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Abstract 

Tremendous progress has been made to control the COVID-19 pandemic, including the 
development and approval of vaccines as well as the drug remdesivir, which inhibits the SARS-
CoV-2 virus that causes COVID-19. However, remdesivir confers only mild benefits to a subset 
of patients, and additional effective therapeutic options are needed. Drug repurposing and drug 
combinations may represent practical strategies to address these urgent unmet medical needs. 
Viruses, including coronaviruses, are known to hijack the host metabolism to facilitate their own 
proliferation, making targeting host metabolism a promising antiviral approach. Here, we 
describe an integrated analysis of 12 published in vitro and human patient gene expression 
datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM). We find 
that SARS-CoV-2 infection can induce recurrent and complicated metabolic reprogramming 
spanning a wide range of metabolic pathways. We next applied the GEM-based metabolic 
transformation algorithm (MTA) to predict anti-SARS-CoV-2 targets that counteract the virus-
induced metabolic changes. These predictions are enriched for validated targets from various 
published experimental drug and genetic screens. Further analyzing the RNA-sequencing data 
of remdesivir-treated Vero E6 cell samples that we generated, we predicted metabolic targets 
that act in combination with remdesivir. These predictions are enriched for previously reported 
synergistic drugs with remdesivir. Since our predictions are based in part on human patient 
data, they are likely to be clinically relevant. We provide our top high-confidence candidate 
targets for their evaluation in further studies, demonstrating host metabolism-targeting as a 
promising antiviral strategy. 
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Introduction 

The coronavirus disease 2019 (COVID-19), a serious respiratory disease caused by the 
coronavirus SARS-CoV-2 has evolved into a major pandemic incurring millions of deaths 
worldwide (all dates as of December 2020; WHO Coronavirus Disease Dashboard, 2020). 
Despite unprecedented global efforts in response to this serious health threat including 
abundant studies on the disease biology (e.g. Zhou et al. 2020, Hoffmann et al. 2020, etc., 
reviewed in Tay et al. 2020, etc.), preclinical antiviral drug/target screens or predictions (e.g. 
Riva et al. 2020, Wei et al. 2020, Danoliski et al. 2020, etc., with compiled resources like 
Kuleshov et al. 2020, etc.), and thousands of registered clinical trials on COVID-19 
(International Clinical Trials Registry Platform, 2020), therapeutic options remain scarce. 
Remdesivir, a viral RNA-dependent RNA polymerase inhibitor represents the only drug 
approved by the drug regulatory authorities of several countries, including the U.S. Food and 
Drug Administration (FDA)  (Beigel et al. 2020), and confers only mild clinical benefits to a 
subset of COVID-19 patients (WHO Solidarity Trial Consortium et al. 2020). The Janus kinase 
(JAK) inhibitor baricitinib (in combination with remdesivir), and virus-neutralizing antibodies 
bamlanivimab, and casirivimab plus imdevimab have obtained Emergency Use Authorization 
(EUA) from the FDA (U.S. Food and Drug Administration, 2020). Dexamethasone and other 
corticosteroids have been recommended by the U.S. National Institutes of Health (NIH) for 
hospitalized patients requiring supplemental oxygen (RECOVERY Collaborative Group et al. 
2020; National Institutes of Health, 2020). Besides, several SARS-CoV-2 vaccines have been 
approved or authorized for emergency use in different countries (Dong et al. 2020; U.S. Food 
and Drug Administration, 2020). Nevertheless, there is still an urgent unmet medical need for 
the fast identification and development of highly effective anti-COVID-19 therapies. 

Viruses are known to “hijack” host cell metabolism to complete their own intracellular life 
cycle (Mayer et al. 2019), modulating diverse pathways including carbohydrate, lipid, amino acid 
and nucleotide metabolism (Mayer et al. 2019; Sanchez et al. 2015). Coronaviruses including 
MERS-CoV rearrange cellular lipid profiles upon infection (Yan et al. 2019; Yuan et al. 2019). 
Recent studies have reported that SARS-CoV-2 also induces changes in numerous metabolic 
pathways including TCA cycle, oxidative phosphorylation and lipid metabolism among others in 
human patient samples (Gardinassi et al. 2020; Ehrlich et al. 2020). Notably, counteracting the 
metabolic demands of viruses including MERS-CoV have been shown to abolish their ability to 
infect the host cells (Mayer et al. 2019; Yuan et al. 2019), and the PPARα-agonist fenofibrate 
can reverse some of the SARS-CoV-2-induced metabolic changes and reduce the viral load 
(Ehrlich et al. 2020). Therefore, targeting the virus-induced metabolic changes can be a 
promising novel antiviral strategy (Mayer et al. 2019), and can be especially valuable in anti-
SARS-CoV-2 drug repurposing to address the current urgent COVID-19 crisis considering that 
many existing drugs are metabolism-targeting. 

Genome-scale metabolic models (GEMs) are in silico constraint-based models that 
comprehensively encompass the cellular network of metabolic reactions, metabolic proteins, 
and metabolites (Baart et al. 2012). GEM analysis has been repeatedly shown to generate 
accurate predictions and informative hypotheses for metabolism research (Gu et al. 2019). 
Notably, we have previously developed numerous GEM-based algorithms including iMAT 
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(Shlomi et al. 2008), which computes genome-wide metabolic fluxes from gene expression 
profiles, and the metabolic transformation algorithm (MTA; Yizhak et al. 2013), which predicts 
metabolic targets whose inhibition facilitates transformation between specified cellular metabolic 
states (e.g. from diseased to healthy states). More recently, Valcárcel et al. has described a 
variant of MTA named rMTA with improved performance (Valcárcel et al. 2019). Incorporating 
such high-performance GEM methods in the analysis of data on SARS-CoV-2 infection provides 
us with a unique opportunity to understand the metabolic demands of SARS-CoV-2 and to 
systematically predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic 
alterations. 

