6, 2.4x10-4, and 3.9x10-5 for three stages,330

Wilcoxon test) in source contributions revealed by our model also demonstrated331

predictive power (for such compositional shifts) of EXPERT.332

We further explored whether we could observe such time-related compositional shifts in333

another cohort, about the seasonal changes of the Hadza persons’ gut microbial334

communities, by using longitudinal samples from Smith S. A. et al.28 (Supplementary335

Table S2 and Supplementary Table S12). By dividing samples into “Dry” and “Wet”336

catagories (Fig. 6d), an average AUROC of 0.82 was achieved for distinguishing337

seasonal patterns ("Wet" or "Dry") among gut microbial communities from Hadza hunter-338

gatherers (Fig. 6e). These results are consistent with the results by the original study of339

Smith S. A. et al.28, confirmed the capability of EXPERT in longitudinal microbiome340

analysis.341

342

Discussion343

This work presents an enabling technology for microbial source tracking based on344

transfer learning, EXPERT, for source tracking microbial community samples in different345

context-dependent applications, including prediction and monitoring the development of346

diseases and longitudinal studies. Based on transfer learning techniques, it provides a fast,347

accurate, flexible, and interpretable computational approach that could quickly adapt the348

supervised model to source tracking samples from understudied and newly discovered349

biomes. According to the needs of different applications, EXPERT can quantitatively350

assign the contribution of biomes to a specific microbial community, in both ontology-351

aware and context-aware manners, providing a method that could potentially illuminate352

the microbial dark matters.353

The utility of EXPERT is established in three contexts. First, we used EXPERT as it was354
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originally intended—to quantify the contribution of different source biomes. In this355

context, we were able to address questions about more detailed biomes, including356

microbial communities from infants of different stages. Specifically, using EXPERT, we357

quantitatively reaffirmed the findings of J. Stokholm et al.14, suggesting that for 12358

months infant, either delivered by cesarean section or vaginal delivery, there is no359

significant difference in their gut microbial communities with those of the adults. Second,360

we used EXPERT for disease diagnosis. In this context, EXPERT can serve for the early361

detection of host health status and the scrutinizing of progression of cancer. Third,362

EXPERT could be used for longitudinal analysis to better understand the dynamics of the363

microbial communities. In this context, EXPERT can identify important events such as364

“turning point” along the timeline, which might be linked to many aspects of human365

physiology and health, including obesity18, inflammatory diseases24, cancer26, metabolic366

diseases18, aging, etc. These context-dependent applications have highlighted the367

necessity of the EXPERT model for microbiome studies, especially when facing the368

understudied or newly discovered microbiome data.369

The current approaches, including EXPERT, inevitably come up with multi-facet370

challenges8 of the microbial dark matters . One is about the ontology structure, for which371

a better representation might be a graph neural network29 rather than a tree-like372

hierarchical structure, for more precise quantification of contributions from biomes.373

Another is when facing countless context-dependent applications, a collection of transfer374

models (like Transfer (GM), Transfer (HM), Transfer (DM), etc.) might also be needed to375

quickly adapt for applications either for environmental source tracking, large-scale time-376

series analysis, or global scale pattern discovery.377

Taken together, EXPERT is an ontology-aware neural network method based on biome378

ontology information and transfer learning techniques, which may contribute to obtaining379

biological insights from understudied or emerging microbiome dark matter. Combining380

the supervised model-based efficiency and accuracy, together with the flexibility of the381

transfer learning approach12, EXPERT has enabled a broad spectrum of context-aware382

applications, including adaptation to emerging data and host health monitoring as well as383

longitudinal monitoring of microbial communities.384
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Methods467

Datasets468

We used eight datasets to evaluate the performance of EXPERT.469

For systematic assessment of our general model, the dataset was obtained from MGnify,470

which consists of 118,592 communities collected from 132 biomes. Among them, 52,537471

samples originated from human biomes, 14,045 samples originated from mammal biomes,472

7,189 samples originated from terrestrial biomes, 27,667 samples originated from aquatic473

biome. These samples were analyzed by MGnify6 before February 2020 (Supplementary474

Table S2 Supplementary Table S3).475

For systematic assessment of our human model, the dataset was a part of the first dataset,476

in which 52,537 communities from 28 human biomes were selected (Supplementary477

Table S2, Supplementary Table S4).478

We also used emerging data in 2020 from MGnify6. Which consists of 34,209479

communities collected from 35 biomes. Throughout the dataset, 3,421 samples belong to480

