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Summary 31 

● Interactions between plants and leaf herbivores have long been implicated as the 32 
major driver of plant secondary metabolite diversity. However, other plant-animal 33 
interactions, such as those between fruits and frugivores, may also be involved in 34 
phytochemical diversification. 35 

● Using 12 species of Piper, we conducted untargeted metabolomics and molecular 36 
networking with extracts of fruits and leaves. We evaluated organ-specific secondary 37 
metabolite composition and compared multiple dimensions of phytochemical 38 
diversity across organs, including richness, structural complexity, and variability 39 
across samples at multiple scales within and across species. 40 

● Plant organ identity significantly influenced secondary metabolite composition, both 41 
independent of and in interaction with species identity. Leaves and fruit shared a 42 
majority of compounds, but fruits contained more unique compounds and had higher 43 
total estimated chemical richness. While organ-level chemical richness and structural 44 
complexity varied substantially across species, fruit diversity exceeded leaf diversity 45 
in more species than the reverse. Furthermore, the variance in chemical composition 46 
across samples was higher for fruits than leaves. By documenting a broad pattern of 47 
high phytochemical diversity in fruits relative to leaves, this study lays groundwork 48 
for incorporating fruit into a comprehensive and integrative understanding of the 49 
ecological and evolutionary factors shaping secondary metabolite composition at the 50 
whole-plant level.  51 

Key words: secondary metabolites, chemical diversity, metabolomics, fruit, seed, leaf  52 
 53 
Introduction 54 

Phytochemistry plays a key role in mediating the ecological and evolutionary 55 

dynamics of plant interactions (Kessler & Baldwin, 2002; Wittstock & Gershenzon, 2002; 56 

Hartmann, 2007). As functional traits, secondary metabolites can significantly affect plant 57 

fitness by defending plants against antagonists, directly affecting the competitive ability of 58 

neighboring plants, protecting plants from harsh environmental conditions, and attracting and 59 

rewarding mutualists, both above and below ground (Iason et al., 2012). However, research 60 

on secondary metabolites and their role in the ecology and evolution of plants has been 61 

disproportionately focused on vegetative organs, specifically the leaf (e.g. Kursar et al., 2009; 62 

Richards et al., 2015; Volf et al., 2018; Salazar et al., 2018). While secondary metabolites 63 

have numerous demonstrated functions mediating plant-animal interactions surrounding 64 

leaves, they also likely perform a crucial and complex set of functions in reproductive organs.   65 

 Plant reproductive organs have been a nexus of plant-animal interactions since before 66 

the emergence of angiosperms. However, the ecological role that secondary metabolites play 67 

in the biology of these plant organs has not been deeply explored. Fruits, and the seeds they 68 

contain, provide a direct link to plant fitness and are therefore likely to be under intense 69 
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selection pressure to attract mutualists and deter antagonists. These complex and contrasting 70 

selective pressures are distinct from those acting on leaves, and may lead to the occurrence of 71 

secondary metabolites not found in other organs. Indeed, given the complex and often 72 

contrasting nature of selective pressures to which fruits and seeds are exposed, fruits and 73 

seeds are likely to serve as evolutionary incubators of novel secondary metabolites, and 74 

disproportionately contribute to the diversity of phytochemical traits. This is especially likely 75 

in systems involving animal-mediated seed dispersal (zoochory), in which plants face the 76 

ecological and physiological challenge of attracting and offering a nutritional reward to 77 

dispersal vectors while also repelling seed predators, pathogens, and non-target frugivores 78 

(Herrera, 1982; Tewksbury, 2002; Whitehead et al., 2016).  79 

Secondary metabolites endemic to fruits, and with demonstrated functional 80 

significance in seed dispersal and/or fruit defense, have been shown in several systems, 81 

including iridoid glycosides in honeysuckles (Whitehead & Bowers, 2013a, 2013b), 82 

capsaicinoids in Capsicum (Suzuki & Iwai, 1984; Tewksbury & Nabhan, 2001; Tewksbury et 83 

al., 2008), and amides and alkenylphenols in Piper (Whitehead et al., 2013, 2016; Whitehead 84 

& Bowers, 2014; Maynard et al., 2020). Further, capsaicinoids in Capsicum and 85 

alkenylphenols in Piper are synthesized only in the fruits of these taxa (Suzuki & Iwai, 1984; 86 

Maynard et al., 2020).  Overall, these studies suggest that unique and potentially contrasting 87 

selective pressures on fruits may be an important factor shaping phytochemical 88 

diversification in plants. However, our understanding of the relative importance of 89 

interactions across plant organs in shaping phytochemical diversity is limited by a paucity of 90 

studies that compare chemical composition and metabolomic diversity across plant organs in 91 

an ecological context.  92 

 Comparative metabolomic studies across plant organs have the potential to greatly 93 

expand our understanding of secondary metabolite function and evolution. Given that 94 

metabolites may be organ-specific, the location in which they are expressed in the plant (and 95 

consequently, the ecological interactions in which they are involved) can provide valuable 96 

insight into both the evolutionary origins and ecological consequences of the vast diversity of 97 

undescribed plant secondary metabolites.  98 

Despite the likelihood of distinct selective pressures promoting divergent evolution of 99 

secondary metabolites across plant organs, it is likely that the phytochemical diversity in one 100 

organ may be constrained by physiological or genetic linkages with the phytochemistry of 101 

other organs (Adler et al., 2006, 2012; Kessler & Halitschke, 2009; Keith & Mitchell-Olds, 102 

2019).  Physiological constraints may result when a majority of the steps in a secondary 103 
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metabolite pathway are localized to a particular part of the plant, yielding complete or nearly 104 

complete end products that are then transported to the organs in which they are utilized, e.g. 105 

glucosinolates in the Brassicaceae (Keith & Mitchell-Olds, 2019). Such a pathway has a 106 

limited capacity to generate organ-specific modifications of its end products prior to 107 

transport, and the sink organs may lack the metabolic machinery required for such 108 

modifications. Other secondary metabolites are locally synthesized, but in this case organ-109 

specific metabolites derived from a shared metabolic pathway may be limited by genetic 110 

linkage, through co-localization of genes responsible for modifications within a metabolic 111 

pathway, e.g. terpene synthase clusters (Falara et al., 2011; Chen et al., 2020; Xu et al., 112 

2020). Certainly, evolutionary processes may overcome these constraints when there are 113 

conflicting selection pressures among organs, as evidenced by the numerous examples above 114 

of compounds occurring only in specific organs. Furthermore, even when fruits and leaves do 115 

share compounds, these compounds may be quantitatively uncorrelated (Cipollini et al., 116 

2004; Whitehead & Bowers, 2013; Berardi et al., 2016). Thus, while all plant species are 117 

biochemically circumscribed to some extent by the biosynthetic pathways acquired through 118 

their evolutionary history, broad evolutionary patterns of such constraints across plant organs 119 

have yet to be elucidated. Comparative metabolomics provide us with the tools to define and 120 

characterize these patterns of constraint in conjunction with patterns of phytochemical 121 

innovation.  122 

In this study, we use comparative untargeted metabolomics to explore whether and 123 

how differential selective pressures and constraints across reproductive and vegetative organs 124 

have shaped the diversity and distribution of secondary metabolites in Piper, a pantropical 125 

species-rich genus. Piper are diverse and dominant members of neotropical lowland forest 126 

understories and are known to contain a rich array of secondary metabolites (Kato & Furlan, 127 

2007; Richards et al., 2015). Their well-studied chemical composition and a long history of 128 

ecological research have made them a model system for understanding phytochemical 129 

diversification and its role in shaping plant interactions and community structure (Dyer & 130 