Here we apply GEM algorithms in a comprehensive analysis of 12 published bulk/single-
cell RNA-sequencing (RNA-seq/scRNA-seq) and mass spectrometry (MS)-based proteomics 
datasets on SARS-CoV-2 infection, involving both in vitro and human patient samples. We find 
that metabolic reprogramming represents one of the most consistent molecular changes in 
SARS-CoV-2 infection besides immune responses, and characterize the complex patterns of 
metabolic flux alterations. Using MTA, we predicted anti-SARS-CoV-2 targets that reverse the 
virus-induced metabolic changes, either as single targets or in combination with remdesivir (the 
latter using our new RNA-seq data on remdesivir treatment). The predictions are highly enriched 
for reported anti-SARS-CoV-2 targets identified from various experimental screens, and we 
provide our top high-confidence candidate targets for the evaluation in further studies. 

Results 

Integrated analysis of multiple gene expression datasets identifies coherent immune and 
metabolic changes in SARS-CoV-2 infection 

Multiple studies have characterized the gene expression changes during SARS-CoV-2 infection 
in different in vitro and in vivo settings. We collected a total of 12 published relevant datasets 
spanning a wide range of sample types (various cell lines, primary bronchial epithelial cells, 
nasopharyngeal swab and bronchoalveolar lavage fluid, i.e. BALF samples from patients) and 
assay platforms (bulk RNA-seq, scRNA-seq, and MS-based proteomics). These datasets are 
summarized in Table 1. With each of the datasets, we performed differential expression (DE) 
analysis comparing the SARS-CoV-2-infected or positive samples to the non-infected control or 
negative samples (Methods; Table S1). For the single-cell datasets, we focused on the airway 
epithelial cell which is known as the major virus-infected cell type. Comparing the datasets with 
a principle component analysis (PCA) plot based on the inverse normal-transformed DE log 
fold-change values (Fig. 1A; Methods) suggests that the cell lines tend to have distinct DE 
profiles from the patient samples, although different patient datasets exhibit considerable 
variation depending on sample type and sequencing platform. This pattern is confirmed by the 
comparison of the top significant DE genes from each pair of datasets (using Fisher’s exact 
tests, top n=400 DE genes from each dataset were used, all with at least FDR<0.1; Methods; 
Fig. 1B). Moreover, examining only the top DE genes appears to mitigate the technical variation 
across datasets, with reasonable coherence demonstrated by odds ratio median value 2.18 and 
maximum 13.60 (adjusted P median 5.09e-5, minimum<2.22e-16; Fig. 1B). 
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Table 1. Summary of the published gene expression datasets on SARS-CoV-2 infection 
analyzed in this study. 

Dataset 
Name* Sample Type 

Sample 
Size† Platform Reference 

Vero Vero E6 cell line 6 
bulk RNA-
seq Riva et al. 2020 

NHBE Primary normal human bronchial epithelial cell 6 
bulk RNA-
seq 

Blanco-Melo et 
al. 2020 

A549 
A549 human lung adenocarcinoma cell line with 
exogenous ACE2 expression 6 

bulk RNA-
seq 

Blanco-Melo et 
al. 2020 

Calu-3 Calu-3 human lung adenocarcinoma cell line 6 
bulk RNA-
seq 

Blanco-Melo et 
al. 2020 

293T HEK293T human embryonic kidney cell line 12 
bulk RNA-
seq 

Weingarten-
Gabby et al. 
2020 

Caco-2 Caco-2 human colorectal adenocarcinoma cell line 6 
MS-based 
proteomics 

Bojkova et al. 
2020 

Swab.Butl
er NP swab samples from human individuals 580 

bulk RNA-
seq Butler et al. 2020 

Swab.Lieb
erman NP swab samples from human individuals 484 

bulk RNA-
seq 

Lieberman et al. 
2020 

BALF BALF from human individuals 6 
bulk RNA-
seq Xiong et al. 2020 

SC.Liao 
BALF from human individuals (epithelial cells were 
used in analysis) 13 scRNA-seq Liao et al. 2020 

SC.Chua.
Basal 

NP and bronchial samples from human individuals 
(basal cells were used in analysis) 24 scRNA-seq Chua et al. 2020 

SC.Chua.
Ciliated 

NP and bronchial samples from human individuals 
(ciliated cells were used in analysis) 24 scRNA-seq Chua et al. 2020 

 
* These are the names used in figure labels throughout the text. 
† The total number of replicates (virus-infected and control combined) used for analysis in in 
vitro datasets, or the total number of human individuals (patients and controls combined) used 
for analysis in in vivo datasets. In some datasets, only a subset of all the available samples 
were analyzed. 
Abbreviations: NP, nasopharyngeal; BALF, bronchial alveolar lavage fluid; RNA-seq, RNA-
sequencing; MS, mass spectrometry; scRNA-seq, single-cell RNA-sequencing. 

We then performed gene set enrichment analysis (GSEA) (Subramanian et al. 2005) on 
the DE results from each dataset (Table S2), and further compared the datasets on the pathway 
level by the significantly enriched pathways (FDR<0.1; Methods). Reassuringly, the level of 
coherence across datasets on the pathway level is even stronger, with a median odds ratio of 
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4.25 (maximum is infinity followed by 35.49) across pairs of datasets (adjusted P median 2.01e-
5, minimum<2.22e-16; Fig. 1C). Examining the most consistently enriched pathways across the 
datasets while giving higher importance to the various in vivo patient datasets (Fig. 1D; Table 
S3; Methods), we see many up-regulated pathways involved in innate immune response to viral 
infection, e.g. interferon signaling and cytosolic DNA sensing. Among the pathways involving 
coherently down-regulated genes upon SARS-CoV-2 infection, we find antigen presentation, as 
well as numerous pathways spanning many major categories of cellular metabolism, e.g. 
oxidative phosphorylation (OXPHOS; energy metabolism), sphingolipid metabolism (lipid 
metabolism), valine, leucine and isoleucine degradation (amino acid metabolism), and N-glycan 
biosynthesis. These may reflect the specific metabolic requirements of SARS-CoV-2 or underlie 
its pathogenic effects (see Discussion). Visualizing a more complete landscape of metabolic 
pathway alterations across the datasets reveals further consistent, although weaker changes 
(based on GSEA normalized enrichment score, i.e. NES; Fig. 1E; Table S2; Methods). These 
results suggest that besides immune response, metabolic reprogramming represents one of the 
most robust changes induced by SARS-CoV-2 infection across various systems, consistent with 
the key roles of metabolism in viral infection. We next focused on characterizing the SARS-CoV-
2-induced metabolic changes in the infected host cells on the metabolic flux level. 

