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ABSTRACT 
A critical challenge in genetic diagnostics is the computational assessment of candidate splice variants, 
specifically the interpretation of nucleotide changes located outside of the highly conserved dinucleotide 
sequences at the 5′ and 3′ ends of introns. To address this gap, we developed the Super Quick Information-
content Random-forest Learning of Splice variants (SQUIRLS) algorithm. SQUIRLS generates a small set of 
interpretable features for machine learning by calculating the information-content (IC) of wildtype and variant 
sequences of canonical and cryptic splice sites, assessing changes in candidate splicing regulatory 
sequences, and incorporating characteristics of the sequence such as exon length, disruptions of the AG 
exclusion zone, and conservation. We curated a comprehensive collection of disease-associated splice-
altering variants at positions outside of the highly conserved AG/GT dinucleotides at the termini of introns. 
SQUIRLS trains two random-forest classifiers for the donor and for the acceptor and combines their outputs by 
logistic regression to yield a final score. We show that SQUIRLS transcends previous state of the art accuracy 
in classifying splice variants as assessed by rank analysis in simulated exomes and is significantly faster than 
competing methods. SQUIRLS provides tabular output files for incorporation into diagnostic pipelines for 
exome and genome analysis, as well as visualizations that contextualize predicted effects of variants on 
splicing to make it easier to interpret splice variants in diagnostic settings  
 
 
INTRODUCTION 
 
Whole exome sequencing (WES) and whole-genome sequencing (WGS) are effective tools to diagnose 
Mendelian disorders. However, although the diagnostic yield of WES/WGS has improved from between 16-
25% in early studies1–3 to around 35-60% currently,4,5 a substantial proportion of diagnostic cases remain 
unsolved. One reason is that the filtering and prioritization typically used by diagnostic WES/WGS software is 
not able to correctly classify some kinds of disease-causing variants. It can be difficult to correctly classify 
splice-altering variants, especially those deep within exons or introns.6 Variants that affect pre-mRNA splicing 
are documented to account for at least 15% of disease-causing variants.7 However, the true number may be 
substantially higher because of a historical ascertainment bias reflecting a selective focus on coding 
sequences in the pre-next generation sequencing (NGS) era and a continued interpretation bottleneck due to 
the difficulty of predicting the effects of variants on splicing. For instance, in the NF1 and ATM genes, studies 
have shown that ~50% of all disease-causing variants result in defective splicing.8,9 Recent results have shown 
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that RNA-seq may be able to identify the diagnosis in up to ~30% of exome-negative cases,10–13 and a 
massively parallel assay suggested that up to 10% of all exonic variants, including missense and nonsense 
variants, may alter splicing.14 However, RNA samples may not always be available in the diagnostic setting, 
and the relevant genes and transcripts may not be expressed in tissues commonly assayed for RNA analysis 
such as blood and muscle. A typical diagnostic exome or genome can contain over 500 candidate splice-
altering variants of unknown significance.15 Therefore, there is a pressing need for algorithmic approaches that 
can effectively prioritize splice variants in diagnostic next-generation sequencing. Additionally, the 
interpretability of predictions is important for integration of results into medical workflows.16  
 
For brevity, we use the term 'splice-altering variant' (SAV) to refer to disease-associated DNA variants that 
result in splice alterations. SAVs can lead to a number of molecular defects including exon skipping, cryptic 
splicing, intron inclusion, leaky splicing, or the introduction of pseudo-exons into the processed mRNA.17 There 
are no general rules that allow one to interpret the effect of a variant based solely on the affected sequence 
context, but it is generally accepted that alterations of the canonical ±1 or ±2 splice sites are most likely to be 
pathogenic. This is reflected in the fact that the American College of Medical Genetics (ACMG) guidelines state 
that the location of a variant in these positions can be taken as very strong evidence of pathogenicity in genes 
where loss of function is a known mechanism.18 However, the natural donor and acceptor splice sites span 
much longer intervals that overlap the exon-intron boundaries. In addition, the branch point and polypyrimidine 
tract motifs as well as intronic and exonic splicing enhancers and silencers further modulate the strength of any 
given splice site. Variants in any of these sequences can reduce or abolish the ability of the spliceosome to 
recognize the splice site, leading to exon skipping or usage of cryptic splice sites. The sequence between the 
branch point and the 3’ splice site is generally devoid of AG dinucleotides and is called the AG�exclusion 
zone; variants that introduce an AG in this zone tend to be pathogenic.19 Additionally, variants in introns or 
exons can activate cryptic splice sites to the extent that they are preferentially utilized compared to wildtype 
splice sites.  We will use the term 'canonical' SAV to refer to variants at the ±1 or ±2 splice sites, and 'non-
canonical' SAV to refer to any other SAV. 
 
While canonical SAVs are trivial to identify computationally, non-canonical SAVs are substantially more difficult 
to interpret. Numerous bioinformatics tools such as PolyPhen20  have been developed to assess pathogenicity 
of missense variants, but far fewer have been developed for non-canonical SAVs. Suggestive evidence exists 
that non-canonical SAVs might be a more common cause of Mendelian disease than is commonly 
appreciated.9,19,21. Several previous approaches to prioritizing SAVs are based on information theory analysis, 
which compares wildtype and alternate sequences to a matrix of negative logarithms of the frequencies of 
nucleotides in the positions of wild type splice sites.22 Maximum entropy modeling of splicing signals (MaxEnt) 
is a similar approach that additionally may include dependencies between nonadjacent as well as adjacent 
positions.23  
 