Palmer, 2004; Richards et al., 2015; Salazar et al., 2016).  131 

Our overall objective in this study is to test the hypothesis that fruits can act as 132 

incubators of phytochemical diversification in plants. First, we describe the occurrence 133 

patterns of secondary metabolites across leaves, fruit pulp, and seeds in 12 Piper species, 134 

providing baseline data for understanding Piper secondary metabolite function. We use 135 

untargeted mass spectrometry-based metabolomics, molecular networking, and in-silico 136 

fragmentation modeling to characterize undescribed metabolites, followed by machine 137 
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learning and distance-based methods to compare composition across organs and species. 138 

Second, we use these data to test predictions of high relative diversity in fruits derived from 139 

our hypothesis of fruit-driven phytochemical diversification. We compare multiple 140 

dimensions of phytochemical diversity across leaves and fruit organs, including the richness 141 

at multiple scales (alpha and gamma diversity), variability (beta diversity), and structural 142 

complexity of secondary metabolites.   143 

Materials and Methods 144 

Study system 145 

Encompassing over 1,000 species across the Neotropics (Quijano-Abril et al., 2006), the 146 

genus Piper is diverse and abundant in forest understories, clearings, and edges (Gentry, 147 

1990; Dyer & Palmer, 2004). Piper growth forms range from herbs and vines to shrubs and 148 

small trees (Gentry, 1990; Dyer & Palmer, 2004). Fruits of Neotropical Piper are borne on 149 

distinct spike-shaped infructescences that are dispersed primarily by bats of the genus 150 

Carollia (Phyllostomidae). Fruit antagonists of Piper include insect seed predators, which 151 

have been found to consume up to 87% of seeds (Greig, 1993), and a largely uncharacterized 152 

suite of pathogens, which rapidly attack fruit upon ripening (Thies & Kalko, 2004; 153 

Whitehead & Bowers, 2014; Maynard et al., 2020). Leaves of Piper are subject to herbivory 154 

from a broad array of arthropods, including a genus of specialist geometrid moths, Eois, 155 

estimated to include over 1,000 species in the Neotropics (Brehm et al., 2016), as well as 156 

other geometrid moths, coleopterans, and orthopterans (Dyer & Palmer, 2004).   157 

Field collections 158 

 All field collections took place between 2009 and 2012 at La Selva Biological Station, 159 

Heredia Province, Costa Rica. Samples were collected during a phenology census across 28 160 

species of Piper during 2009-10 and opportunistically from 2010-12 when ripe fruits were 161 

available. Ripe fruits were distinguished by a distinct softening and swelling of the fruit along 162 

an infructescence combined with a partial senescence of the infructescence from the branch 163 

(presumably to allow bats to easily remove the entire infructescence in flight). In most Piper 164 

species included in this study, one or a few infructescences ripen per day per plant during the 165 

fruiting period, and the vast majority of these are removed on the same night of ripening by 166 

bats (Thies & Kalko, 2004; Maynard et al., 2020). Those that are not removed rapidly 167 

decompose; therefore, we always took care to collect freshly-ripened infructescences. We 168 

chose 12 species for inclusion in this study for which we were able to obtain collections from 169 

at least three individual plants. For each individual, we collected 1-2 ripe infructescences and 170 

the unripe infructescences that were immediately distal to the ripe ones on the same branch. 171 
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Fruits on a Piper branch mature sequentially from the proximal to the distal end of the 172 

branch; thus, these adjacent unripe infructescences were the next closest to maturity on that 173 

branch. Leaves were collected from the same branch. We chose the youngest fully-expanded 174 

leaf that did not have extensive herbivore damage. All samples were transported immediately 175 

to the laboratory (within 2 hours) and frozen at -80oC prior to analysis. Subsequent analyses 176 

involve four sample types: complete leaves, pulp from unripe and ripe infructescences, and 177 

seeds from ripe infructescences.  178 

Chemical extractions 179 

The frozen plant material was freeze-dried (-20° C/ -55 ° C, shelf/condenser), then ground 180 

to a fine powder using a FastPrep-24 homogenizer. Seeds and pericarp were separated prior 181 

to grinding by gently rubbing the dried fruit over fine mesh; the lignified central rachis of the 182 

infructescence was discarded. In unripe fruit, seeds that were not sufficiently developed to be 183 

separated from the pericarp by this method were homogenized with the pericarp. For each 184 

sample, 50 mg of homogenized powder was weighed into a 2 mL Eppendorf tube using a 185 

microbalance. To isolate the broadest possible range of phytochemicals while excluding the 186 

broadest possible range of primary metabolites, extracts were prepared using buffered 187 

acetonitrile and acetone in series. The acetonitrile and acetone extraction solutions were 188 

prepared with an aqueous acetate buffer (44.3 mmol/L ammonium acetate), both at 70:30 189 

solvent: buffer, v/v. The solutions were prepared with Nanopure® water, Fisher HPLC-grade 190 

acetic acid, and Fisher Optima®-grade ammonium acetate, acetonitrile, and acetone. All 191 

containers and instruments coming into contact with the extracts were rinsed with Fisher 192 

Optima®-grade methanol.  Each 50 mg sample was extracted twice with 1.5 mL buffered 193 

acetonitrile, then twice more with 1.5 mL buffered acetone (6.0 mL total extraction solution). 194 

During each of these four extractions, the sample was mixed with the extraction solvent for 5 195 

min in a vortexer, and then centrifuged for 5 min at 15870 rcf, after which the supernatant 196 

was removed and added to a 20 mL glass scintillation vial. The supernatant from each of the 197 

four extractions was combined in the same 20 mL vial. The combined extract was dried at 198 

30° C using a nitrogen evaporator until no solvent was visible, then further dried in a 199 

lyophilizer for 12 h (-20° C/ -55 ° C, shelf/condenser) before being transferred to storage at -200 

80° C until analysis. 201 

Untargeted metabolomics 202 

LC-MS data were collected using an Acquity I-class UPLC coupled to a Waters Synapt 203 

G2-S quadrupole time-of-flight mass spectrometer (Waters). For analysis, dried extracts were 204 

resuspended at 10 mg/mL in 75:25 water: acetonitrile + 0.1 % formic acid, with 1.0 µg/mL 205 
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N-oleoylglycine as an internal standard. The extract was then sonicated for 10 min, after 206 

which a 20 µL aliquot was taken and diluted 10-fold with 75:25 water: acetonitrile + 0.1 % 207 

formic acid. The diluted aliquot was then vortexed and centrifuged (10 min,13,000 xg) and an 208 

aliquot (180 µL) was transferred to an LC-MS vial for analysis. Solvent blanks and 209 

combined, quality-control samples were injected at regular intervals during data collection. 210 

The autosampler temperature was 10°C and the injection volume was 1.5 µL. The column 211 

employed was a reverse-phase Acquity BEH C18 (2.1 mm ID x 150 mm, 1.7 um particle 212 

size, Waters) maintained at 35 °C at a flow rate of 0.2 mL/min. Solvent A was water with 213 

0.1% formic acid and solvent B was acetonitrile with 0.1% formic acid (LCMS grade, Fisher 214 

Chemical). Solvent gradient: 0-0.5 min, 90% A; 0.5-1.0 min, 75% A; 1.0-8.0 min, 5% A; 8.0-215 

10.0 min, held at 5% A; 10.0-11.0 min, 90% A; 11.0-15.0 min, held at 90% A. Mass spectra 216 

and fragmentation spectra were collected simultaneously using Waters’ MSE in positive-ion 217 

mode, with the following parameters: peak data recorded in centroid mode; 0.185 s MS scan 218 

time; 20-35 V collision energy ramp; argon collision gas; 125° C source temperature; 3 V 219 

capillary voltage; 30 V sample cone voltage; 350° C desolvation temperature; nitrogen 220 

desolvation at 500 L/hr; 10 µL/min lockspray flow rate; 0.1 s lockspray scan time; 20 s 221 

lockspray scan frequency; 3 lockspray scans to average; 0.5 Da lockspray mass window; 3 V 222 

lockspray capillary voltage. The lockspray solution was 1 ng/ µL leucine enkephalin, and 223 

sodium formate was used to calibrate the mass spectrometer.  224 

 Alignment, deconvolution, and annotation of molecular and adduct ions were 225 

conducted using the XCMS and CAMERA packages in R statistical software (Smith et al., 226 