Genome-scale metabolic modeling (GEM) identifies SARS-CoV-2-induced patterns of metabolic 
flux changes 

 Since gene expression does not necessarily correlate with protein level or enzyme 
activity and thus may not truthfully reflect metabolic activity (Maier et al. 2009), we applied GEM 
to infer the metabolic fluxes (i.e. rates of all metabolic reactions) across the datasets. 
Specifically, for each dataset, the iMAT algorithm (Shlomi et al. 2008) was applied to the median 
expression profiles of the control and virus-infected samples to compute the refined metabolic 
models representative of the two respective groups, and the flux distribution of each metabolic 
reaction was obtained by sampling (Methods). The flux distributions of the control and infected 
groups were compared and reactions with differential fluxes (DF) were identified (Methods; 
Table S4). We again examined the consistency across the datasets, here on the flux level, by 
checking the overlap of the top DF reactions between each pair of datasets. Like on the gene 
expression level, we are assured by the overall high level of coherence of the DF reactions 
(odds ratio median 2.40, maximum 28.13; adjusted P value median and minimum both <2.22e-
16; Fig. 2A shows the result for the positive DF reactions, the result is similar for negative DF 
reactions; We note that the sign of DF represents the direction of flux change with regard to the 
positive direction of a reaction, which can be reversible, and not the increase or decrease of the 
absolute flux). Although no reaction shows fully consistent changes across all 12 datasets, we 
identified a set of most consistently changed reactions across datasets while giving higher 
importance to the in vivo patient datasets (Table S5A; Methods), and examined the metabolic 
pathways they are enriched in with Fisher’s exact tests (significant pathways with FDR<0.1 
shown in Fig. 2B; Table S5B). We see that consistent flux changes are found in various 
noteworthy pathways including metabolite transport (mitochondrial and extracellular), pentose 
phosphate pathway, hyaluronan metabolism, pyrimidine biosynthesis, glycine, serine, and 
threonine metabolism, TCA cycle, inositol phosphate metabolism, fatty acid elongation, among 
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others. Many of these pathways have been implicated in the infection and life cycle of different 
viruses including SARS-CoV-2 (Mayer et al. 2020, Ou et al. 2020, Gardinassi et al. 2020, Li et 
al. 2020, Thomas et al. 2020, Ehrlich et al. 2020, Bojkova et al. 2020; see Discussion). Below 
we closely inspect the flux alteration patterns within these pathways with specialized methods. 

 First, we focused on the cellular transport pathway, seeking to identify the specific 
transport pattern summarized for each metabolite species (Methods; Table S5C). Some of the 
metabolites showing the most consistent patterns across datasets are summarized in Fig. 2C. 
In addition to biological variation, technical noise from the modeling can also contribute to the 
lack of full consistency in these results. Nevertheless, several glucogenic amino acids, including 
alanine, asparagine, and glutamate are seen to have increased cellular import from the 
extracellular space to the cytoplasm (or decreased export) in the virus-infected vs control group 
across more than half of the datasets. On the other hand, nicotinamide and tetrahydrofolate 
show relatively consistent patterns of decreased cellular import (or increased export; Fig. 2C). 
Next, we inspected the other pathways not related to metabolite transport by visualizing their 
alteration patterns overlaid on the metabolic network, for virus-infected vs the control group. For 
example, the pyrimidine (de novo) biosynthesis pathway contains consistently increased fluxes 
towards the synthesis of UMP (the precursor of pyrimidines; Fig. 2D), consistent with the 
nucleic acid synthesis needs of the virus. In the TCA cycle, we mostly see increased flux driving 
the normal cycle, together with the interconversion and mitochondrial transport of the 
cytoplasmic counterparts of TCA cycle intermediates (Fig. 2E). This seems contradictory to the 
consistent gene expression-level decrease of the “TCA cycle and respiratory electron transport" 
pathway (Fig. 1D). However, upon closer inspection, we find that the gene-level enrichment of 
this pathway is mostly driven by the decrease in electron transport chain genes (Table S2), and 
consistently OXPHOS reactions show decreased fluxes (Table S5A). As examples of pathways 
with more complex flux change patterns, in the inositol phosphate metabolism pathway, we see 
increased fluxes converging to phosphatidylinositol 4,5-bisphosphate (pail45p_hs[c]) and 
inositol (inost[c]), but decreased fluxes to inositol 1-phosphate (mi1p_DASH_D[c]; Fig. 2F); in 
the glycine, serine, and threonine metabolism pathway, we see decreased conversion of serine 
to glycine but increased serine degradation to pyruvate (Fig. 2G); in the fatty acid elongation 
pathway, we see that the synthesis and interconversion of different fatty acids show distinct flux 
changes (Fig. 2H). These highly intricate metabolic programs revealed by the GEM analysis are 
consistent with many previous reports and possibly reflect the specific metabolic demands of 
SARS-CoV-2 during its life cycle (see Discussion), which also demonstrates the value of the 
modeling approach over gene expression-level analyses. 