Numerous algorithms have been presented for the prioritization of SAVs.24–29 Recently, machine learning 
methods surpassed previous state-of-the-art results in the prediction of pathogenic SAVs including 
sequence�based deep neural networks30,31 and gradient boosting trees.15 However, it is not straightforward to 
interpret the results of these methods. For instance, SpliceAI is a deep residual neural network that predicts 
whether each position in a pre-mRNA is a splice donor, splice acceptor, or neither; differences in the scores of 
wildtype and variant sequences can be used to predict pathogenicity of variants, but no information is provided 
by the algorithm as to what sequence features led to the prediction.31 This makes it challenging to use in a 
clinical setting, where explainability is essential for clinical decision making. S-CAP uses a gradient-boosting 
tree (GBT) classifier, with 29 features including predictions from a number of other algorithms; the results of 
the algorithm are presented as a single score that does not allow further interpretation.15 
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Here we present a new algorithm, Super Quick Information-content Random-forest Learning of Splice variants 
(SQUIRLS). SQUIRLS first scores variants according to associated changes in individual information content 
(ΔIC), changes in splicing regulatory elements (SREs), and several other features, followed by random forest 
classification. SQUIRLS was trained on a comprehensive dataset of 1,623 non-canonical SAVs. SQUIRLS 
prioritized more correct variants in the top five ranks, with substantially higher speed and interpretability than 
the previously proposed best performing methods.15,31 The results can be output with visualizations and 
assessments of each feature, allowing users to quickly identify the major abnormalities that led to the 
prioritization. SQUIRLS is an interpretable and fast machine-learning algorithm that assesses variants for 
potential effects on splicing. SQUIRLS was designed to perform well on difficult to classify non-canonical splice 
variants located outside of the nearly perfectly conserved AG/GT dinucleotides at the termini of introns. We 
believe that SQUIRLS will support improved and scalable diagnostic capability for clinical interpretation of 
splice variants identified by WES/WGS. 
 
METHODS 
 
Dataset of splice variants 
We performed an extensive review of the scientific literature to curate a collection of 8,314 splice variants 
associated with Mendelian diseases. Candidates were derived from a review of ClinVar pathogenic mutations32 
and a manual review of the medical literature. We included case reports, mutation updates, and review articles 
describing variants where splicing deleteriousness was supported by experimental evidence, such as minigene 
assay, site directed mutagenesis, or patient-derived RNA sample analysis. We also included cases where the 
proband’s phenotype corresponded to the phenotype of the Mendelian disease associated with the affected 
gene. Our review of ClinVar database focused on synonymous pathogenic mutations as well as on non-
canonical SAV that overlap with canonical splice site regions. The variants are listed in the Supplemental Table 
1. The curated variants were located on chromosomes 1-22 and chromosome X (minimum count per 
chromosome: 77 for chr21; maximum: 1339 for chrX) and were derived from a total of 4522 articles with 
PubMed ids. 4753 were assigned to the donor site, 3388 to the acceptor site, and 173 were not assigned to a 
specific site. Variants from 1080 genes were included, with 370 genes with just one SAV, 401 genes with 2-5 
SAVs each, 233 genes with 6-20 SAVs, 50 genes with 21-50 SAVs, and 26 genes with over 50 SAVs. 
 
Dataset of non-deleterious variants 
We prepared a collection of 73,203 presumed non-deleterious variants from the ClinVar database.32 After 
downloading the VCF file released on Nov 11, 2019 from the ClinVar FTP site, we selected variants where 
both the wt and alt alleles were shorter than 50bp, the clinical significance of the variant was classified as 
either benign or likely benign, and the variant was located in coding region of a gene or distance from the 
closest exon was less than 100bp. Each non-deleterious variant was assigned to a donor and/or acceptor site, 
depending on distance to the site. 
 
Engineering of the splicing features 
We developed a set of numeric features to discriminate splicing pathogenic variants from the neutral variants. 
The features can be separated into three groups: a) information content features, b) features representing the 
sequence context, and c) variant site features. 
 
The first group of features is related to the individual information content of the affected sequences.22 We 
compute the individual information content of the closest canonical splice sites and the maximum information 
content of the surrounding wt sequence to model the inherent potential of the wt sequence for abnormal 
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splicing. Then, the differential information content-based features represent an estimate of changes to free 
energy of binding of spliceosome components of pre-mRNA induced by the alt allele. 
 
The sequence context features include length of the closest exon and the offset (distance in nucleotides) to the 
closest canonical splice sites to capture potential positional dependencies. The two remaining features of this 
group identify variants that introduce an AG dinucleotide into the AG exclusion zone (the sequence between 
the branch point and the 3’ splice site that is devoid of AGs). In our implementation, the AGEZ is defined to be 
positions -50 to -3, although biologically,  the branchpoint is located between -18 and -40 (and not reliably 
identifiable computationally). 
 
The variant site features are calculated for the nucleotides that are altered by the variant. We use ESRSeq33  
and SMS34 to assess changes to splicing regulatory element sequences that are associated with exon skipping 
and inclusion and may be related to functional elements such as exonic splicing enhancers for which currently 
no sensitive and specific sequence motifs are available. phyloP evolutionary conservation scoring35 reflects 
whether the nucleotide or nucleotides altered by the variant are under natural selection against a background 
of neutral evolution. 
 
In the next section we describe more in detail the construction of the features based on the information content 
of the sequences. Table 1 provides an overview of features, and the following sections provide additional 
details. 
 

 Splicing feature name Description 

Donor 

Donor offset 
Distance to the exon/intron border of the closest donor site. The number is negative 
if the variant is located upstream from the border. 