2006; Tautenhahn et al., 2008; Benton et al., 2010; Kuhl et al., 2012) with parameters in (R 227 

code repository). 228 

Molecular networking 229 

 Molecular networking was used to quantify and visualize the dimensions of the 230 

chemical structural trait space occupied by the secondary metabolites in our study (Aron et 231 

al., 2020). This technique employs tandem mass spectrometry to generate fragmentation 232 

spectra for each putative compound. These fragmentation spectra are diagnostic of molecular 233 

structure, and through pairwise comparison they are used to generate a network linking 234 

putative compounds to one another based on structural similarity.  235 

In our study, fragmentation spectra data files were aligned, deconvoluted, and 236 

converted to .mgf using MS-DIAL software (v4.10) and were then uploaded to the Global 237 

Natural Products Social Molecular Networking (GNPS) online workflow for molecular 238 

networking and library-based annotation. The following parameters were used for the GNPS 239 
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workflow METABOLOMICS-SNETS-V2 (v14): 0.02 Da precursor ion mass tolerance; 0.02 240 

Da fragment ion mass tolerance; minimum matched fragment peaks = 6; minimum cluster 241 

size = 3; minimum cosine score for network pairs = 0.7; network TopK = 1000; maximum 242 

connected component size = 0. All mass spectral libraries available through GNPS which 243 

contained data collected in positive ion mode were used for annotation. Library search 244 

parameters were: minimum matched peaks = 6; cosine score threshold = 0.6; maximum 245 

analog mass difference = 100. Workflow options for advanced filtering, advanced GNPS 246 

repository search, and advanced output were not used. 247 

For further annotation via in-silico modeling, results of the METABOLOMICS-248 

SNETS-V2 workflow were passed to a second GNPS workflow, Network Annotation 249 

Propagation (NAP_CCMS v1.2.5). The parameters used for NAP_CCMS were as follows: all 250 

clusters selected; subselection cosine value = 0.7; first candidates for consensus score = 10; 251 

fusion results used for consensus; accuracy for exact mass candidate search = 15 ppm; 252 

acquisition mode = positive; adduct ion types = [M+H]+ and [M+Na]+; all structure databases 253 

selected; no custom database or parameter file; compound class not specified; parent mass 254 

selection enabled; maximum number of graphed candidate structures = 10; standard 255 

workflow type. 256 

Finally, the outputs from METABOLOMICS-SNETS-V2 and NAP_CCMS were 257 

combined and exported for visualization using the GNPS workflow MolNetEnhancer (v15). 258 

Network visualization and curation was conducted using Cytoscape software (v3.7.2). Parent 259 

masses of features in the molecular network were curated based on the XCMS-CAMERA 260 

output described above, with primary metabolites and artefactual or pseudoreplicated features 261 

removed from the network and subsequent analyses. Features in the molecular network were 262 

annotated to the level of chemical class, e.g. flavonoid or prenol lipid, based on ClassyFire 263 

chemical taxonomy as applied by MolNetEnhancer. The list of annotated molecular features 264 

returned by XCMS-CAMERA processing was used to compare overall phytochemical 265 

composition across organs and species. 266 

Unfragmented ions collected during single-mass-spectrometry and subsequently 267 

aligned, deconvoluted, and annotated, as described above, were used to compare overall 268 

phytochemical composition across organs and species. Ion abundance data were transformed 269 

to presence/absence data using the peak recognition parameters in XCMS (R code 270 

repository). Ion presence/absence was used for analyses rather than relative ion abundance 271 

for two reasons: 1) our sample size affords limited capacity to account for variation in 272 

abundance within a given organ of a given species, and 2) the scale of variation in ion 273 
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abundance is likely to differ widely across the structurally diverse compounds in Piper due to 274 

variation in ionization efficiency (Cech & Enke, 2001).   275 

Comparisons of phytochemical composition across organs and species  276 

To compare metabolome-level patterns of phytochemical composition across organs 277 

and species, we conducted two separate analyses of the multivariate sample composition, 278 

focused first on compound occurrences (presence/absence data) and second on the structural 279 

composition of samples. We focused on the occurrence and structure of each molecular 280 

feature and omitted information on relative abundances due to the infeasibility of accounting 281 

for variation in ionization efficiency across hundreds of uncharacterized compounds. First, to 282 

visualize differences in patterns of compound occurrence across samples, we used non-metric 283 

multidimensional scaling (NMDS) based on the Sørensen dissimilarity index (binary Bray-284 

Curtis). We then tested for effects of organ, species, and their interaction on compound 285 

composition using PERMANOVA, implemented with the ‘adonis2’ function in the R 286 

package ‘vegan’. The individual plant identity was included in these analyses as a ‘strata’ 287 

(i.e. random effect), and we used 999 permutations (note that this means the minimum 288 

possible P-value is P = 0.001, indicating that the observed differences in sample composition 289 

could not be replicated in any of the 999 permutations). To further understand specific 290 

differences among the four organ types, we followed this analysis with post-hoc pairwise 291 

PERMANOVAs for all possible combinations of organ types, correcting for multiple 292 

comparisons using the ‘pairwise.adonis2’ function (Martinez Arbizu, 2020).  In addition, 293 

based on strongly supported interactions between organ and species (see results), we also 294 

divided the data by species and tested for the effects of organ on compound composition for 295 

each species individually. All analyses were conducted using the ‘vegan’ package in R 296 

(Oksanen et al., 2019).  297 

In addition to our analysis of compound occurrence, we also examined how the 298 

structural composition of samples was affected by organ, species, and their interaction. To 299 

account for structural features, we generated a multivariate structural dissimilarity index that 300 

was a modification of Sedio et al.’s (2017) Chemical Structural and Compositional Similarity 301 

(CSCS) index, which quantifies the pairwise similarity of samples by calculating the 302 

maximum cosine similarity of the aligned MS-MS ion fragmentation spectra for each inter-303 

sample pair of molecular features. We modified this index by representing ion abundance as a 304 

binary term and expressing the index in terms of dissimilarity (1-CSCS). The structural 305 

dissimilarity matrix was then used as the basis for NMDS and PERMANOVAs as above that 306 

examined the effects of organ, species, and their interaction on structural composition.   307 
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Machine learning 308 

To identify molecular features that distinguished different organs, we used random 309 

forest analysis via the “randomForest” and “Boruta” packages for R statistical software (Liaw 310 

& Wiener, 2002; Kursa & Rudnicki, 2010). All molecular features distinguished in XCMS-311 

CAMERA processing were used as variables in these analyses. The random forest analysis 312 

used a decision tree model to assign samples to our four organ groups (Breiman, 2001; 2002). 313 