8 biomes were newly added by MGnify6 after January 2020 (Supplementary Table S2,481

Supplementary Table S7).482

For source tracking the succession of infant gut microbiome, the dataset was obtained483

from MGnify6 which consists of 392 fecal samples collected from 98 infant and their484

biological mothers. Among them, 85 infants were born by vaginal delivery and 13 infants485

were born by cesarean section. The infant samples were collected at three time points486

including birth, fourth-month and twelfth-month. The maternal samples were collected487

during the first week after delivery (Supplementary Table S2, Supplementary Table488

S8).489

For disease modeling, the dataset was obtained from GMrepo7, including 13,642490

communities collected from feces of hosts diagnosed with 20 different phenotypical491

status (different kinds of diseases, plus healthy controls, Supplementary Table S2,492

Supplementary Table S9).493

For cancer monitoring, the dataset was obtained from GMrepo7, which consists of 16, 93,494
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126, 196, and 204 communities respectively collected at CRC stage 0, I, II, III, and IV495

(Supplementary Table S2, Supplementary Table S10).496

For longitudinal dietary shifts analysis, the dataset was obtained from ENA30 and anlyzed497

mainly using QIIME (version 1.9)27,31, including 280 samples collected from travelers498

and other native persons, (Supplementary Table S2, Supplementary Table S11).499

For investigation of seasonal patterns within Hadza hunter-gatherers' gut microbiome,500

The dataset used was obtained from ENA and analyzed mainly by using MapSEQ32,501

including 203 samples collected from the Hadza hunter-gatherers’ gut (referred to Wu, S.502

et al.7 for details, Supplementary Table S2, Supplementary Table S12).503

504

Data preprocess505

Relative abundance calculation according to reference database506

In order to bypass the impact from the sequencing depth of the rich-sourced data, we507

firstly regularized the abundance data by calculating relative abundances according to508

only the taxa mapped to our phylogenetic tree (Supplementary Table S1), which is a509

part of taxonomical classification tree in NCBI taxonomy database22 and reflects the510

input feature set for EXPERT model (as explained below).511

Universal feature set for heterogeneous transfer learning512

In order to realize knowledge transfer among mulit-faceted microbial source tracking513

applications, we utilized a uniform collection of features in all these applications. Such514

universal feature set was established according to only the variance of relative515

abundances at genes level: Among the first dataset (for which the most comprehensive),516

6,006 genura with variance of relative abundances above the threshold average variance x517

10-3. We constructed a phylogenetic tree based on the classification of these 6,006 genera518

(three taxon ranks were included: "phylum", "order", "genus"), and served the tree for519

abundance mapping (Supplementary Note 2).520

Z-score standardization of relative abundances521

In order to speed up the optimization of EXPERT model, we standardized the relative522
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abundances before feeding them into the model, by applying z-score standardization on523

normalized relative abundances.524

525

Establishment of the ontology526

Throughout the paper, the reference information utilized for biome ontology527

constructions are: (1) hierarchical biome classification from MGnify database6 and528

ecosystem classification paths from GOLD database33 for assessing the generalizing529

performance of general knowledge (Supplementary Table S13), assessing the530

performance in context-dependent settings (Fig. 2a), and assessing the performance on531

emerging data (Fig. 3a); (2) sampling time of infant gut13 and delivery modes of infants13532

for source tracking the succession of infant gut microbiome (Fig. 4a, Supplementary Fig.533

4); (3) disease classification from NCBI MeSH database22 and Human Disease534

Ontology34 for disease diagnosis and monitoring (Fig. 5a); (4) geographic origins of535

samples27 and sampling time28 for longitudinal data analyses (Fig. 6a,b).536

537

The EXPERTmodel538

The probabilistic model of EXPERT539

Considering a query sample q represented by its community structure, as well as its540

potential sources represented by a biome ontology O, to quantify contributions from541

ontologically organized biome sources to q, we employed a multi-task neural network to542

learn a mapping M from a series of source samples to their biome sources,543

(where is biome source for source sample s in the second layer of544

the biome ontology), and then apply M on q to determine the contributions from biome545

sources.546

547

Fast inference via forward propagation548

We assume that the learning in the higher ontology layers, such as the distinguishing549
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between "Human" and "Environmental", are helpful to the learning in the lower ontology550

layers, such as the distinguishing between "Human: Digestive System", "Environmental:551