Ri can ref Information content (Ri) of the closest canonical donor site. 

max Ri cryptic donor window Maximum Ri of sliding window of all 9 bp sequences that contain the alt allele. 

������  
Difference between Ri of ref and alt alleles of the closest donor site (0 if the variant 
does not affect the site). 

�������� 
Difference between max Ri of sliding window of all 9 bp long sequences that contain 
the alt allele and Ri of alt allele of the closest donor site. 

�����	� 
Difference between Ri of the closest donor and the downstream (3’) donor site (0 if 
this is the donor site of the last intron). 

phyloP 
Mean phyloP score of the reference nucleotides altered by the variant, where 
phyloP denotes conservation scoring calculated by PHAST package for multiple 
alignments of 99 vertebrate genomes to the human genome35 

Acceptor 

Acceptor offset 
Distance to the exon/intron border of the closest acceptor site. The number is 
negative if the variant is located upstream from the border. 

������ 
Difference between Ri of ref and alt alleles of the closest acceptor site (0 if the 
variant does not affect the site). 

�������� 
Difference between max Ri of sliding window applied to alt allele neighboring 
sequence and Ri of alt allele of the closest acceptor site. 

Exon length 
Number of nucleotides spanned by the exon where the variant is located in (-1 for 
non-coding variants that do not affect the canonical donor/acceptor regions). 

Creates ‘AG’ in AGEZ 
1 (True) if the variant creates a novel ‘AG’ dinucleotide in AGEZ, 0 (False) 
otherwise. 

Creates ‘YAG’ in AGEZ 
1 (True)  if the variant creates a novel ‘YAG’ trinucleotide in AGEZ where ‘Y’ stands 
for pyrimidine derivatives (cytosine or thymine), 0 (False) otherwise. 

ESRSeq 
Estimate of impact of random hexamer sequences on splicing efficiency when 
inserted into five distinct positions of two different minigene exons obtained by in 
vitro screening.33,36  
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SMS 
Estimated splicing efficiency for 7-mer sequences obtained by saturating a model 
exon with single and double base substitutions (saturation mutagenesis derived 
splicing score).34  

phyloP See above. 

Table 1. Features used to discriminate deleterious splice variants from splicing neutral in SQUIRLS. We used 
7 features to train site specific random forest classifiers for donor variants, and 9 features to train the classifier 
for acceptor variants. Note that phyloP is used by both splice donor and acceptor classifiers. Ri - information 
content of a nucleotide sequence in bits, AGEZ (AG-exclusion zone) - canonical acceptor site region located 
between the authentic 3'ss AG and the branch point that is generally devoid of AG dinucleotides. 
 
 
Features based on the information content of the sequences 
The core features used to train the splice donor and acceptor site models are based on information theory 
applied to the analysis of splice sites.22 First, to construct a matrix with frequencies of nucleotides occurring at 
different positions of the splice sites, we aligned wild-type sequences of exon/intron junctions of GENCODE 
basic gene annotation transcripts v32 (accessed at Oct 2019). We selected 49,821 protein coding transcripts 

with gene annotation source Havana and GENCODE confidence level ≦2, corresponding to transcripts 

supported by the highest amount of the experimental evidence. 
Then, we grouped the transcripts by gene and identified genomic coordinates of unique exon/intron junctions, 
producing sets with 200,459 donor and 197,874 acceptor site coordinates. Next, we extracted ±80bp of the 
nucleotide sequence surrounding the sites and we subsequently aligned the sequences by exon/intron junction 
coordinate. After alignment, we calculated a matrix, ���� where 4 refers to the number of different types of 
nucleotides and � to the length of the sequences. Each element ���, �� of the matrix � represents a 
probability of observing base � 	 
�, �, , �� at position l within the aligned sequences (Figure S4). Finally, we 
created an information weight matrix Riw grounded in the concept of “decrease in surprisal”37 to model a splice 
junction by the equation 

 

�����, �� � 2 �  log�����, ��� � � 
 
 

where � is a sample size correction factor for the n sequences at position l.38 The ��� matrix represents the 
sequence conservation of each nucleotide within the binding site, measured in bits of information. After 
checking for background noise, we determined the lengths of the donor and acceptor sites to be ldon = 9bp 
and lacc= 27bp (see Figure S4 for more details).  
The ��� matrix can be used to calculate the individual information content Ri of any nucleotide sequence j with 
length m as: 

 

����	 � � � �����, �����, �, ��

��

�

��

 

 
 

where � 	 
�, �, , �� is the set of nucleotides, and A is a 4 x m binary matrix that represents a one-hot 
encoding of the sequence j: the A matrix has only one 1 for each column while the rest of its column elements 
is set to 0. In effect, each base of the sequence “picks out” a specific entry of the matrix ��� and these entries 
are finally added to compute the information content of the sequence. In our setting, ��� is a weight matrix 
representing the splice junction, and the mean values of the �� distribution for the donor and acceptor sites, 
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that represent the mean information of the sequences used to construct ���, were 7.87 (donor) and 9.50 
(acceptor) bits. The resulting Ri(j) is related to thermodynamic entropy and the free energy of binding and can 
be used to compare sites with one another.38 
 
 
Training and test variant sets 
We pooled the splice and neutral variants and then we annotated each variant with splicing features (Table 1) 
and additional metadata, including label (deleterious or neutral), gene symbol, transcript accession ID, and 
cytoband. Next, we split the variants into train and test sets by applying a “cytoband-aware” hold-out scheme: 
we randomly chose 10% (67) of the total number of 676 cytobands, and we put the variants contained in these 
cytobands into the test set. The variants located in the remaining 90% (609) cytobands were used for training 
(Fig. S5). The cytoband-based scheme was designed to minimize bias resulting from distinct variants located 
in the same gene being used for both training and testing. Then, we partitioned the training variants into two 
subsets consisting of either donor or acceptor-affecting variants, based on curation metadata or vicinity to one 
or the other splice site. We removed 6008 canonical SAV variants from the training set, since we aimed to 
optimize the classifier for non-canonical SAVs. We tested SQUIRLS using both subset of non-canonical SAVs 
as well as the entire set. 
 