In the process, the analysis ranked molecular feature variables according to their importance 314 

in the model’s group assignments. Boruta analysis complemented the bottom-up random 315 

forest analysis by applying a top-down search for molecular features that were important in 316 

informing group assignments. This is accomplished by comparing the features’ importance 317 

with importance achievable at random, using “shadow” variables which are generated by 318 

permuting the original variables (Kursa & Rudnicki, 2010). 319 

Comparisons of chemical diversity across organs  320 

Phytochemical diversity is a multifarious concept that includes the number of 321 

compounds (richness), their relative abundances (evenness), their structural complexity, and 322 

their variation in space and time (Wetzel & Whitehead, 2020). Considering the challenges 323 

associated with estimating abundances in untargeted LC-MS-MS data, we focus here on 324 

richness and structural complexity, both of which were examined at multiple scales within 325 

and across species. For each organ type, we define gamma diversity as the total diversity 326 

observed across all samples, alpha diversity as the average diversity within a single sample 327 

from one organ from one Piper individual, and beta-diversity as the variation (both intra- and 328 

inter-specific) across samples.   329 

Gamma diversity. To compare the gamma diversity (total number of compounds detected 330 

across all species) of different organs, we used a rarefaction analysis analogous to those 331 

commonly used to assess species diversity (Gotelli & Colwell, 2011) with compounds as 332 

“species” as in Wetzel & Whitehead (2020). This allowed us to: 1) explicitly visualize the 333 

relationship between chemical diversity and sampling scale across different organs (i.e. alpha, 334 

beta, and gamma diversity), and 2) estimate the total compound richness in each organ type. 335 

Because our individual samples were not independent (we collected three samples per species 336 

for 12 species), we used a constrained rarefaction that is similar conceptually to spatially-337 

constrained rarefaction (Chiarucci et al., 2009). Briefly, samples were added to bootstrapped 338 

accumulation curves in a semi-random manner in which samples from the same species were 339 

grouped. For each iteration, a random sample was chosen as a starting point, then other 340 

samples from that species were added in random order prior to choosing another sample at 341 
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random, following with all other samples from that species, and so on until all species were 342 

included. We estimated total species richness from these curves using the ‘fitspecaccum’ 343 

function in ‘vegan’ based on an asymptotic regression model. Accumulation curves and fits 344 

were averaged across 5000 bootstrapped samples with random starting points.   345 

Alpha diversity. To compare the average compound richness in a sample (i.e. alpha diversity) 346 

across organs, we used a linear mixed model with organ, species, and their interaction as 347 

fixed effects and plant identity as a random effect. For hypothesis testing, we compared the 348 

full model to simplified versions with fixed effects terms deleted using likelihood ratio tests. 349 

Based on a strong interaction between organ and species (see results), we further divided the 350 

data by species and examined differences in richness among organs for each species 351 

separately.  352 

Structural complexity. To compare structural complexity across organ types, we first 353 

calculated an index of structural complexity for each sample that was modified from the 354 

CSCS index described in Sedio et al. (2017) to include only presence/absence data. This 355 

within-sample CSCS represents the mean pairwise similarity among all individual molecular 356 

features detected in a sample. We used the inverse of this similarity index (1-CSCS) as a 357 

measure of overall structural complexity present in a sample.  To examine how structural 358 

complexity varied across organs and species, we used a linear mixed model with species, 359 

organ, and their interaction as fixed effects and plant identity as a random effect. Hypothesis 360 

testing was conducted as described above using likelihood ratio tests. Based on strong 361 

interactions between organ and species (see results), we examined differences among organs 362 

separately for each Piper species.  363 

Beta diversity. We examined differences in beta-diversity (i.e. sample-to-sample variance in 364 

composition) across organs in two ways, focusing first on variation in compound occurrences 365 

(presence/absence) and second on structural features. These analyses were based on the same 366 

distance matrices described above that we used to assess overall differences in composition 367 

across samples, but instead focused on variance (i.e. dispersion) among samples. This was 368 

assessed using the function ‘betadisper’ in the R package ‘vegan’ to compare the dispersion 369 

around the group centroid across the four organ types. The ‘betadisper’ function calculated 370 

the distances from each sample to the group centroid, and statistical support for differences in 371 

dispersion across organs was assessed using a permutation test (N = 999 permutations) 372 

followed by a post-hoc Tukey HSD test to assess pairwise differences among individual 373 

organs. Because this analysis focused on sample-to-sample variance and our dataset included 374 

multi-level sampling (multiple species and multiple individuals within species), significant 375 
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differences in beta diversity across organs could be due to both intraspecific and interspecific 376 

variance among samples. Thus, we followed this analysis with a set of PERMANOVAs, 377 

conducted separately for each organ type, with Piper species as an explanatory factor. This 378 

analysis allowed us to test if Piper species explained a significant portion of the variation in 379 

composition within an organ, and partitioned sample-to-sample variance within an organ type 380 

according to the percent of variance explained by species and the percent explained by 381 

differences among individuals within species (i.e. the residual variance).   382 

Results 383 

Untargeted metabolomics and molecular networking reveal high chemical diversity and 384 

many compounds unique to fruits  385 

Alignment, deconvolution, and annotation of molecular and adduct ions via XCMS 386 

and CAMERA yielded 1,311 unique molecular features across all species and organs. It is 387 

important to note that, like all other metabolomic approaches, our analytical approach is 388 

likely to overestimate the true number of individual chemical compounds present in our 389 

samples. The combination of XCMS-CAMERA followed by manual curation unfortunately 390 

cannot condense all features (m/z and retention time pairs) into individual compounds. In-391 

source fragmentation, ion clusters, centroid peak splitting of highly abundant ions, and 392 

centroid merging of ions near the noise level can all contribute to expanding the dataset 393 

beyond individual compounds. The 1,311 features described in this work thus overestimates 394 

the number of individual molecular species, though to a lesser extent than in uncurated 395 

datasets. Nevertheless, this overestimation is likely to represent a small fraction of the total 396 

chemical diversity captured in our analysis. Furthermore, this overestimation is also likely to 397 

be of equal magnitude across all species and organs and therefore, will not have a significant 398 

impact on the general conclusions of our study. Regarding terminology, these 1,311 features 399 

meet or exceed the level of curation beyond which features have, for clarity, been described 400 

as “compounds” in the chemical ecology literature (e.g.: Sedio et al., 2017; Christian et al., 401 

2020; Ricigliano et al., 2020). Thus, for the sake of consistency and clarity, we refer to our 402 

curated features as compounds. 403 

Tandem mass spectrometry yielded fragmentation spectra for 706 of these compounds 404 

(Table 1, Fig. 1). Library- and in silico-based classification of fragmentation spectra and 405 

parent ions via GNPS resulted in annotation at the level of “class” sensu ClassyFire chemical 406 

taxonomy for 527 compounds in 23 classes (Table 1, Fig. 1).  407 
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Table 1: Summary of GNPS molecular network annotations. Compound richness indicates 

the number of putative compounds, for which fragmentation spectra were obtained, that fall 

under the given category. Chemical classes are per ClassyFire chemical taxonomy. A 

compound was labeled as fruit or leaf-specific if it was detected only in that organ within 

the 12 focal Piper species. Asterisks indicate organ-specific compound richness exhibiting 

P < 0.05 (binomial test with probability = 0.5 of occurrence in fruit or leaf; n = number of 

organ-specific compounds in chemical class). 

Chemical Class 

Examples of class 

known from 

Piper spp. 