Aquatic" and "Environmental: Terrestrial"35. EXPERT integrates the representation of the552

lower layer (which is calculated by its layer-specific modules , into higher layer),553

by employing several integrator module . Therefore, together with layer-specific554

output module , the representation of the contributions is given by555

556

Where557

558

Robust optimization via backward propagation and transfer learning559

We also assume that the quantification of contributions from a biome ontology is helpful560

to the quantification of the contributions from a series of associated biome ontologies12.561

Considering of a source model as a static mapping, the parameters of the rest562

modules can be solved using gradient descent as well as backpropagation563

algorithm36,37564

565

Where566

567

stand for the number of biomes contained in the -th layer of the biome ontology568
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, stand for the -th layer of the biome ontology569

Then, optimizing the parameters of the entire model (including ), the parameters of570

the rest modules w can be solved by using gradient descent as well as backpropagation571

algorithm36,37572

573

For independent optimization (optimization based on completely random initialization),574

EXPERT straightforwardly optimizes the entire model. See Supplementary Note 5 for575

detailed description for optimization.576

577

Cross-validation578

We evaluated performances of EXPERT utilizing multiple cross-validation settings.579

When assessing the performances of general model (including adapted model on580

emerging data), human model, and disease model, we repeatedly performed random581

cross-validation for five times--each time randomly select 10% of the dataset as queries582

and the rest as sources.583

When source tracking the succession of infant gut microbiome, we performed584

proportional sampling cross-validation by randomly select 10% of the samples from585

mother, infants at birth, 4 months and 12 months of age as query, respectively. This586

process was also repeated for five times.587

When analyzing the compositional shifts of ten Chinese individuals during the travel to588

Trinidad and Tobago, we performed individual-level leave one out cross-validation--each589

time consider all samples of an individual as queries and all samples from the other590

individuals as sources. Notably, we didn't consider samples from MT10 as sources as he591

returned with an exception.592

When analyzing the compositional shifts of Hadza hunter-gatherers, we performed593
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proportional sampling cross validation by randomly select 50% of the samples from from594

young adults (18 <= age < 50) in each season ("2013-Late Dry", "2014-Early Wet",595

"2014-Late Wet", "2014-Early Dry", and "2014-Late Dry") as queries and the rest as596

sources. This process was also repeated for five times.597

598

Performance measures599

To benchmark and compare the performance of EXPERT model based on knowledge600

transfer (Tranfer (GM), Tranfer (HM), Tranfer (DM), ) and independent model, as well as601

other methods, we used these measures:602

603

604

Where TP is true positive, TN is true negative, FP is false positive, FN is false negative,605

\hat{y}_s(b) is the quantified contribution from a biome source b for a microbial606

community sample s, threshold t \in [0,1] with a step size of 0.01, y_s is a set of actual607

biomes for a sample s, and I is a logical operation function, the value of I is 1 when the608

result of logical operation is TRUE, else 0.609

Then, three evaluation metrics (Accuracy, F-max, AUROC) was introduced. These610
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evaluation metrics were calculated with the following formulas:611

612

Then, we treated the average performance across all biomes in a specific ontology layer613

as the performance of the entire model.614

615

Statistical analysis616

Statistical analyses of the contributions have been performed utilizing Wilcoxon test, at617

the significance level  = 0.05. For all the tests, when the p-value associated is lower618

than the significance level, one should reject the null hypothesis H0, and accept the619

alternative hypothesis Ha.620

621

Data distribution622

Throughout the paper, the box-plot elements are: center line, median; box limits, upper623

and lower quartiles; whiskers, 1.5× interquartile range (IQR); points and outliers. The624

Violin plot is also used for data distribution analysis, mainly for comparison.625

626

Data availability627

The collected samples from MGnify/GMrepo were annotated with their associated628

biomes/phenotypes in Supplementary Table S3-4 and Supplementary Table S7-12. All629

the processed data are uploaded and hosted at https://github.com/HUST-NingKang-630

Lab/EXPERT-use-cases.631

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.29.428751doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428751
http://creativecommons.org/licenses/by-nd/4.0/


- 24 -

Code availability632

All source codes have been uploaded to the website at: https://github.com/HUST-633