Prediction of anti-SARS-CoV-2 targets that act via counteracting the virus-induced metabolic 
changes 

 We have demonstrated that SARS-CoV-2 can induce recurrent and complex alterations 
in host cell metabolism. As was proposed previously, targeting the virus-induced metabolic 
changes can be an effective antiviral strategy (Mayer et al. 2019), which we adopted here to 
predict anti-SARS-CoV-2 targets. Specifically, we applied the GEM-based rMTA algorithm 
(Valcárcel et al. 2019) to each of our collected datasets to predict metabolic reactions whose 
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knockout (KO) can transform the cellular metabolism from the SARS-CoV-2-infected state to the 
non-infected normal state (Methods; Table S6). MTA computes a score for each of the 
metabolic reactions in the cell, and usually the 10-20% reactions with the highest MTA score 
contain promising candidate targets (Yizhak et al. 2013). We first compared the top 10% MTA-
predicted reactions across datasets and found that they have reasonable overlap (odds ratio 
median 3.42, maximum 16.47, Fisher’s exact test adjusted P median and minimum both<2.2e-
16 across all pairs of datasets; Fig. 3A). Interestingly, some strong overlaps are seen between 
certain cell line and patient datasets, consistent with the recurrent metabolic changes across 
these datasets as seen above. 

 To validate these predictions, we collected multiple validation sets of reported anti-
SARS-CoV-2 gene targets or drugs identified from large-scale chemical or genetic screens. 
These include CRISPR-Cas9 genetic screens in Vero E6 cells (Wei et al. 2020) and in cells with 
exogenous ACE2 expression (A549ACE2, Daniloski et al. 2020), and additional lists of 
experimentally validated drugs reported in different in vitro studies compiled by Kuleshov et al. 
2020 (Methods). We first tested for significant overlap between our top 10% MTA-predicted 
targets from each of the datasets and the validation sets described above with Fisher’s exact 
tests (after mapping all validated target genes or drugs to the metabolic reactions; Methods). 
Strongly significant overlaps were found between our predictions from 8 out of the 12 datasets 
with the antiviral hits (i.e. those whose KO inhibits SARS-CoV-2 infection) identified in the 
CRISPR-Cas9 screens (FDR<3.95e-4; Fig. 3B; Table S6B), these significant datasets include 
the Vero (Riva et al. 2020) and A549ACE2 data (Blanco-Melo et al. 2020) from the same cell 
types as those used in the CRISPR-Cas9 screens, but encouragingly also include three in vivo 
patient datasets (Lieberman et al. 2020, Liao et al. 2020, Chua et al. 2020). Further examining 
the experimentally validated anti-SARS-CoV-2 drug sets from previous studies (compiled by 
Kuleshov et al. 2020), we also found a few cases of significant overlap (FDR<0.1; Fig. 3C; 
Table S6C), although these drug sets are relatively small, and when we pooled all validated 
drugs compiled by Kuleshov et al., their targets are only enriched in the predictions from the 
SC.Chua.Basal dataset (Fig. 3C). Some of our top predicted reactions are also mapped to host 
proteins identified to interact with SARS-CoV-2 proteins from Gordon et al. 2020 and Stukalov 
et al. 2020, although we only see weak statistically significant overlaps with the Stukalov et al. 
data but not the Gordon et al. data (FDR<0.1; Fig. 3D; Table S6D), suggesting that most of our 
predicted targets are not directly involved in the SARS-CoV-2 life cycle. Overall, our MTA-based 
top predictions obtained strong validation from the published CRISPR-Cas9 screens, with 
further but weaker support from the drug screens and host-virus protein-protein interaction (PPI) 
data. 

 We further take advantage of the genome-wide CRISPR-Cas9 screens to more closely 
evaluate the performance of our MTA predictions. Unlike in many of the drug-screen datasets 
where the screens are low-throughput or complete screen results were not available, we were 
able to confidently define positive and negative sets (i.e. genes whose KO inhibits or promotes 
the viral infection, respectively) from the CRISPR-Cas9 screen data. The positive and negative 
sets were defined in a balanced way (Methods), with which we performed ROC curve analysis 
of our MTA predictions from each of the dataset (Methods). Although the MTA prediction is only 
based on the transformation of cellular metabolic states and does not consider the possible 
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effect of other anti-/pro-viral mechanisms, we see that the predictions based on 6 of the 
datasets achieved area under ROC curve (AUROC) values above 0.6 and as high as 0.81, 
although two of the other datasets apparently yielded AUROC significantly lesser than 0.5 (Fig. 
3E; see Discussion). As examples, ROC curves from the two best-performing datasets are 
shown in Fig. 3F, we note that the steep proportions of the curves showing close to 1 specificity 
and decent sensitivity indeed correspond to about top 10-20% of the MTA predictions, 
consistent with our previous experience with MTA. These results testify that our metabolism-
targeting strategy using the MTA algorithm is able to achieve reasonable prediction 
performances. 

Next, we seek to integrate our predictions from the 12 datasets into a final consensus list 
of high-confidence candidate targets for further extensive experimental validation and 
investigation. We applied a procedure to pick highly recurrent top predictions across both the in 
vitro and in vivo datasets (Methods), resulting in a final list of 66 candidate target metabolic 
reactions of which 59 are mapped to genes and 15 are targeted by known drugs (Table S7A). 
This final list of candidates are also strongly enriched for the positive targets identified in the two 
anti-SARS-CoV-2 CRISPR-Cas9 screens described above (Wei et al. 2020 and Daniloski et al. 
2020; odds ratio=26.56, P<2.2e-16). These candidates are enriched for metabolic pathways 
including cellular transport, inositol phosphate and aminosugar metabolism, and within the 
cellular transport pathway, transporters for various amino acids, succinate, citrate and 
adenosine are enriched (FDR<0.1; Fig. 3G; Table S7B; Methods). These are consistent with 
the known biology of SARS-CoV-2, e.g. phosphoinositides are known to be critical for SARS-
CoV-2 cell-entry by endocytosis, and inhibiting phosphatidylinositol-3,5-bisphosphate with the 
drug apilimod has been shown to suppress SARS-CoV-2 entry (Ou et al. 2020).  