Total 

Compound 

Richness 

Fruit-specific 

Compound 

Richness 

Leaf-specific 

Compound 

Richness 

Benzene and 
substituted 
derivatives  

Cyanogenic 
benzoates, Non-

prenylated benzoic 
acids 

75 5 0 

Carboxylic acids 
and derivatives  

 

Amides, 
Chromenes, 

Kavalactones 
122 25* 1 

Flavonoids Flavonoids 104 3 0 

Organo-oxygen 
compounds 

 

Oxygenated or 
glycosidic 

derivatives of 
other classes 

65 5 0 

Other  
 

Amides, 
Chalcones, 
Chromenes, 

Imides 

37 4 0 

Prenol lipids  

Chalcones, 
Prenylated benzoic 

acids, Neryl 
catechol diols, 

Terpenes 

124 6* 0 

Unknown  179 14* 1 

Total  706 62* 2 

 408 
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 410 

Figure 1: Molecular network of 706 compounds from 12 Piper species color-coded by 411 

ClassyFire chemical classification annotation (A) or by organ-level occurrence across 412 

the 12 species (B). Node and edge arrangement and compound annotation are as 413 

described in “Molecular Networking” methods. Enlarged, diamond-shaped nodes 414 

represent compounds identified by the Boruta analysis as important for distinguishing 415 

among organs.  In B, compounds are coded as occurring in “fruit” if they occur in one 416 

or more of the three sample types (unripe pulp, ripe pulp, or seeds).  417 

 418 

 419 

 420 

 421 
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Phytochemical composition differs across organs and species  422 

The multivariate patterns of phytochemical occurrence were strongly affected by 423 

organ, species, and their interaction (organ: F3,95 = 24.19, P = 0.001; species: F11,95 = 27.65, P 424 

= 0.001; organ x species: F33,95 = 1.99, P = 0.001; Figure 2A). Pairwise comparisons among 425 

organs indicated strong differences among all organs (P = 0.001 for all comparisons).  426 

Further examination of differences among organs for each of the 12 Piper species 427 

individually also revealed strong effects of organ in all cases (Table 2). Similarly, when we 428 

assessed factors influencing the multivariate patterns of structural composition across 429 

samples, we found a strong effect of organ, species, and their interaction (organ: F3,95 = 430 

17.34, P = 0.001; species: F11,96 = 21.28, P = 0.001; organ x species: F33,96 = 2.31, P = 0.001; 431 

Figure 2B), significant differences among organs in all pairwise comparisons (P = 0.001 for 432 

all comparisons), and differences among organs for each individual species (Table 2).  433 
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 434 

 435 

Figure 2: NMDS plots showing the effects of organ and species on two aspects of 436 

multivariate chemical composition across samples: (A) compound occurrences 437 

(presence/absence) and (B) structural composition. 438 
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 439 

Table 2: Results from PERMANOVAs, conducted separately for 
each species, testing the effects of organ type (leaves, seed, 
unripe pulp, or ripe pulp) on two aspects of phytochemical 
composition: compound occurrences and structural composition 

 Compound 
Occurrence 

Structural 
Composition 

Piper species F3,11 P F3,11 P 

aduncum 3.07 0.001 3.07 0.001 

auritum 3.51 0.002 3.51 0.002 

biolleyi 2.19 0.009 2.19 0.009 

colonense 4.39 0.001 4.39 0.001 

generalense 4.11 0.001 4.11 0.002 

glabrescens 4.18 0.002 4.18 0.001 

multiplinervum 3.45 0.001 3.45 0.001 

peltatum 4.50 0.001 4.50 0.001 

reticulatum 5.38 0.001 5.38 0.002 

sancti-felicis 3.67 0.001 3.67 0.001 

silvivagum 5.19 0.001 5.19 0.001 

umbricola 2.89 0.002 2.89 0.001 

 440 
 441 

 442 

 443 

 444 
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Machine learning, informed by numerous compounds from diverse chemical classes in 445 

each organ, accurately distinguishes between reproductive and vegetative organs   446 

The random forest decision tree model used 2000 trees with 36 variables at each split. 447 

Our analysis showed an overall out-of-bag (OOB) mean error rate of 11.72% across the four 448 

organ groups. In other words, using secondary metabolites alone, the algorithm was able to 449 

predict if a sample was from a leaf, ripe fruit, unripe fruit, or seed approximately 9 times out 450 

of every 10 samples. Examining the error rate of each organ group, it was apparent that 451 

correctly assigning pulp samples to the correct ripeness stage was the main source of OOB 452 

error, with error rates of 27.78% and 18.92% for unripe and ripe pulp respectively. Leaves 453 

and ripe seeds both exhibited zero OOB error. Boruta analysis, designed to both identify 454 

important classification features and assess their relative contribution to the final 455 

classification performance, identified 23 features exhibiting a significantly higher variable 456 

importance score (VIS) than shadow variables. These 23 features are detailed in Table S1. 457 

Comparisons of chemical diversity across organs 458 

Gamma diversity 459 

 Overall, we detected 1,311 compounds across all organ types. The large majority of 460 

these compounds (1,126) were shared across all organs (Fig. 3A). Of those compounds that 461 

were organ-specific, there were 92 compounds that were found only in fruits (unripe pulp, 462 

ripe pulp, and/or seeds) but never in leaves, and four compounds were found only in leaves 463 

but never in fruits. There were also 76 compounds that were shared between fruit pulp 464 

(unripe and/or ripe) and leaves, but never detected in seeds. Rarefaction analysis showed that 465 

the estimated total gamma diversity (total number of compounds across all 12 species of 466 

Piper) was highest in unripe and ripe fruit pulp, intermediate in seeds, and lowest in leaves 467 

(Fig. 3B, Table 3). 468 

 469 
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 470 

 471 

Figure 3: Chemical gamma diversity parsed by organ type. A Venn diagram (A) shows the 472 

total number of compounds detected across all samples that were unique and shared across 473 

organ type. The rarefaction curve (B) shows how compound richness accumulates with 474 

sampling scale in each organ type. Curves represent an average across 5000 bootstrapped 475 

accumulation curves with random starting points. Because samples from the same species 476 

were not independent, the rarefaction was constrained by species such that samples from the 477 

same species were always added in sequence.  478 

 479 

Table 3: Rarefaction results showing total estimated richness for 
each organ across all 12 Piper species sampled 

Organ Estimated 
Richness SE 95% CI 

high 
95% CI 

low 

leaf 1226 1.5 1229.3 1223.5 

seed 1276 3.0 1282.0 1270.1 

unripe pulp 1312 2.0 1315.8 1307.9 

ripe pulp 1311 2.7 1316.5 1306.1 

 480 
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Alpha diversity  481 

In our analysis of average differences in compound richness across organs and 482 

species, we found a strong interaction between organ and species (X2 = 128.99, P < 0.0001) 483 

and further examined differences among organs for each species separately. Organs often 484 

showed clear differences in average richness, but the patterns were highly variable across 485 

species (Fig. 4). In three species (P. glabrescens, P. reticulatum, and P. slivivagum), pulp 486 

and/or seeds had higher compound richness than leaves. However, in two species (P. 487 

multiplinervum and P. generalense) leaves had higher compound richness than all other fruit 488 

organs.     489 

 490 

Figure 4: Average chemical richness differs across species and organ type (leaf, seed, unripe 491 

pulp, and ripe pulp). Letters indicate results of pairwise Tukey post-hoc comparisons of 492 
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organs within each species, with non-shared letters indicating a significant difference at P < 493 

0.05. Each species plot includes 𝛸𝛸2 and P-values from species-level LMMs. 494 

 495 

Structural complexity 496 

In our analysis of average differences in structural complexity across organs and 497 

species, we found a strong interaction between organ and species (X2 = 131.13, P < 0.0001) 498 

and further examined differences among organs for each species separately. For seven of 499 

twelve species, organs showed differences in average structural complexity, but the patterns 500 

were variable across species (Fig. 5). In two species (P. glabrescens and P. slivivagum), one 501 

or more fruit organs had higher complexity than leaves. In another species (P. generalense), 502 

leaves had higher complexity than all other fruit organs. Often, seeds had the lowest 503 

structural complexity, or at least lower structural complexity than unripe or ripe fruit pulp 504 

(Fig. 5).    505 

 506 
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Figure 5: Average structural complexity differs across species and organ type (leaf, seed 507 

unripe pulp, and ripe pulp). Letters above each box plot column indicate results of pairwise 508 