 
Training of the SQUIRLS model 
SQUIRLS is a “paired ensemble” model that predicts the potential of a variant to alter the splicing pattern of an 
overlapping transcript. The model consists of two random forest classifiers39 trained individually on either the 
donor or the acceptor variant subset. If features are missing for a data point, they are replaced by the median 
value prior to random forest analysis. 
To train the classifiers and perform model selection, we ran 50 iterations of randomized search cross-
validation. In each iteration we randomly sampled hyperparameter values from pre-defined parameter 
distributions and performed 10-fold cross-validation on the training set. Each cross-validation step included 
calculation of the following performance metrics: balanced accuracy, precision, recall, and F1 scores. 
 
We selected the hyperparameters that produced the model with the highest sensitivity (recall) and we 
subsequently retrained the donor and acceptor classifiers on the whole variant subset.  
Most of the machine learning methods used to identify potential pathogenic variants report predicted 
deleteriousness/pathogenicity estimates as a number in the range �0,1 , where higher scoring variants are 
more likely to be deleterious.40,4142 In addition, thresholds for assigning variants into discrete classes (e.g. 
neutral and deleterious) while obtaining the desired specificity or sensitivity are available for most of the 
methods. In a random forest, probability estimates for a class can be calculated as the proportion of the 
forest’s decision trees that voted for the class. To find the class probability threshold that attains the best 
separation of splice and neutral variants, we used the value that maximized the informedness criterion 
(Youden’s J statistic). 
 
To learn the final SQUIRLS score, we applied a meta-learning approach by stacking a learning machine on top 
of the two random forests.43 More precisely, we trained a logistic regression model (LR) from the raw scores 
computed by the two random forests, to automatically learn how to better combine their output.  
 
For model training and evaluation, we used random forest, logistic regression, and imputer implementations 
provided within the Scikit-learn framework.44 For the SQUIRLS application and library, we wrote a custom 
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implementation of the imputer, random forest, and logistic regression. The implementation is available in the 
SQUIRLS source code repository (Web resources). 
 
Model testing, validation, and comparison with other splicing pathogenicity algorithms 
To obtain the unbiased performance estimate for SQUIRLS scores, we computed pathogenicity estimates for 
the test set variants and then we performed ROC and precision-recall analysis. We used the thresholds and 
evaluated classification accuracy. 
 
We compared the SQUIRLS scores with other algorithms that are used for prioritization of splice variants. We 
chose two algorithms designed to assess splice variants that performed well in recently published analyses 
(SpliceAI31 and S-CAP15), an older well-established method (MaxEntScan23), and an algorithm that is 
commonly used for variant prioritization in WES/WGS experiments even though it was not specifically 
designed for analysis of splice variants (CADD45). To evaluate the ability of all algorithms to discriminate 
between the neutral and the splice variants, we calculated predictions for variants and constructed ROC and 
PR curves. 
 
 
SpliceAI 
SpliceAI provides four delta scores for each variant where the maximum score denotes a probability of the 
variant being splice-altering.31 In order to evaluate SpliceAI performance, we precalculated the delta scores 
for variants in our dataset. We used version 1.3.1 (accessed on April 25 2020 at 
https://github.com/Illumina/SpliceAI) with the -M True option to mask scores representing annotated 
acceptor/donor gain and unannotated acceptor/donor loss. We chose the maximum value to perform ROC and 
PR evaluation. We benchmarked SpliceAI runtime performance using the Python package spliceai v1.3.1 
available at PyPi. The runtime of spliceai for a single VCF file with ~100,000 variants is roughly one day, so 
we benchmarked spliceai on VCF files subsampled to 5,000 variants only. 
 
 
S-CAP 
The S-CAP algorithm provides splicing-specific pathogenicity scores calculated using gradient-boosting tree 
(GBT) algorithm.15 The algorithm consists of six GBT predictors, one predictor for each of six author-defined 
regions relative to the splice site. The authors provide a VCF file with precomputed scores for all possible 
single nucleotide variants in the splicing region. There are two score types: raw score is the output of the 
corresponding GBT, and sensitivity score which is a transformed raw score to make it directly comparable with 
scores of the other regional predictors. We used both raw and sensitivity scores for the ROC and PR 
evaluation. 
 
MaxEntScan 
MaxEntScan is a framework that employs the maximum entropy principle for building a model m that 
represents a particular sequence motif, including mRNA splice sites.23 During the building phase, a collection 
of aligned sequences is used to estimate the maximum entropy distribution and a set of constraints. Using this 
approach, the authors built and evaluated multiple maximum entropy models. For our comparison, we chose 
the models that yielded the highest AUCs (mme2x5 for the donor and mme2x3 for the acceptor site), as described in 
the MaxEntScan manuscript. 
In order to allow MaxEntScan to be compared with SQUIRLS, we created a set of rules for constructing 
nucleotide snippets jwtand jalt to be scored by the appropriate MaxEntScan model m. For each variant, we 
considered four situations: 
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(i) the variant disrupts the canonical donor site, (ii) the variant activates a cryptic donor site, (iii) the variant 
disrupts the canonical acceptor site, and (iv) the variant activates a cryptic acceptor site. 
For situations (i) and (iii), we prepared sequence snippets jwt and jalt for the canonical sites and we calculated 
the final score ΔMES as  ΔMES = m(jwt) - m(jalt). For situations (ii) and (iv), we calculated a  score vector s for the 
sliding window of all n-bp sequences jwt or jalt that contain the wt or alt alleles. Then, the final score was 
computed as  ΔMES = max(salt) - max(swt). After calculating ΔMES for all four situations, we used the maximum 
value as the final pathogenicity estimate for ROC and PR analysis. 
 