Prediction of metabolic targets for anti-SARS-CoV-2 in combination with remdesivir 

 Given that our MTA-based prediction of single anti-SARS-CoV-2 metabolic targets has 
yielded promising results, we proceed to extend the same strategy for the prediction of targets 
that can be combined with remdesivir to achieve higher antiviral efficacy. To this aim, we 
cultured Vero E6 cells infected by SARS-CoV-2, with or without remdesivir treatment. A control 
group (no viral infection or remdesivir treatment) a remdesivir-only group (no viral infection) 
were also included (Methods). Bulk RNA-seq was performed to obtain the gene expression 
profiles of these samples (Methods). Visualizing the gene expression data with a PCA plot, we 
see that remdesivir can indeed effectively reverse the virus-associated expression changes 
(mostly along the first PC axis), but also results in additional orthogonal changes along the 
second PC axis (Fig. 4A). Performing a GSEA analysis comparing the virus+remdesivir group 
to the normal control group, we see that many pathways show significant differences in their 
expression, including some metabolic pathways, e.g. cholesterol and steroid biosynthesis (Fig. 
4B; Table S8; Methods). Some of these differences can be attributed to the incomplete 
reversion of virus-induced expression changes by remdesivir, while others may arise from 
remdesivir-specific effects (Fig. 4B). Further computing the metabolic flux profiles 
representative of each group of samples with iMAT (Shlomi et al. 2008) then inspecting the flux-
level PCA plot (Fig. 4C; Methods), we observe a similar pattern from that seen on the gene 
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expression level. The differential fluxes between the virus+remdesivir and the control group are 
enriched for various metabolic pathways (FDR<0.1; Fig. 4D; Table S9; Methods), many also 
have differential fluxes comparing virus-infected samples to control (see Fig. 2B), suggesting 
that these metabolic changes are not fully reversed to normal by remdesivir. We hypothesize 
that further reversing the cellular state in the virus+remdesivir group towards the healthy control 
state may be an effective combinatory targeting strategy to improve the antiviral efficacy of 
remdesivir. 

 As before, we focused on the domain of cell metabolism and applied MTA on our data 
from Vero E6 cells to predict targets for reversing the metabolic flux profile in the 
virus+remdesivir group towards normal (Methods; Table S10A). Trying to validate these 
predictions, we obtained a list of 20 experimentally tested drugs showing synergistic anti-SARS-
CoV-2 effects with remdesivir in the Calu-3 cell line (Nguyenla et al. 2020). Despite the cell type 
difference, we observed that the targets of these drugs are significantly enriched by our top 20% 
MTA predictions (Fisher’s exact test P=0.011, odds ratio 4.83; there is also a trend of 
enrichment by the top 10% MTA predictions with odds ratio 2.01, but it failed to achieve 
statistical significance at P=0.30). The top 20% predictions recovered 6 of the 11 metabolic 
reaction targets from Nguyenla et al., corresponding to drugs including cilostazol, ezetimibe, 
ivosidenib and valdecoxib. Some of the top predicted targets overlap with our predicted single 
anti-SARS-CoV-2 targets as described above, e.g. various inositol phosphate metabolism 
reactions. This is consistent with the observation that the virus-induced metabolic changes in 
these pathways are not effectively reversed to normal by remdesivir (as seen from Fig. 2B and 
4D). Performing a pathway enrichment analysis, we see that these top predictions are enriched 
in bile acid, IMP, and heme biosynthesis pathways, among others (Fig. 4E; Table S10B); 
cholesterol and steroid metabolism pathways, which were seen to be different on the gene 
expression level between the virus+remdesivir and control samples (see Fig. 4B), are also 
enriched for the top predicted targets (Fig. 4E). We provide the top 20% predictions ranked by 
the MTA score and known drugs for these targets in Table S10A. These predictions represent 
candidate targets that can potentially improve the antiviral efficacy of remdesivir in combination 
and warrant further testing in future studies. 

Discussion 

In this study, we provide a comprehensive GEM analysis integrating 12 published gene 
expression datasets on SARS-CoV-2 infection, spanning multiple in vitro and in vivo sample 
types and expression profiling platforms. We revealed the complexity of host metabolic 
reprogramming by SARS-CoV2, and further predicted anti-SARS-CoV-2 single or combinatory 
(with remdesivir) targets that act via counteracting the virus-induced metabolic changes. Our 
GEM-based prediction algorithm showed good performance based on validation with published 
targets from in vitro screens, and the predicted targets represent highly promising candidates for 
further experimental testing. 

To date, a large number of studies have been published that contributed to our fast 
understanding of the host molecular changes associated with SARS-CoV-2 infection. These 
studies involve a variety of different experimental models and/or sample types, making it 
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necessary to perform a systematic analysis across datasets and evaluate the robustness and 
clinical relevance of the findings in human patients. Although we do not aim to (and cannot) 
include all relevant published data, we tried to cover datasets on both popular in vitro models of 
SARS-CoV-2 infection as well as human patients (nasopharyngeal swab and BALF samples). 
While many other studies have shed light on the systemic and immune cell-specific response 
characteristic of SARS-CoV-2 infection (e.g. Zheng et al. 2020 and many of the patient studies 
we collected in Table 1), our focus is specifically on the virus-infected host cells, i.e. primarily 
the airway epithelial cells in vivo. Therefore, for human samples, in addition to bulk RNA-seq, 
we analyzed scRNA-seq data to separate the distinctive changes within the epithelial cells from, 
e.g. various types of immune cells. In terms of methodology, we have avoided a more formal 
effect size-based meta-analysis due to the challenge arising from the wide range of expression 
profiling platforms (bulk RNA-seq, scRNA-seq, MS-based proteomics) and the technical 
variation involved. Rather, we relied more on P values, and made subjective decisions that give 
higher importance to the various patient datasets when defining consistent findings, aiming to 
obtain results of higher clinical relevance. By integrated analysis of all these data, we found that 
metabolism is one of the cellular domains that exhibit the most coherent changes across 
datasets in SARS-CoV-2 infection (besides immune responses; Fig. 1D). This finding is 
consistent with our prior knowledge on the need of a wide spectrum of viruses to manipulate 
host metabolism for viral proliferation (Mayer et al. 2019), and sets a solid basis for our GEM-
based metabolic flux analysis and antiviral target prediction. 