Tukey post-hoc comparisons of organs within each species, with non-shared letters indicating 509 

a significant difference at P < 0.05. Each species plot includes 𝛸𝛸2 and P-values from species-510 

level LMMs. 511 

 512 

Beta diversity 513 

We found that beta-diversity in chemical composition was higher for fruits than 514 

leaves when considering only compound occurrences as well as structural composition. First, 515 

for compound occurrences, there was strong support for overall differences in beta diversity 516 

across organ types (F3,139 = 7.56, P = 0.001), with higher average distances to the group 517 

centroid for seeds, unripe pulp, and ripe pulp relative to leaves (Fig. 6A). Next, for structural 518 

composition, there was also strong support for overall differences in beta diversity across 519 

organ types (F3,139 = 4.10, P = 0.009). In this case, leaves had lower beta diversity than seeds 520 

or ripe pulp, and unripe pulp was intermediate (Fig. 6B). Further analyses conducted 521 

separately for each organ type showed that the differences in beta-diversity among organ 522 

types was due to variation both at the interspecific and intraspecific level (Table 4). A large 523 

proportion of the sample-to-sample variation within organ types (67-86%) was explained by 524 

differences among species relative to that explained by variation within species (14-33%), 525 

and this was especially true for unripe and ripe fruit pulp (Table 4). 526 

 527 
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 528 

Figure 6: Beta diversity in chemical composition is higher for reproductive organs than 529 

leaves when considering variance in compound occurrences (A) or structural composition 530 

(B). Letters indicate results of pairwise Tukey post-hoc comparisons of organs, with non-531 

shared letters indicating a significant difference at P < 0.05. 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 
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Table 4: Results from PERMANOVAs showing a large percentage of sample-to-
sample variance in composition within organ types (i.e. beta diversity) is explained by 
species 

  F11,35b Pb η² (Species)c η² (Residual)d 

Compound Occurrences a     

 leaf 6.29 0.001 0.74 0.26 

 seed 5.17 0.001 0.70 0.30 

 unripe pulp 12.46 0.001 0.86 0.14 

 ripe pulp 13.18 0.001 0.86 0.14 

Structural Composition a     

 leaf 4.51 0.001 0.67 0.33 

 seed 6.58 0.001 0.75 0.25 

 unripe pulp 7.90 0.001 0.79 0.21 

  ripe pulp 10.70 0.001 0.83 0.17 

a Separate sets of PERMANOVAs were conducted for each aspect of compound composition: compound 
occurrences (presence/absence) and structural composition 

b Statistical results from permutation tests showing strong support for an effect of Piper species on 
composition 

c Proportion of sample-to-sample variance explained by species (i.e. interspecific variation)  

d Proportion of sample-to-sample variance explained by individual and within-individual (residual) 
variance  

 540 

 541 

 542 

 543 
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Discussion 544 

Across the many angiosperms with animal-dispersed seeds, the functional traits of 545 

fruits have been shaped by particularly complex selective pressures, imposed in part by 546 

antagonistic and mutualistic consumers. Plant secondary metabolites are prominent among 547 

the traits that have evolved to mediate plant-consumer interactions. As such, it can be 548 

anticipated that the secondary metabolites of fruits in animal-dispersed plants will reflect the 549 

many facets of their ecological and evolutionary settings -- in their diversity of chemical 550 

composition, molecular structures, and ecological functions. In this study, we surveyed and 551 

compared the compositional and structural diversity of secondary metabolites across 552 

vegetative and reproductive organs in 12 species of the genus Piper. In all metrics of 553 

secondary metabolite diversity that were quantified, the overall diversity of fruit organs 554 

matched or exceeded those of leaves, though these patterns varied across species. The 555 

patterns of secondary metabolite diversity that were revealed across vegetative and 556 

reproductive organs are in line with the multifarious functional roles that have been 557 

hypothesized for secondary metabolites in fruits.  558 

Our untargeted metabolomic survey of phytochemical occurrence patterns revealed 559 

that fruit organs harbor fruit-specific metabolites from a variety of chemical classes (Table 1, 560 

Fig. 1), in each class equal to or greater in number than those that were leaf-specific (Table 561 

1). This included classes of compounds that have previously been found to be more numerous 562 

and abundant in fruit organs (e.g. amides; Whitehead et al., 2013), as well as numerous 563 

chemical classes previously described in studies of Piper spp. leaf chemistry (Parmar et al., 564 

1997; Baldoqui et al., 1999; Kato & Furlan, 2007; Richards et al., 2015). The occurrence of 565 

numerous fruit-specific secondary metabolites from a variety of unlinked biosynthetic 566 

pathways suggests a pattern of fruit-specific secondary metabolite trait evolution, likely a 567 

result of fruit-specific selective pressures. 568 

The evolution of organ-specific phytochemical traits across our target plant species is 569 

also made evident by the results of our machine learning analysis. Here, our random forest 570 

model was very successful at distinguishing among organ types based solely on their 571 

secondary metabolite composition. Most notably, the exceptional performance of the 572 

classification algorithm to distinguish between vegetative and reproductive organs can only 573 

be explained by the presence of strong association between chemical composition and organ 574 

type.  Despite the fact that our species set included vines, understory shrubs, and pioneering 575 

taxa, all adapted to very different local habitats, these associations are consistent across all 12 576 

focal species.  577 
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The clustering patterns found by our NMDS analysis (Fig. 2) show clustering at two 578 

different levels. First, the samples from different organs from the same species cluster 579 

together. This pattern strongly suggests the presence of physiological or genetic linkage 580 

constraints in the organ specific evolution of phytochemicals. The strong chemical similarity 581 

across organs within a species could point toward the influence that changes in the expression 582 

or composition of secondary compounds in one plant organ could have on the expression or 583 

composition of other organs. Although our data do not allow us to disentangle the precise 584 

mechanisms that give rise to these patterns, it is clear that chemical changes in one plant 585 

organ are likely to be mirrored, to some extent, by changes in the chemical architecture of the 586 

whole plant. Second, as expected, and despite the strong chemical similarity exhibited by 587 

organs within a Piper species, samples also show a clear pattern or clustering by organ type 588 

(Fig. 2). This pattern reinforces the expectation that the distinctive regimes of selective 589 

pressures imposed upon the different plant organs are sufficiently strong to create convergent 590 

organ-specific patterns of the chemical composition, and that these selective regimes are 591 

likely to be consistent across species and habitats. The Boruta variable importance model, a 592 

widely used machine learning algorithm designed to identify statistically important 593 

classification variables from large datasets, revealed specific compounds from at least six 594 

different chemical classes as key features that distinguish vegetative and reproductive organs 595 

(Table S1).  596 

While the majority of significant Boruta variables, like the overall majority of 597 

secondary metabolites cataloged in our study, exhibited some overlap in occurrence across 598 

leaf and fruit organs when the 12 Piper species were evaluated as a group (Fig. 3A), there 599 

was substantially less overlap at the level of individual species (Fig. S1). In many cases, these 600 

patterns of variance were the result of numerous compounds occurring in only one organ type 601 

in a certain species or subset of species, but occurring more widely in another species or 602 

subset of species.  603 

 604 

The broad overlap across organs in compound occurrence at the genus level provides 605 

a degree of insight into the extent of constraints on organ-specific chemical trait evolution at 606 

this taxonomic scale. However, to a degree this overlap can also be attributed to the shared 607 

demand for defensive compounds across vegetative and reproductive organ types. While 608 

phylogenetic data will be required in order to infer the ancestral organ localizations of 609 

phytochemical traits of Piper, the widespread variation in organ localizations that we 610 

observed across species suggests that genetic constraints have not bound these traits to a 611 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.427500