NingKang-Lab/EXPERT. Detailed parameters of software and package used in this study634

are provided in Supplementary Table S2.635
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Figures654

Figure 1655

Figure 1: Illustration of EXPERT's data processing, knowledge transfer process, and multi-656

faceted applications. a. The data preprocessing workflow of EXPERT. For each sample, we mapped657

the taxonomical abundances to the phylogenetic tree, which is compatible with NCBI phylogenetic658

tree, to obtain a regular abundance matrix. And then, the matrix is normalized and standardized in659

order to obtain a standard abundance matrix. Blue and White boxes indicate entities of data and660

operations, respectively. The final input data is a matrix, in which each row represents abundances for661

a sample, and each column represents abundances for a genus (in total, 6,006 genera were used in this662

study). b. The general ontology-aware neural network (ONN) model (built based on a biome ontology663

with more than a hundreds biomes, referred to https://github.com/HUST-NingKang-Lab/ONN4MST664

for details) has a fixed structure and poor scalability, thus cannot perform well on source tracking for665

context-dependent applications. c. EXPERT can adapt the general knowledge of an existing model to666

such applications through three steps: transfer (reuse parameters of an existing model and reinitialize667

context-dependent layers according to prior pieces of knowledge about the context, green arrows),668

adaptation (quickly optimize only the context-dependent layers using iterative forward-backward669

propagation, green circular arrows), and finetuning (further optimize the entire model using the670

iterative forward-backward propagation). The existing model is a general ONN model (either in GM,671

HM, or DM model used in this work, refer to Supplementary Table S2 for details) to be adapted,672

with two fully connected layers (relatively independent to context) and a series of context-dependent673

layers (highly specified to a context, Supplementary Fig. 1). Red arrows indicate the three steps of674

the transfer process. Different background colors of the model indicate the suitability of the layers to675

the context-dependent application. This model could be applied to community samples collected from676

new biome ontology (representing context-dependent knowledge) that cannot be source-tracked by the677

general ONN model directly. The transferred model can serve a broad spectrum of source tracking678

applications (based on research purposes, further illustrated in Fig. 1d). d. The applications of679

knowledge transfer utilizing EXPERT. i. EXPERT quantifies the source biome contributions for query680

communities. ii. EXPERT enables adaptation of emerging microbiome data from understudied biomes681

(also referred to as Grafting). iii. Knowledge transfer can source track among more detailed biomes682

(also referred to as Scattering), such as quantifying gut microbial communities' contribution from683

mothers to their developing infants. iv. EXPERT enables disease diagnosis, as well as disease684

progression monitoring. v. EXPERT enables investigation of dynamics of microbial communities685

along the timeline.686

687
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Figure 2688

Figure 2. Assessment of the transfer learning model on context-dependent application. a. Biome689

ontology of human-associated biomes, used for assessing the generalizing performance of EXPERT.690

The ontology is constructed based on 52,537 samples, with four layers in total (from top down). The691

biomes with orange color indicates biomes with enough samples (> 100) within each biome. The692

biomes with orange color and in dashed line box with yellow background indicates biomes for693

comparison with FEAST, which are selected as they represent most detailed biomes (comply with the694

culture-independent assumption of SourceTracker and FEAST,), and each of then has enough samples695

(> 100). b. The performance (AUROC and F-max, X-axis) of Transfer (GM) for each biome (Y-axis)696

by using repetitive cross-validation (5 times, 90% for training, 10% for testing, see Methods). c. The697

performances (AUROC and F-max, Y-axis) of three models (X-axis): Transfer (GM) model, Transfer698

(GM0) model, and Independent model (built based on independent training). d. The training time and699

query time (Y-axis) across different optimization schemes (Independent, Transfer, Transfer (0), X-700

axis). e. Comparison of Transfer (GM) with FEAST in source tracking accuracy (first Y-axis) and701

efficiency (second Y-axis). FEAST10, FEAST20, FEAST30 represent FEAST based on using 10, 20702

and 30 samples per biomes for all biomes with enough samples (> 100) in the human dataset as source703

samples, respectively. Transfer (GM) and Transfer (GM0) refer to models built based on transferring704

knowledge from the general EXPERT model with and without finetune, respectively.705