The application of GEM in complement to gene expression-level analysis is a central 
part of our study. It is known that gene expression does not always perfectly correlate with 
protein level or enzyme activity (Maier et al. 2009). Besides, many metabolic reactions are 
reversible, while the directions of reactions are important biologically, such information is 
missing on the gene level. By taking advantage of the additional information in the topological 
constraints of the metabolic network, GEM allows us to infer the actual metabolic fluxes, thus 
revealing extra complexity in SARS-CoV-2-induced metabolic reprogramming, as is evident 
from Fig. 2D-H. Many of these inferred metabolic changes are consistent with what’s known 
about SARS-CoV-2 and other related viruses. For example, the highly coherent increase in 
pyrimidine biosynthesis (Fig. 2D) corresponds to the increased need of viral genome replication 
and gene expression (Bojkova et al. 2020), and pyrimidine de novo synthesis inhibitors have 
been shown to have anti-SARS-CoV-2 effects (Xiong et al. 2020). Inositol phosphate 
metabolism (Fig. 2F) is important for the life cycle of many viruses due to the structural or 
signaling roles of different phosphoinositides (Beziau et al. 2020), with the inhibition of certain 
phosphoinositides disrupting endocytosis and blocking SARS-CoV-2 cell-entry (Ou et al. 2020). 
Fatty acid synthesis was reported to increase in SARS-CoV-2 infection (Ehrlich et al. 2020), 
whereas our results suggest a more complex pattern for different fatty acid species (Fig. 2H), 
which echoes the results of several metabolomics studies (Shen et al. 2020, Barberis et al. 
2020, Thomas et al. 2020). Both TCA cycle and OXPHOS have been shown to decrease based 
on gene expression during the virus infection (Ehrlich et al. 2020, Gardinassi et al. 2020), and 
have been implicated in the systemic syndromes of the virus (Li et al. 2020). While we did 
recapitulate such gene expression changes, our GEM analysis only confirmed the decrease of 
OXPHOS (Table S5A) but revealed a mostly normal-functioning TCA cycle on the flux level, 
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which appears to be driven by 2-oxoglutarate transported from the cytosol (Fig. 2E). Despite 
that GEM can help to suggest such intricate flux-level patterns, these computed fluxes should 
be verified with isotope labeling experiments, and their biological significance in the virus 
infection needs to be further investigated. 

Given the importance of metabolism during virus infection, targeting host metabolism 
has already been proposed as a promising novel antiviral strategy (Mayer et al. 2019). For this, 
the MTA algorithm we previously developed (Yizhak et al. 2013), again a method under the 
GEM framework, can be particularly valuable for the metabolic target discovery. MTA has been 
successfully applied to predict lifespan extending interventions in yeast (Yizhak et al. 2013), a 
metabolic cancer driver gene (Auslander et al. 2017), and a novel therapeutic target for 
intractable epilepsy (Styr et al. 2019). A recent variant of MTA named rMTA was shown to 
deliver better performance (Valcárcel et al. 2019), and here we used an optimized 
implementation of rMTA in our study. MTA/rMTA are not based on supervised machine learning 
technique, and do not use any of the validation datasets for target prediction. Yet, we were able 
to achieve decent performance during the validation (Fig. 3B-F). It is particularly encouraging to 
see that in several cases, the validation data (which mostly originated from in vitro experiments) 
correlated well with the predictions based on in vivo human data. In some datasets, however, 
our predictions were not successfully validated by the genetic screen data (Fig. 2B,E). One 
reason could be that MTA can only consider the metabolism-related effects and ignores other 
potential mechanisms that determine the antiviral efficacy of a target. Nevertheless, it could also 
be due to biological differences between the datasets used for prediction and those used for 
validation. To avoid overdependence on the limited validation sets available in defining the final 
consensus candidate target list, we did not explicitly exclude any dataset used for prediction but 
enforced the inclusion of the human patient data to achieve higher clinical relevance. The 
prediction for combinatory targets with remdesivir also showed promising preliminary results, 
although our validation is more limited in this case due to lack of data. Follow-up studies are 
warranted to solidly test and validate these predicted targets for potential further antiviral 
therapy development. 

In summary, we identified prevalent and intricate metabolic reprogramming in the host 
cell as a feature of SARS-CoV-2 infection, and further predicted single and combinatory antiviral 
targets with promising performance seen in preliminary validations. These targets should be 
rigorously validated experimentally. Since our predictions are in part based on human patient 
data, they are likely to have high clinical relevance and may ultimately help to achieve better 
efficacy in COVID-19 treatment. Our study demonstrates the targeting of host metabolism as a 
promising antiviral strategy and highlights the power of GEM analysis to advance the 
understanding of cell metabolism during viral infection and antiviral target prediction. 

Materials and Methods 

Differential gene expression analysis 

We obtained each of the gene expression datasets on SARS-CoV-2 infection from the sources 
listed in Table 1. For the bulk RNA-sequencing (RNA-seq) datasets whose read count data is 
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available at the time of analysis, we performed differential expression (DE) analysis comparing 
the SARS-CoV-2-infected or positive samples to the non-infected control or negative samples 
with DESeq2 (Love et al. 2014). For Weingarten-Gabby et al. 2020, a nested design for DE was 
needed and DESeq2 failed to run properly, and limma-voom (Law et al. 2014) was used. For 
Butler et al. 2020 and Xiong et al. 2020, we obtained the DE results provided from the 
supplementary materials of the respective publication, as we were not able to obtain their gene-
level expression data at the time of analysis. For Butler et al. 2020, among their multiple 
versions of DE results we used the one from limma-voom with sva correction 
“Voom:Positive_vs_Negative:10M_samples:sva_correction_2sv”. We also took the DE results of 
the proteomic data from Bojkova et al. 2020 as provided by the authors, and used the 24 hours 
post-infection data which is the latest time point available with the largest number of DE 
proteins). For the single-cell RNA-sequencing (scRNA-seq) datasets, The “FindMarkers” 
function in the R package Seurat (Stuart et al. 2019) was used to call the MAST method (Finak 
et al. 2015) for DE analysis in each annotated cell type, with “logfc.threshold” set to 0 to obtain 
full results across genes. We focused on the airway epithelial cells since our major aim in this 
study is to investigate the changes in the cell types infected by the SARS-CoV-2 virus, these 
include the “Epithelial” cell type from Liao et al. 2020 and the “Ciliated” and “Basal” cell types 
from Chua et al. 2020 (other epithelial subtypes from these datasets yielded no significant DE 
genes). All DE results are given in Table S1. 