28 
 

certain organ type over the course of Piper speciation.  Further, the apparent mobility of 612 

secondary metabolite traits across organ types within the genus suggests a bidirectional 613 

exchange of these traits, which, when vegetative and reproductive organs are each threatened 614 

by separate assemblages of consumers, may allow more rapid defense trait adaptation than 615 

can arise from novel mutations.  616 

Our untargeted metabolomic survey has shown that fruit organs are at the very least a 617 

reservoir of phytochemical richness. While the alpha diversity of organs at the species level 618 

was highly variable (Fig. 4), rarefaction analysis of gamma diversity showed a small but clear 619 

trend towards higher richness of secondary metabolites in reproductive organs (Fig. 3; Table 620 

3). Similarly, while chemical structural complexity of organs at the species level was highly 621 

variable (Fig. 5), chemical structural variance (ꞵ-diversity) across species was significantly 622 

higher for reproductive organs than for leaves (Fig. 6). In summary, these trends indicate not 623 

only that reproductive organs accumulate a higher number of secondary metabolite traits than 624 

do leaves, but also that these traits are more divergent from one another across species than 625 

those of leaves. These trends are consistent with higher overall evolutionary diversification of 626 

phytochemical traits in reproductive organs, suggesting that fruits may be an important, but 627 

underappreciated, force in shaping chemical trait evolution at the whole plant level.  628 

 629 

Acknowledgements 630 

This research was supported by National Science Foundation (Grants No. DEB-631 

1210884 and DEB-1856776 to SRW) and start-up funds to SRW from the Virginia Tech 632 

Department of Biological Sciences. The mass spectrometry resources used in this work were 633 

maintained with funds from the Fralin Life Science Institute as well as the Virginia 634 

Agricultural Experiment Station Hatch Program (VA-160085). We thank the Organization 635 

for Tropical Studies for logistical support at La Selva Biological Station. Marisol Luna 636 

Martinez assisted with sample collection and Orlando Vargas Ramírez assisted with plant 637 

identification. Natalie Rodeman and Katherine Berg assisted with sample processing for 638 

chemical analyses. 639 

 640 

Author contributions 641 

GFS, SRW, and DS designed the research; SRW collected field samples; GFS, SBH, 642 

and RFH conducted chemical analyses, GFS conducted molecular networking and data 643 

curation; GFS and SRW conducted the statistical analysis with contributions from DS; GFS 644 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.427500


29 
 

wrote the first draft of the manuscript with contributions from SRW, and all authors 645 

contributed substantially to revisions and approved the final version. 646 

 647 

Data availability 648 

All data and R scripts will be available through Dryad digital repository upon publication. 649 

 650 

References 651 

Adler LS, Seifert MG, Wink M, Morse GE, Turlings T. 2012. Reliance on pollinators 652 

predicts defensive chemistry across tobacco species. Ecology Letters 15: 1140–1148. 653 

Adler LS, Wink M, Distl M, Lentz AJ. 2006. Leaf herbivory and nutrients increase nectar 654 

alkaloids. Ecology Letters 9: 960–7. 655 

Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, 656 

Petras D, Gauglitz JM, Sikora N, Vargas F, et al. 2020. Reproducible molecular 657 

networking of untargeted mass spectrometry data using GNPS. Nature Protocols 15: 658 

1954–1991. 659 

Benton HP, Want EJ, Ebbels TMD. 2010. Correction of mass calibration gaps in liquid 660 

chromatography-mass spectrometry metabolomics data. BIOINFORMATICS 26: 2488. 661 

Baldoqui DC, Kato MJ, Cavalheiro AJ, Bolzani VDS, Young MCM, Furlan M. 1999. A 662 

chromene and prenylated benzoic acid from Piper aduncum. Phytochemistry 51: 899–902. 663 

Berardi AE, Hildreth SB, Helm RF, Winkel BSJ, Smith SD. 2016. Evolutionary 664 

correlations in flavonoid production across flowers and leaves in the Iochrominae 665 

(Solanaceae). Phytochemistry 130: 119–127. 666 

Brehm G, Hebert PDN, Colwell RK Adams MO, Bodner F, Friedemann K, Möckel 667 

L,Fiedler K. 2016. Turning up the heat at a hotspot: DNA barcodes reveal 80% more 668 

species of geometrid moths along an Andean elevational gradient. PlosOne 11: e0150327. 669 

doi: 10.1371/journal.pone.0150327 670 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.427500


30 
 

Breiman L. 2001. Random forests. Machine learning 45: 5-32. 671 

Breiman L. 2002. Manual on setting up, using, and understanding random forests v3. 1. 672 

URL: www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf [accessed 20 673 

January 2021]. 674 

Cech NB, Enke CG. 2001. Practical implications of some recent studies in electrospray 675 

ionization fundamentals. Mass Spectrometry Reviews 20: 362–387. 676 

Chen H, Köllner TG, Li G, Wei G, Chen X, Zeng D, Qian Q, Chen F. 2020. 677 

Combinatorial evolution of a terpene synthase gene cluster explains terpene variations in 678 

Oryza. Plant Physiology 182: 480–492. 679 

Chiarucci A, Bacaro G, Rocchini D, Ricotta C, Palmer M, Scheiner S. 2009. Spatially 680 

constrained rarefaction: Incorporating the autocorrelated structure of biological 681 

communities into sample-based rarefaction. Community Ecology 10: 209–214. 682 

Christian N, Sedio BE, Florez-Buitrago X, Ramírez-Camejo LA, Rojas EI, Mejía LC, 683 

Palmedo S, Rose A, Schroeder JW, Herre EA. 2020. Host affinity of endophytic fungi 684 

and the potential for reciprocal interactions involving host secondary chemistry. American 685 

Journal of Botany 107: 219–228. 686 

Dyer LA, Palmer ADN. 2004. Piper: A model Genus for Studies of Phytochemistry, 687 

Ecology, and Evolution. Kluwer Academic/ Plenum Publishers. 688 

Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ, Smilanich AM, 689 

Forister ML, Parchman TL, Galland LM, Hurtado PJ, et al. 2018. Modern approaches 690 

to study plant - insect interactions in chemical ecology. Nature Reviews Chemistry 2: 50–691 

64. 692 

Falara V, Akhtar TA, Nguyen TTH, Spyropoulou EA, Bleeker PM, Schauvinhold I, 693 

Matsuba Y, Bonini ME, Schilmiller AL, Last RL, et al. 2011. The tomato terpene 694 

synthase gene family. Plant Physiology 157: 770–789. 695 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.427500


31 
 

Gentry AH. 1990. Four neotropical rainforests. Yale University Press, New Haven. 696 

Gotelli NJ, Colwell RK. 2011. Estimating species richness. In: Magurran AE, McGill BJ, 697 

eds. Biological Diversity: Frontiers in Measurement and Assessment. Oxford, UK: Oxford 698 

University Press, 39–54. 699 

Greig N. 1993. Predispersal seed predation on five Piper species in tropical rain-forest. 700 

Oecologia 93: 412–420 701 

Hartmann T. 2007. From waste products to ecochemicals: Fifty years research of plant 702 

secondary metabolism. Phytochemistry 68: 2831–2846. 703 

Herrera CM. 1982. Defense of ripe fruit from pests: Its significance in relation to plant-704 

disperser interactions. The American Naturalist 120: 218–241. 705 

Iason GR, Dicke M, Hartley SE. 2012. The ecology of plant secondary metabolites: From 706 

genes to global processes. Cambridge, UK: Cambridge University Press. 707 

Kato MJ, Furlan M. 2007. Chemistry and evolution of the Piperaceae. Pure and Applied 708 

Chemistry 79: 529–538. 709 

Keith RA, Mitchell-Olds T. 2019. Antagonistic selection and pleiotropy constrain the 710 

evolution of plant chemical defenses. Evolution 73: 947–960. 711 

Kessler A, Baldwin IT. 2002. Plant responses to insect herbivory: The emerging molecular 712 

analysis. Annual Review of Plant Biology 53: 299–328. 713 

Kessler A, Halitschke R. 2009. Testing the potential for conflicting selection on floral 714 

chemical traits by pollinators and herbivores: Predictions and case study. Functional 715 