Combined Annotation Dependent Depletion 
Combined Annotation Dependent Depletion (CADD) estimates the deleteriousness of variants by integrating 
multiple annotations into a single score.45 The score is applicable across diverse variant functional categories, 
including variants affecting mRNA splicing. For comparing CADD with SQUIRLS, we downloaded TSV files with 
PHRED-scaled pathogenicity scores precalculated for all possible SNVs and INDELs built by the model v1.4 
(accessed on November 20, 2019). For each variant, we transformed the PHRED score ! into �0,1  by 

applying ��!� � 1 � 10� �

��. If the score was not available, we considered the variant to be benign 
(pathogenicity=0.0). The transformed scores were used for ROC and PR analysis. 
 
Implementation 
We designed multiple optimizations to achieve fast runtime performance. SQUIRLS fetches all data required to 
evaluate a variant's effect on the overlapping transcripts in a single I/O lookup and all the subsequent 
operations are performed in memory. An additional performance increase is achieved by limiting the number of 
splicing features and by exploiting inherent parallelism of the random forest, which can be distributed across 
multiple CPU cores. The source code of SQUIRLS and a standalone “executable JAR” file are available for 
download from the GitHub repository (Web resources). 
 
 
RESULTS 
SQUIRLS is designed to predict variants associated with splice defects from exome or genome sequencing 
data. All variants that overlap transcripts are evaluated for potential effects on splicing including both variants 
at the canonical donor and acceptor sequences as well as other exonic and intronic variants that could 
generate cryptic splice sites or otherwise alter normal splicing (Fig. 1A). SQUIRLS evaluates the effect of 
variants with respect to all transcripts that overlap the variant. The output visualizations and tabular 
assessments are designed for human consumption and can also be used to output a VCF file with annotations 
of the predictions of relevant splice variants for use in larger bioinformatic pipelines for diagnostic genomics.  
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Figure 1.) mRNA splicing and sequence logos/walkers. A) The figure shows an intron and the 
corresponding canonical splice donor and acceptor sites, which are represented as logos, where the lett
representing the sequence are stacked on top of each other for each position in the splice site. The heig
each letter is proportional to its logarithmic frequency at the position, and the height of the entire stack is
adjusted to indicate the information content of the sequences at that position. B) Individual sequence 
information (Ri) for a wildtype splice donor sequence of CHRNE and for the corresponding sequence wit
variant NM_000080.3:c.917G>T:p.(R306M). c.917G>T is located at the last (3’ most) position of an exon
although it is predicted to lead to a missense change, it reduces the strength of the donor sequence and
leads to skipping of the affected exon.46 The sequence walker representations as introduced by Rogan a
colleagues22 are shown for the wildtype and variant sequences. Sequence walkers display nucleotides th
represent favorable contacts to the spliceosome and a test sequence by letters that extend upwards and
positions that are predicted to make unfavorable contacts are shown by inverted letters. C) SQUIRLS 
introduces a new graphical representation in which a bar chart is used to show the degree to which a 
sequence “matches” the donor or acceptor model. The height of the bars is calculated in the same way a
for the height of the letters in the sequence walker. Positions that are changed by a variant are displayed
such that the original nucleotide is shown as an outline (the “g” in this example) and the variant (alternat
base is shown filled. D) The variant reduces the Ri from 7.6 to 4.0 bits. Changes in Ri are referred to as Δ
SQUIRLS calculates ΔIC in several contexts (Fig. 2). 

 
Overview of the algorithm 
SQUIRLS first calculates a set of numerical features for each variant/transcript pair. The features 
changes in information content between reference and alternate alleles (Fig. 1), changes in SREs, dis
from the canonical splice sites, and a measure of evolutionary conservation. The features were chose
interpretable by humans (Table 1, Fig 2-3). The features are used as input for a pair of random
classifiers specialized in computing site-specific splice scores for donor and acceptor sites. The algorith
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uses logistic regression to transform the scores into the final SQUIRLS score that estimates the probability of 
the variant in question being a splice variant. 
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Figure 2. Calculate of changes in the individual information content (A) Donor site. SQUIRLS calcu
ΔICcan as the difference in the Ri  in between the reference and alternate sequence of the canonical d
sequence (Fig 1A). If the variant is located outside of this sequence, ΔICcan =0.  SQUIRLS evaluate
potential of variants to create cryptic splice sites using a sliding window approach (Methods). ΔIC
calculated by subtracting the Ri of the reference sequence from that of the alternate sequence. Finally
difference between the Ri of the wildtype donor site is compared with that of the donor site of the follo
exon (ΔICnext), because differences in splice site strength can be predictive of exon skipping.14 B) Acce
ΔICcan and ΔICcrypt are calculated in an analogous fashion. The random forest for acceptor variants doe
use ΔICnext as our initial analysis showed that it did not boost classification performance. See Table 
information about other features. 
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Figure 3. Features are extracted and generated for the donor and acceptor sites and leveraged for ran
forest learning, whose predictions are calibrated by logistic regression to provide the final SQU
predictions. A) SQUIRLS calculates 7 features to evaluate variant impact on the donor site. The indiv
information content (Ri) of the reference and alternate canonical splice site and of the donor site i
following exon (Exon k+1) are calculated and used to determine the difference in information co
between the reference and alternate canonical splice site (ΔICcan), the difference between the best cand
cryptic splice site and the alternate sequence of the canonical splice site (ΔICcrypt) and the differ
between the donor site at exon k and k+1 (ΔICnext). See Table 1 for information about other features. 
this example, a variant in intron k creates a cryptic splice site with 8 bits, which is greater than in
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individual information of the canonical splice site (4.5 bits), so ΔICcrypt =3.5 bits. The variant does not change 
the sequence of the canonical splice site, so ΔICcan=0. The the individual information of the donor site of the 
next exon has 0.5 more bits greater than that of exon k, so ΔICnext =-0.5 bits. C) In this example, a variant in 
the canonical splice site (e.g., the +5 position) reduces the strength of the canonical splice site from 7.5 to 
3.0 bits and simultaneously creates a novel cryptic site with an individual information content of 8.3 bits. An 
example of this is the variant NM_000314.7(PTEN):c.253+2T>C, which alters the canonical splice site and 
simultaneously changes the sequence of a cryptic splice site located 3 nucleotides downstream, resulting in 
the inclusion of 4 intronic nucleotides in the variant mRNA.47 
 