Gene set enrichment analysis of the differential expression results 

Using the DE log fold-change values from each dataset, gene set enrichment analysis 
(GSEA) (Subramanian et al. 2005) was performed using the implementation in the R package 
fgsea (Korotkevich et al. 2019). The gene set/pathway annotations used were the Reactome 
(Jassal et al. 2020) and KEGG (Kanehisa et al. 2021) subsets from the “Canonical Pathway” 
category in version 7.0 MSigDB database (Liberzon et al. 2011). For metabolic pathways (in 
Figure 1E), those under the category “Metabolism” from KEGG (Kanehisa et al. 2021) were 
used. All GSEA results are given in Table S2. 

Comparison of the differentially expressed genes and pathways across datasets 

The DE results across datasets were compared in a descriptive manner. As a first 
approach, the DE log fold-change values were inverse normal-transformed across all genes 
within each dataset, which preserves only the order (i.e. rank) of DE effect sizes, and then PCA 
was applied to the transformed data. As a second approach, top significantly DE genes or 
enriched pathways from each pair of datasets were tested for significant overlap using Fisher’s 
exact tests. For DE genes, the number of significant genes vary greatly across datasets based 
on a single FDR cutoff, so we uniformly took the top n=400 DE genes ranked by FDR from each 
dataset (all cases have at least FDR<0.1). For enriched pathways we simply took those with 
FDR<0.1 from each dataset. To identify the consistent DE changes across datasets, a formal 
meta-analysis of all 12 datasets is challenging given the wide range of assay platforms and DE 
algorithms used. So instead, we adopted a subjective criteria that give high importance to the 
various in vivo patient datasets, such that the results may be more clinically relevant: we 
identified pathways that are significantly (FDR<0.1) enriched in the consistent direction 
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(up/down-regulation) in at least one of the bulk RNA-seq patient datasets and also at least one 
of the scRNA-seq datasets, while never showing significant enrichment (FDR<0.1) in the 
opposite direction in any of the datasets (for the results in Figure 1D; Table S3). 

Computation of metabolic fluxes from gene expression data with genome-scale metabolic 
modeling 

For each dataset, we used the genome-scale metabolic modeling (GEM) algorithm iMAT 
(Shlomi et al. 2008) to compute the metabolic flux profile from gene expression data. iMAT 
requires gene-length normalized expression values in the bulk RNA-seq datasets, for this we 
computed TPM values with Salmon (Patro et al. 2017) from the raw fastq files for datasets 
where TPM data is not provided. Then for each dataset, we took the median expression values 
of the control and virus-infected samples respectively as the representative expression profile 
for each group, and used it as input to iMAT. The human genome-scale metabolic model (GEM) 
Recon 1 (Duarte et al. 2007) was used as the base model to iMAT. The main reason we used 
the older human GEM version was due to the significantly longer computation time and 
resources needed if later larger models were used instead. The output of iMAT is a refined GEM 
for the each of the virus-infected and control groups in each dataset, with metabolic reaction 
bounds adjusted to achieve maximal concordance with the gene expression data while 
satisfying the stoichiometric constraints of the cellular metabolic network (Shlomi et al. 2008). 
Each output model defines a space rather than a single unique solution of the global metabolic 
flux profile, and artificial centering hit-and-run (ACHR) was used to sample the metabolic space 
and obtain the flux distribution of each metabolic reaction in each condition (control or virus-
infected) and dataset. All GEM analyses were performed using our in-house R package named 
gembox, with the academic version of IBM ILOG CPLEX Optimization Studio 12.10 as the 
optimization solver. 

Differential flux analysis of virus-infected vs control group in each dataset 

The flux distributions of the control and infected groups were compared to identify 
reactions with differential fluxes (DF). Since an arbitrarily large number of sample points can be 
sampled from the metabolic space of each group, resulting in statistical tests with arbitrarily 
small P values, we adopted the following effect size-based criterion for DF reactions: absolute 
rank biserial correlation (an effect size measure of the difference between the two flux 
distributions in the control and virus-infected groups) >0.1, and absolute relative flux change 
(i.e. the absolute difference of the mean fluxes between the two groups over the absolute mean 
flux in the control group) >5%. Positive DF reactions have flux value difference in infected vs 
control group >0, and vice versa for negative DF reactions. Note that for non-reversible 
reactions, flux values are non-negative and the sign of DF can be interpreted similarly to 
differential gene expression; for reversible reactions, flux values can be negative, representing 
reactions happening in the reverse direction, thus the sign of DF needs to be interpreted 
differently, e.g. negative DF represents flux shift towards the reverse direction and not 
necessarily decrease in absolute flux. The DF results are given in Table S4. 

Analysis of reactions with consistent differential fluxes across datasets and their pathway 
enrichment analysis 
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To compare the DF results across datasets, the DF reactions from each pair of datasets 
were tested for significant overlap using Fisher’s exact tests (separately for positive and 
negative DF). Since no reaction shows fully consistent DF across all 12 datasets analyzed, 
similarly as with the DE analysis, we identified the DF reactions with high level of consistency 
especially in the in vivo patient datasets, such that the results may be more clinically relevant: 
we identified DF reactions in the consistent direction (positive/negative) in at least one of the 
bulk RNA-seq patient datasets and also at least one of the scRNA-seq datasets, while showing 
DF in the opposite direction in no more than 3 datasets, resulting in 293 positive and 349 
negative DF reactions (Table S5A). The metabolic pathway enrichment of these DF reactions 
was analyzed with Fisher’s exact tests (results in Table S5B), with the “subSystems” slot in the 
metabolic model used as pathway annotation. Note that due to the special interpretation of the 
sign of DF values as explained above, the GSEA used for gene expression-level analysis is not 
appropriate for pathway enrichment analysis on the flux level. 