706
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Figure 3707

Figure 3. EXPERT enables adaptation for emerging microbiome data. a. Biome ontology (2020)708

constructed based on 34,209 samples collected and analyzed by MGnify after January 2020. These709

samples are from existing biomes and the newly discovered biomes, hierarchically organized in four710

layers (indicated by the black interval on the left, from top down). The yellow nodes indicate newly711

discovered biomes in the MGnify database, which have hardly ever been analyzed before January712

2020. b. Generalizing performance (AUROC and F-max, Y-axis) of models optimized using different713

training schemes (Independent model based on 34,209 samples used in this application, and Transfer714

(GM) model built based on transferring knowledge from the general model with finetune, X-axis). c.715

Searching time per sample by different models. d. Estimated biome contributions for query samples,716

exemplified by samples from two newly discovered biomes ("Fish" and "Birds") on different layers.717

Notice that on the third layer, the contribution of Fish is 88.29% for query samples from Fish, and the718

contribution of Birds is 73.78% for query samples from Birds; and on the fourth layer, the contribution719

of Digest system (birds) is 72.22% for query samples from Birds; while on the fifth layer, the720

contribution of Ceca is 56.35% for query samples from Birds.721

722
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Figure 4723

Figure 4. EXPERT's performance in characterizing gut microbial community development over724

time for infants. a. The biome ontology, corresponding to infant samples collected from the ENA725

database. Layer 2 is based on sampling time, while layer three is based on delivery modes (Backhed et726

al.). For this part of the study, sources include gut microbiome of the mother, infant at birth, and four727

months, queries include the gut microbiome of the infant at 12 months. b. Estimated contributions of728

biomes by different models of EXPERT, separated by two delivery modes and transferred from the729

general model (Transfer (GM), above) and human model (Transfer (HM), below). c. Distribution of730

infant gut microbial communities during their first year, using principal-coordinates analysis (PCoA)731

and distance metric of Jensen Shannon divergence. Infant gut given by different delivery modes732

developed in an adult-like pattern over time, and the compositional shifts of infant's gut at the age of733

12 months are indistinguishable. Dotted line refers to samples delivered by vaginal delivery, and the734

full line refers to samples delivered by cesarean section. The baby of 4 month is abbreviated to baby735

4M., the baby of 12 month is abbreviated to baby 12M. "C" represents cesarean section, "V"736

represents vaginal delivery. Top panel: samples from infant's gut are plotted according to their source737

and collection date on the Y-axis, and position on the X-axis is plotted according to their first principal738

coordinate in the PCoA. d. The overall performance of models generated based on different models, in739

which Independent model based on the samples and biomes used in this application, Transfer (GM)740

and Transfer (HM) refer to models built based on transferring knowledge from the general model and741

human model with finetune, respectively. Violin plot: Red represents AUROC, and blue represents F-742

max. e. Samples whose predicted source contributions were not consistent with the ground truth by the743

independent model, but were consistent with the ground truth by the Transfer (HM) model. Different744

colors refer to different biomes: purple represents unknown sources, blue represents the baby of 12th745

month, green represents the baby of 4th month, red represents the baby of birth. Baby of 4 month is746

abbreviated to baby 4M., the baby of 12 month is abbreviated to baby 12M.747

748
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Figure 5749

Figure 5. EXPERT for disease diagnosis and monitoring. a. Illustration of knowledge transfer750

utilized for disease phenotype differentiating. The knowledge transfer between models trained using751

different datasets (named Source dataset and Target dataset) are illustrated using different colors752

(white for human, yellow for disease, and red for colorectal cancer). In health status prediction, the753

knowledge from human model containing 53,553 samples and 28 biomes, were tranferred to disease754

model containing 13,642 samples and 20 biomes. b. the disease ontology constructed based on host755

phenotype and considering NCBI MeSH database (https://www.ncbi.nlm.nih.gov/mesh) and Human756

Disease Ontology (https://www.ebi.ac.uk/ols/ontologies/doid) as references of disease classification.757

The disease ontology includes 20 phenotypes (19 different disease and infections, plus healthy control)758

distributed in seven different layers (X-axis). c. The diagnostic model's performance on each759

phenotype, evaluated based on repetitive cross-validation (5 times, 90% for training, and 10% for760

testing) and biome-specific evaluation (see Methods). A dashed line indicates AUROC of 0.8. d. The761