Ecology 23: 901–912. 716 

Kuhl C, Tautenhahn R, Boettcher C, Larson TR, Neumann S. 2012. CAMERA: an 717 

integrated strategy for compound spectra extraction and annotation of liquid 718 

chromatography/mass spectrometry data sets. Analytical Chemistry, 84, 283–289. 719 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://doi.org/10.1101/2021.01.28.427500


32 
 

Kursa MB, Rudnicki WR. 2010. Feature selection with the Boruta package. Journal of 720 

Statistical Software 36: 1-13. 721 

Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE, Weber MG, 722 

Murakami ET, Drake C, McGregor R, Coley PD. 2009. The evolution of antiherbivore 723 

defenses and their contribution to species coexistence in the tropical tree genus Inga. 724 

Proceedings of the National Academy of Sciences of the United States of America 106: 725 

18073–18078. 726 

Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2: 18-22. 727 

Martinez Arbizu P. 2020. pairwiseAdonis: Pairwise multilevel comparison using adonis. R 728 

package version 0.4. URL https://github.com/pmartinezarbizu/pairwiseAdonis . [accessed 729 

9 January 2021]. 730 

Maynard LD, Slinn HL, Glassmire AE, Matarrita-Carranza B, Dodson CD, Nguyen 731 

TT, Burroughs MJ, Dyer LA, Jeffrey CS, Whitehead SR. 2020. Secondary metabolites 732 

in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal. 733 

Ecology 101: 1–15. 734 

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, 735 

O'Hara RB, Simpson GL, Solymos P, et al. 2019. vegan: Community Ecology Package. 736 

R package version 2.5-6. URL https://CRAN.R-project.org/package=vegan . [accessed 9 737 

January 2021] 738 

Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel 739 

J, Olsen CE, et al. 1997. Phytochemistry of the genus Piper. Phytochemistry 46: 597–740 

673. 741 

Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey 742 

CS. 2015. Phytochemical diversity drives plant–insect community diversity. Proceedings 743 

of the National Academy of Sciences of the United States of America 112: 10973–10978. 744 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.427500


33 
 

Ricigliano VA, Sica VP, Knowles SL, Diette N, Howarth DG, Oberlies NH. 2020. 745 

Bioactive diterpenoid metabolism and cytotoxic activities of genetically transformed 746 

Euphorbia lathyris roots. Phytochemistry. doi:10.1016/j.phytochem.2020.112504 747 

Salazar D, Jaramillo MA, Marquis RJ. 2016. Chemical similarity and local community 748 

assembly in the species rich tropical genus Piper. Ecology 97: 3176–3183. 749 

Salazar D, Lokvam J, Mesones I, Pilco MV, Milagros J, Zuñiga A, Valpine P De, Fine 750 

PVA. 2018. Origin and maintenance of chemical diversity in a species-rich tropical tree 751 

lineage. Nature Ecology & Evolution 2: 983–990. 752 

Schneider GF, Coley PD, Younkin GC, Forrister DL, Mills AG, Kursar TA. 2019. 753 

Phenolics lie at the centre of functional versatility in the responses of two phytochemically 754 

diverse tropical trees to canopy thinning. Journal of Experimental Botany 70: 5853–5864. 755 

Sedio BE, Echeverri JCR, Boya CA, Wright SJ. 2017. Sources of variation in foliar 756 

secondary chemistry in a tropical forest tree community. Ecology 98: 616–623. 757 

Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. XCMS: Processing mass 758 

spectrometry data for metabolite profiling using nonlinear peak alignment, matching and 759 

identification. Analytical Chemistry 78: 779–787. 760 

Suzuki T, Iwai K. 1984. Constituents of red pepper species: Chemistry, biochemistry, 761 

pharmacology, and food science of the pungent principle of Capsicum species. In: Brossi 762 

A, ed. The Alkaloids, Volume 23. Academic Press, 227–299. 763 

Tautenhahn R, Boettcher C, Neumann S. 2008. Highly sensitive feature detection for high 764 

resolution LC/MS. BMC Bioinformatics. doi: 10.1186/1471-2105-9-504. 765 

Tewksbury JJ. 2002. Fruits, frugivores and the evolutionary arms race. New Phytologist 766 

156: 137–139. 767 

Tewksbury JJ, Nabhan GP. 2001. Seed dispersal: Directed deterrence by capsaicin in 768 

chillies. Nature 412: 403–404. 769 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://doi.org/10.1101/2021.01.28.427500


34 
 

Tewksbury JJ, Reagan KM, Machnicki NJ, Carlo TA, Haak DC, Peñaloza ALC, Levey 770 

DJ. 2008. Evolutionary ecology of pungency in wild chilies. Proceedings of the National 771 

Academy of Sciences of the United States of America 105: 11808–11811. 772 

Thies W, Kalko EKV. 2004. Phenology of Neotropical pepper plants (Piperaceae) and their 773 

association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata 774 

and C. castanea (Phyllostomidae). Oikos 104: 362–376. 775 

Volf M, Segar ST, Miller SE, Isua B, Sisol M, Aubona G, Šimek P, Moos M, Laitila J, 776 

Kim J, et al. 2018. Community structure of insect herbivores is driven by conservatism, 777 

escalation and divergence of defensive traits in Ficus. Ecology Letters 21: 83–92. 778 

Wang M, Carver JJ, Phelan V V, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous 779 

J, Kapono CA, Luzzatto-Knaan T, et al. 2016. Sharing and community curation of mass 780 

spectrometry data with Global Natural Products Social Molecular Networking. Nature 781 

Biotechnology 34: 828–837. 782 

Wetzel WC, Whitehead SR. 2020. The many dimensions of phytochemical diversity: 783 

linking theory to practice. Ecology Letters 23: 16–32. 784 

Whitehead SR, Bowers MD. 2013a. Iridoid and secoiridoid glycosides in a hybrid complex 785 

of bush honeysuckles (Lonicera spp., Caprifolicaceae): Implications for evolutionary 786 

ecology and invasion biology. Phytochemistry 86:57–63. 787 

 Whitehead SR, Bowers MD. 2013b. Evidence for the adaptive significance of secondary 788 

compounds in vertebrate-dispersed fruits. The American Naturalist 182: 563–577. 789 

 Whitehead SR, Bowers MD. 2014. Chemical ecology of fruit defence: synergistic and 790 

antagonistic interactions among amides from Piper. Functional Ecology 28: 1094–1106. 791 

Whitehead SR, Jeffrey CS, Leonard MD, Dodson CD, Dyer LA, Bowers MD. 2013. 792 

Patterns of secondary metabolite allocation to fruits and seeds in Piper reticulatum. 793 

Journal of Chemical Ecology 39: 1373–1384. 794 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://www.zotero.org/google-docs/?L06CQs
https://doi.org/10.1101/2021.01.28.427500


35 
 

Whitehead SR, Quesada MFO, Bowers MD. 2016. Chemical tradeoffs in seed dispersal: 795 

defensive metabolites in fruits deter consumption by mutualist bats. Oikos 125: 927–937. 796 

Wittstock U, Gershenzon J. 2002. Constitutive plant toxins and their role in defense against 797 

herbivores and pathogens. Current Opinion in Plant Biology 5: 300–307. 798 

Xu S, Kreitzer C, McGale E, Lackus ND, Guo H, Köllner TG, Schuman MC, Baldwin 799 

IT, Zhou W. 2020. Allelic differences of clustered terpene synthases contribute to 800 

correlated intraspecific variation of floral and herbivory-induced volatiles in a wild 801 

tobacco. New Phytologist. doi: 10.1111/nph.16739 802 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.427500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.427500