 
 
 
 
A dataset of non-canonical splice variants 
We performed a comprehensive review of scientific literature to curate a dataset of splice variants associated 
with Mendelian diseases. In total, we collected 8,314 splice variants as well as 73,203 variants classified as 
benign or likely-benign variants from ClinVar (Table 2, Supplemental Table 1).32 The distribution of the variants 
with respect to the donor and acceptor splice site is shown in Fig. 4. 
 

Outcome Donor Acceptor Total 

Cryptic site creation 150 204 354

Canonical site disrupted 4,701 3,242 7,943

Other 7 10 17

Total 4,858 3,456 8,314
Table 2. Summary of the variant dataset. We created a collection of splice variants by curating literature. During curation, 
we recorded metadata regarding the variant pathomechanism and the observed outcome. Based on the outcome, we 
categorized the variants into two major groups: a) variants disrupting canonical splice sites and leading to activation of a 
cryptic splice site, or to exon skipping, and b) variants that activate cryptic splice site outside of the canonical splice site. 
73,203 neutral variants were used as negative training examples.  
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Figure 4 Distribution of non-canonical deleterious SAVs and non-deleterious variants used for tra
SQUIRLS. The figure shows the distribution of variants used for training SQUIRLS on a logarithmic s
The position with respect to the nearest acceptor or donor intron/exon boundary is shown.   

 
In order to prepare the variant dataset for training of machine learning models, we split the dataset into 
and test sets. We used a “cytogenetic band-aware” method that ensures that variants affecting the sam
are either used for training or testing, but not both, since nearby variants may share similar features
might bias the results. This way we randomly partitioned the splice and non-deleterious variants into 
(609 cytobands, ~90%) and test (67 cytobands, ~10%) sets, consisting of 70,617 and 10,901 varian
S5). 
Then, we assigned the training set variants to either donor or acceptor sites, based on the curation me
or distance to the closest splice site. The training set was further narrowed down by removing 6,008 ca
SAVs, yielding the final training set consisting of 1,623 deleterious noncanonical SAVs and 62,98
deleterious variants. We chose to train SQUIRLS on non-canonical SAVs but note that SQUIRLS also d
state of the art performance in the (relatively simple) classification task of predicting deleteriousn
canonical SAVs. 
 
 
Selection of interpretable features for machine learning 
We trained two site-specific random forest classifiers to separate splice variants from neutral variants, 
the donor variants and the other for the acceptor variants. During training, we used random 
hyperparameter optimization48 and 10-fold cross-validation to evaluate different combinations of 21 s
features and learning parameters, to select the combination that provides classifiers with the highe
under receiver operating characteristic curve (AUROC) and precision-recall scores. The final set of 15 f
included features based on information content, changes in candidate 6/7-mer SRE motifs, evolu
conservation of the variant position, and distance from the closest splice sites (Fig. 2A-B, Supplemen
S1, Table 1). After selecting the best-performing features and learning parameters, we trained the fin
specific classifiers using the entire training set. 
 
The donor and acceptor scores are calculated for all variants. The ranges and thresholds of the accep
donor scores are, however, different (Figure S2A), which precludes direct integration of the site-
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estimators into variant prioritization frameworks. To combine the donor and acceptor estimators into a single 
measure, we introduced a meta-learning approach using logistic regression as the last step of our algorithm. 
We calculated site-specific deleteriousness estimations for all training variants and we subsequently used the 
site-specific estimates to obtain logistic regression parameters that provide the best predictions (splice 
deleterious=1, neutral=0). The final SQUIRLS score is the output of the logistic function, integrating the raw 
scores into a single measure with range �0,1 . 
 
 
Performance evaluation and comparison with other methods 
We evaluated SQUIRLS using a test set consisting of 808 splice variants (213 non-canonical SAVs) and 
10,092 neutral variants (10,068 non-canonical SAVs) that were not used for training. After calculating 
SQUIRLS scores for all variants, we assessed diagnostic utility by creating receiver operating characteristic 
(ROC) and precision-recall (PR) curves, as well as calculating the area under the ROC (AUROC) and the 
average precision (AP). 
 