Transfer (HM) model's overall performances on differentiation of diseases. e. Illustration of762

knowledge transfer utilized for differentiating disease phenotypes. We generated two transferred763

models: Transfer (HM) and Transfer (DM) refer to models built based on transferring knowledge from764

the human model and disease model with finetune, respectively. In CRC progression monitoring, the765

knowledge from Transfer (HM) containing 53,553 samples and 28 biomes, as well as Transfer766

(DM)containing 13,642 samples and 20 biomes, were tranferred to CRC applications in which there767

are 5 stages. f. The five stages of colorectal cancer progression, and the number of samples for each768

stage. Among them, stage 0 stand for healthy control. g. The distribution of gut microbiome,769

visualized by PCoA (utilizing distance metric of weighted-Unifrac). h. The performances (AUROC770

and F-max) of different models (Independent model based on independent training, Transfer (HM)771

based on the human model, and Transfer (DM) based on disease model). i. The stage-specific772

performances (AUROC, see Methods) of EXPERT on different CRC stages, evaluated based on773

repetitive cross-validation (5 times, 90% for training, and 10% for testing).774

775
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Figure 6776

Figure 6. The EXPERT model could reveal compositional shifts within hosts' gut microbiome777

over time. a. Biome ontology used for analyzing dynamic patterns among gut microbiome during778

international travel. Two countries (China and Trinidad and Tobago, black nodes) leveraged in the779

travel are modeled into the biome ontology. Additional information (dotted green nodes) can be780

inferred based on the model's prediction and additional metadata. b. Sampling time points (30 time781

points in total, X-axis) of metagenomic samples for each individual (Y-axis). Three stages are included:782

before travel (in China), during travel (in Trinidad and Tobago), and after travel (returned to China),783

and transitions between these stages (flights) are marked on the top. Different colors indicate samples784

from different individuals. c. Estimated source contributions (Y-axis) by EXPERT over the timeline785

(also 30 time points in total, X-axis), using individual-level leave one out and considering additional786

samples from native people as potential sources (seeMethods). d. Biome ontology used for analyzing787

seasonal patterns among Hadza hunter-gatherers' gut microbial communities. Samples are divided into788

“Dry” and “Wet” biomes in the biome ontology, Additional information (dotted green nodes) can be789

inferred based on the model's prediction and additional metadata. e. Estimated source contributions790

(Y-axis) by EXPERT over the timeline (15 time points in total, X-axis), by using samples from the791

“Dry” season as sources. Result are evaluated based on repetitive proportional sampling cross-792

validation (seeMethods).793

794

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.29.428751doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428751
http://creativecommons.org/licenses/by-nd/4.0/


Microbiome data 
(e.g. MGnify, GMrepo)

Taxa abundances
tables (samples)

Mapping taxa abundances
to phylogenetic tree

Normalizing the regular
abundance matrix

a. b.

0.95

Digestive_system

Digestive_system:Intestine

Digestive_system:Large_intestine

Digestive_system:Large_intestine:Fecal

Digestive_system:Oral

Digestive_system:Oral:buccal_mucosa

Digestive_system:Oral:Saliva

Digestive_system:Oral:Subgingival_plaque

Digestive_system:Oral:Supragingival_plaque

Digestive_system:Oral:tongue_dorsum

Reproductive_system:Vagina

Respiratory_system:Nasopharyngeal

Respiratory_system:Pulmonary_system:Sputum

Skin

1.000.90

AUC

EXPERT for microbial source tracking

EXPERT for disease diagnosis
(i.e. monitoring disease progression, disease diagnosis)

Layer 1

Layer 2

②Grafting ③Scattering

Layer 3

Layer 4

Layer 5

Layer 6

①Original biome ontology

d.

c.

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●●●

●●

●

●

0.0

0.2

0.4

0.6

Birth 4 Months
Mother

Unknown

S
ou

rc
e 

pr
op

or
tio

n

root

Terrestrial

Environmental

Soil

Aquatic

Lentic Deep
subsurface

Brackish

... ...

understudied 
biome 0.00

0.50

1.00

0.00 0.50 1.00
FPR

T
P

R

1 6 11 16 21 26
Time point

0.2

0.4

0.6

S
ou

rc
e 

co
nt

rib
ut

io
n

EXPERT for longitudinal analysis
(i.e. dietary shift, seasonal cycling)

Source tracking among detailed biomes
(i.e. mother & infant relationship)

Source tracking among newly discovered 
biomes (i.e. adapting to emerging data)

majroity of the 
population

identified an 
exception

Multi-facets of EXPERT applications
i.

ii.

iii.

iv. v.