SQUIRLS achieved an AUROC of 0.91 and an AP of 0.62 on a test set consisting only of  non-canonical SAVs 
(Figure 5). Although SQUIRLS does not use canonical (±1,2) SAVs for training, it achieved an AUROC of 0.97 
and an AP of 0.88 on a dataset that included both canonical SAVs and non-canonical SAVs (Figure S3). These 
results show that SQUIRLS can accurately identify both easy (canonical) and difficult to assess (non-
canonical) SAVs. 
 
We then compared SQUIRLS to four state-of-the-art methods for assessing the pathogenicity of candidate 
splice variants: SpliceAI,31 a deep residual neural network that predicts whether each position in a pre-mRNA 
transcript is a splice donor, acceptor, or neither, and S-CAP,15  a gradient-boosting tree approach that provides 
splicing-specific pathogenicity scores. Moreover we compared SQUIRLS to MaxEntScan,23 a well-established 
tool employing maximum entropy principle to model splicing motifs, and to CADD,45 a framework that 
integrates diverse genome annotations into a single quantitative score to estimate deleterious effect of arbitrary 
variants and hence not specific for splice variants. 
We obtained predictions for variants in the test dataset and constructed ROC curves and PR curves. SQUIRLS 
and SpliceAI achieved the best AUROC and AP on our test set, largely outperforming the other methods 
(Figure 4, Supplemental S3). 
 
To further evaluate the expected performance of SQUIRLS in real-life scenarios, we developed a simulation 
strategy based on 13 VCF files generated by exome sequencing of individuals unaffected by a Mendelian 
disease. In the simulation, we added a single splice variant to each of the 13 VCF files, then we predicted 
pathogenicity for all variants, and subsequently ranked the variants according to predicted pathogenicity. 
Finally, we calculated the rank of the added splice variant averaged over the 13 VCF files.  
 
In order for a prioritization method to be useful, it needs to place causal variants near the top of the list (“on the 
first page”) such that the causal variant is discoverable during the clinical interpretation. SQUIRLS achieved 
the best performance, placing 35% of splice variants within the top 5 positions, 50% of splice variants at rank 
14 or below (median rank). The second-best method, SpliceAI, achieved a median rank of 25 and the third 
best method, S-CAP, achieved a median rank of 114 (Figure 5 C and D, S6). 
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Figure 5. Performance of SQUIRLS, SpliceAI, S-CAP, CADD, and MaxEnt on non-canonical SV
Receiver operating characteristic curves indicate that SQUIRLS and SpliceAI achieve compa
performance. B) Precision-recall curves show that SQUIRLS and SpliceAI are able to find the most o
true splice variants, while maintaining high precision. C) Mean ranks of splice variants among variants
13 simulated exome sequencing runs. D) Mean ranks box plot. The horizontal line of each box indicate
median, box borders indicate positions of the 1st and the 3rd quartile, and the whiskers indicate 1.5
interquartile range E) Comparison of algorithm runtimes for SQUIRLS and SpliceAI.  We recorded the
required for analysis of 13 VCF files containing 87,000-107,000 variants. The figure shows the annot
speed that was achieved on a consumer laptop. We could not compare the performance of S-CAP
CADD, since they provide  precomputed predictions as tabular files. Therefore, the annotation speed is
dependent on a package used to query the tabular file (e.g. tabix). 
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SQUIRLS enables rapid prioritization of arbitrary variants 
With an ever increasing availability of sequencing data, computationally expensive algorithms may quickly 
become a bottleneck in the sequence data analysis. Precalculating pathogenicity scores for each genome 
position and storing the predictions in sorted and compressed tabular file or also using parallel hardware 
devices (e.g. graphics processing unit, GPU) are workarounds commonly used for computationally expensive 
algorithms. In contrast with SNVs, this approach does not work well for multi-nucleotide variants or INDELs, as 
the number of possible ref/alt allele combinations grows exponentially with increasing variant length. Then, 
storing pathogenicity prediction for each combination quickly becomes infeasible. Additionally, pre-calculated 
scores are not always available with respect to a particular transcript. To support pathogenicity prediction for 
an arbitrary genome variant at scale, the algorithm must be both efficient and easily portable to different 
computational platforms. SQUIRLS was designed to satisfy these requirements. 
 
Apart from SpliceAI, SQUIRLS is the only tool in our comparison that directly annotates variants in a VCF file. 
S-CAP does not provide software that can analyze arbitrary variants, and a downloaded file with score mainly 
for single-nucleotide variants (SNVs) was used for the comparison. SQUIRLS annotates a VCF file containing 
100,000 exome variants in roughly 1 minute on a consumer laptop, which is over 1000 times faster than 
SpliceAI (Fig. 5E). SpliceAI provides both a downloadable file with predictions for SNVs as well as an 
executable program that can analyze arbitrary variants. SQUIRLS was faster than all competitors except for 
the lookup of S-CAP predictions (Methods).  
 
SQUIRLS is written in Java 11 and can be used both as a library, as well as a standalone command-line 
application (see online tutorial). The command line application is intended to be used with a Variant Call 
Format (VCF) file from exome or genome sequencing. The application generates output in multiple formats, 
including HTML report with figures and supporting information (see next Section), a tabular file with predictions, 
and an annotated VCF file that contains pathogenicity predictions with respect to all overlapping transcripts. 
 
SQUIRLS provides interpretable predictions 
The majority of machine learning algorithms that are used as aids in variant prioritization work as black boxes. 
After making a prediction, the algorithms do not explain how the particular answer was made, which factors 
were considered, and the insights regarding the most likely molecular cause. When designing SQUIRLS, our 
motivation was to create an algorithm that is both accurate and interpretable. We addressed these goals by 
limiting features to a small set of biologically interpretable attributes (Table 1). SQUIRLS can output its results 
in three ways: (1) by adding annotations to the VCF file; (2) as a tab-separated values (TSV) file that can be 
easily incorporated into larger analysis pipelines; and (3) as an HTML file that presents the specific values 
calculated for each of the attributes relevant to a given variant in the context of visualizations that show the 
most important predicted effects. Fig. 6 presents an example of the output produced by SQUIRLS for each 
candidate SAV.  
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Figure 6 Screenshot of SQUIRLS HTML output. The variant NM_000249.3:c.86C>G generates a cryptic
splice site in MLH1.49 The variant is evaluated with respect to four overlapping transcripts and it is assign
maximum SQUIRLS score = 0.893. Transcripts with predicted maximum SQUIRLS score are highlighted
the table. The variant is located 31 bp upstream of the canonical site of exon 1 and it is predicted to crea
cryptic donor site (Ri=8.19 bits) which is stronger than the canonical donor (Ri=6.17 bits) by 2.02 bits. Us
the cryptic donor site would lead to removal of 31 bases from the coding sequence. Bar charts compare 
canonical donor site with the predicted cryptic site. The bar chart shows that the variant replaces cytosin
(blue rectangle) with a guanine (orange rectangle). The change is predicted to allow a more favorable 
contact between spliceosome and the alt allele, resulting in usage of the cryptic site and removing 31 ba
from the coding sequence.  

 
 
 
 
DISCUSSION 
In this work, we have presented SQUIRLS, an efficient and accurate algorithm for the prioritization o
variants in exome or genome data. Our approach displays AUROC and AP performance that is compar
better than that of previously published methods and is superior to these methods with respect to its a
rank disease-associated variants within the long list of candidate splicing variants found in exomes. In c
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to previous methods, SQUIRLS was designed to leverage a small set of interpretable features and can provide 
visualizations of the predicted effects of variants on splicing that can help clinical interpretation. 
 
To develop SQUIRLS, we focused on non-canonical splice variants. Canonical variants, defined as those that 
affect positions ±1 or ±2 of introns, are typically easy to interpret because variants at these positions only rarely 
do not deleteriously affect splicing. It has been substantially more difficult to develop algorithms that accurately 
classify splice variants at other positions. For this work, therefore, we performed extensive and detailed 
curation to identify non-canonical splice variants that are associated with Mendelian disease from the literature 
and from ClinVar. The resulting dataset, which to our knowledge is the largest of its kind, is freely available 
(Supplemental file 1). We developed a machine learning model using random forests and meta-learning 
techniques, whereby substantial preprocessing of sequence data is performed to generate a set of 15 features, 
using also information theory techniques to assess the information content of sequences that include splice 
variants. A meta learning approach based on stacked generalization is essential in this context to improve 
performance. Indeed a simple ensemble combination strategy based on averaging the raw scores computed 
by the random forests, or each random forest alone, worsens the overall performance (data not shown). 
 
While SQUIRLS can be used on its own to specifically look for diagnostically relevant splice variants, it can 
also be easily used as a component of diagnostic exome/genome pipelines to improve recognition of causal 
splice variants. We optimized the classifier for high sensitivity to reduce the number of false negatives. In a full 
WES/WGS analysis pipeline, the false positive rate can be controlled by other strategies available for data 
analysis such as phenotype-based prioritization.50–52 For instance, combining the predictions of SQUIRLS with 
linkage analysis, candidate gene lists, or phenotype analysis would be likely to further improve rankings of 
causal variants.50,51  
 
Many resources for genomic diagnostics precalculate scores for some subset of all possible variants. For 
instance, dbNSFP collects functional predictions and annotations for over 80,000,000 human nonsynonymous 
single-nucleotide variants and splice-site variants from various other algorithms that precompute values for all 
possible nucleotide changes in specified regions.53 However, this approach does not scale well for the 
prediction of splicing-relevant variation, which can affect multiple nucleotides and be located at arbitrary 
intronic and exonic positions. In our study, three of the approaches we compared with SQUIRLS offer 
precomputed scores but did not cover all tested variants. Of the 243 test variants, CADD missed 3 (1%), 
SpliceAI missed 27 (11%), and S-CAP missed 108 (43%). For clinical use, it is therefore important to optimize 
not only recall and precision but to engineer software such that it can analyze a wide range of variants in little 
time. 
 
A limitation of SQUIRLS and all other approaches for computational prediction of SAVs in WES/WGS data that 
we are aware of, is that the algorithms predict the existence of an alteration of splicing, but do not attempt to 
predict the exact defect. In general, SAVs can be associated with a range of splice defects such as exon 
skipping, partial loss of exonic sequence, complete or partial intron inclusion, the creation of pseudoexons. 
Other investigations such as RNA-seq or target reverse-transcriptase PCR experiments are necessary to 
characterize these effects. 
 
The UK 100,000 Genomes project and many other initiatives are poised to make genomic medicine part of 
healthcare for individuals with rare and common disease. In order to maximize the diagnostic yield of these 
programs, speed, efficiency, and ease of use are critical for technical incorporation of an algorithm into the 
diagnostic pipeline. However it is also crucial that the output of the algorithm is easily interpretable by the 
clinical scientists receiving the results of this pipeline in order that they can apply their findings to the treatment 
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of the patient. In this work, we have presented an accurate and interpretable algorithmic approach for 
analyzing non-canonical splice variants that to date have been difficult to assess in exome or genome data. 
SQUIRLS combines state of the art accuracy with the ability to analyze arbitrary variants. On typical mid-range 
consumer hardware, SQUIRLS can analyze an exome file within a minute. To our knowledge, SQUIRLS is 
currently the only software that combines these abilities. 
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