CRC
IBD

...
IBS

...... ...... ... ... ...... ...... ... ... ... ......... ...... ... ... ... ......... ...... ... ... ... ...

Transferred modelFinetuneFast adaptation

Community samples

TransferingExisting model

...... ...... ... ...

Original model

Source tracking for context-dependent applicationsPreprocessing microbiome data

Transfer learning-enabled adaptation of original model into context-dependent applications

Weights

New biome ontology

Encode

Forward 
propagation

Backward 
propagation

Forward 
propagation

Backward 
propagation

(optimize context-dependent layers)(weights reuse) (optimize entire model)

Potentially 
suitable
Suitable for
original ontology
only

Potentially 
suitable

To be 
fitted

Potentially 
suitable

Suitable Suitable
(optimized)

Suitable 
(optimized)

Original biome ontology

Source tracking

General biomes 
(can be source 
tracked directly)
Context-dependent 
biomes (cannot be 
source tracked 
directly)

⋯⋯ ⋯⋯

human gut

⋯⋯ ⋯⋯

? ?

√

√ √
√√√

mother gut infant gut
Ontology for investigating new biomes 

(based on research purposes)

all allall all

Fully connected 
layers

Context-dependent
layers

Sa
m

pl
es S1S2

Sn

G1G2 Gm Genera

Relative abundances 
matrix (samples)

Standardizing the abun-
dances by z-scores

Standard abundance 
matrix (samples)

(representing context-dependent knowledges) (from new biome ontology)

(representing general knowledge about biomes)

Leveraging 

additional 

knowledgeBu
ilt

ba
se

d 
on

Regular abundance
matrix (samples)

?

√

Serving for

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.29.428751doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428751
http://creativecommons.org/licenses/by-nd/4.0/


a b. Prediction results by Transfer (GM)

c d e

( ) Number of samples
Biomes with number of samples > 100

Root(Human)
(52537)

Reproductive
system (195)

Digestive
system (44589)

Circulatory
system (26)

Respiratory
system (2867)

Lympathic
system (12)

Skin
(4848)

Biomes for 
comparison 
with FEAST 

Pulmonary
system (135)

Female
(20)

Lymph
nodes (12)

Large intestine
(29962)

Oral
(12264)

Intestine
(553)

Blood
(24)

Nasopharyngeal
(2709)

Vagina
(175)

posterior
fornix (11) 

Periodontal
pockets (10)

Subgingival
plaque (794)

Supragingival
plaque (513)

Fecal
(29427)

Saliva
(3862)

Throat
(21)

Nasal cavity
(17)

Pharynx
(55)

Sputum
(135)

buccal mucosa
(289)

tongue dorsum
(955)

Human biomes ontology

Sputum
Fecal
Saliva

tongue dorsum
Supragingival plaque

buccal mucosa
Subgingival plaque

Nasopharyngeal
Pulmonary system

Large intestine
Oral

Intestine
Vagina

Respiratory system
Digestive system

Skin
Reproductive system

0.80 0.85 0.90 0.95 1.00

0.94

0.96

0.98

1.00

Ind
ep

en
de

nt

Tran
sfe

r (G
M0)

Tran
sfe

r (G
M)

Transfer and Independent model 
prediction results

Training & sample query time

Training

Ind
ep

en
de

nt

Tran
sfe

r (G
M0)

Tran
sfe

r (G
M)

0

500

1000

1500

Query

Ind
ep

en
de

nt

Tran
sfe

r (G
M0)

Tran
sfe

r (G
M)

0.000

0.001

0.002

0.003

0.004

0.005

Ti
m

e/
s

0.7

0.8

0.9

1.0

10−2

10−1

100

101

102

Tran
sfe

r (G
M)

FEAST10

FEAST20

FEAST30

Ac
cu

ra
cy

 (m
ea

su
re

d 
us

in
g 

F−
m

ax
)

Ef
fic

ie
nc

y 
(n

um
be

r o
f q

ue
rie

s 
pe

r s
ec

on
d)

Comparison of Transfer (GM) and FEAST

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.29.428751doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428751
http://creativecommons.org/licenses/by-nd/4.0/
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b. c.

Biome ontology(layer 2: sampling time)
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c. d.

f.

g. h.

Colorectal Cancer progression
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Could be inferred based 
on the prediction and 
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