Differential transport flux analysis by each metabolite species 

Differential transport flux analysis on the metabolite level was first performed for each 
dataset. Specifically, in each group (control or virus-infected), the sampled flux values on the 
reaction level for all transport reactions across the cell membrane were summarized by each 
metabolite, taking the direction of transport (i.e. import or export) into consideration to produce 
the net cellular transport flux of the metabolite (positive means net import, vice versa). The 
metabolites with differential net transport fluxes between the control and virus-infected groups 
were identified as in the reaction-level DF analysis described above. The consistent DF 
metabolites were then identified in the same way as with the DF reactions described above. The 
results are given in Table S5C. 

Analysis of the consistent flux alteration patterns in different metabolic pathways 

For each of the significantly enriched metabolic pathways identified in the consistent DF 
reaction analysis described above, we defined the “consensus” direction of each reaction as 
represented by those shown in the virus-infected group from the majority (>6 out of 12) of the 
datasets, and also similarly for the “consensus” direction of DF for each reaction. The 
consensus directions of reactions and their DF were overlaid onto network diagrams of the 
pathways and visualized, where metabolites are represented by nodes, reactions are 
represented by directed (hyper) edges with edge direction corresponding to the consensus 
reaction direction and edge color corresponding to the consensus DF direction. Parts of the 
metabolic pathways where reactions are not consistently altered across datasets are greyed out 
or removed to increase the clarity. Upon visual inspection, potential futile loops in the network 
are also removed from the visualizations. 

Prediction of anti-SARS-CoV-2 target metabolic reactions with metabolic transformation 
algorithm 

For each of the collected datasets, the DE result of virus-infected vs control samples as 
well as the representative flux distribution of the virus-infected group computed with iMAT 
(Shlomi et al. 2008) followed by ACHR sampling were used as inputs for the GEM-based 
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metabolic transformation algorithm (MTA; Yizhak et al. 2013; a variant called rMTA was used; 
Valcárcel et al. 2019) to predict metabolic reactions whose knock-out can transform cellular 
metabolic state from that of the virus-infected to that of the control samples (full prediction 
results from all datasets in Table S6A). The output of rMTA is a score (rMTA score) for each 
metabolic reaction, with higher scores corresponding to better candidates for achieving the 
metabolic transformation as specified above. From our previous experience (Yizhak et al. 2013), 
the top 10-20% MTA predictions contain promising targets. The human Recon 1 GEM (Duarte 
et al. 2007) was used for the MTA analysis. The rMTA algorithm implemented in our in-house R 
package named gembox was used, with the academic version of IBM ILOG CPLEX 
Optimization Studio 12.10 as the optimization solver. To compare the MTA predictions across 
datasets, the top 10% predictions from each pair of datasets were tested for significant overlap 
using Fisher’s exact tests. 

Validation of the MTA-predicted anti-SARS-CoV-2 metabolic targets 

Multiple datasets of reported anti-SARS-CoV-2 gene targets or drugs identified from 
large-scale chemical or genetic screens were collected to validate our predictions. Gene-level 
results of two published CRISPR-Cas9 genetic screens (Wei et al. 2020 and Daniloski et al. 
2020) were obtained from the supplementary materials of the respective publication. For Wei et 
al., gene hits with FDR<0.1 and mean z score>0 (i.e. KO inhibits the viral infection) were taken; 
Daniloski et al. reported two screens with different multiplicities of infections (MOIs) and 
provided only single-sided FDR, so gene hits with FDR<0.1 from either screen were taken. The 
union set of hits from both studies were used. Lists of experimentally validated drugs reported in 
different studies compiled by Kuleshov et al. 2020 were downloaded from 
https://maayanlab.cloud/covid19/, which are then mapped to the genes they inhibit using data 
from DrugBank v5.1.7 (Wishart et al. 2018). Additionally, host proteins identified to interact with 
SARS-CoV-2 proteins were obtained from the supplementary materials of Gordon et al. 2020 
and Stukalov et al. 2020. The genes from these validation datasets are mapped to metabolic 
reactions wherever applicable based on the human GEM Recon 1 (Duarte et al. 2007) data. 
Then, the significant overlap between the top 10% MTA-predicted targets from each dataset 
and each of the validation sets described above was tested with Fisher’s exact tests on the 
reaction level (full results in Table S6B-D). Reaction-level test is performed because multiple 
reactions can be mapped to the same gene, and performing Fisher’s exact test on the gene-
level fails to consider such multiple mapping and is thus inappropriate. 

For ROC analysis, negative sets (i.e. genes whose KO promotes SARS-CoV-2 infection) 
were defined based on the two CRISPR-Cas9 screens described above. For Wei et al., gene 
with FDR<0.1 and mean z score<0 were taken; since Daniloski et al. provided only single-sided 
FDR, the log fold-change threshold corresponding to the FDR<0.1 cutoff was identified, and 
genes with more extreme log fold-changes in the opposite direction were taken. The union of 
the negative sets from both studies was used. Both the positive (described in the previous 
paragraph) and negative sets of genes are then mapped to metabolic reactions as described 
above. The negative set defined as such contains a relatively balanced number of reactions 
compared to the positive set (131 vs 81). The rMTA score for the reactions produced by MTA 
was used as the predicted value for ROC analysis. The R package pROC (Robin et al. 2011) 
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was used to compute the AUROC values and their 95% confidence intervals (the latter 
computed with bootstrapping). 

Defining and analyzing the consensus set of candidate anti-SARS-CoV-2 metabolic targets 
across datasets 

Based on top 10% MTA predictions from the 12 datasets (6 in vitro and 6 in vivo), the 
metabolic reaction targets that are recurrent in at least 3 of the in vitro datasets, and also in 3 of 
the in vivo datasets (i.e. the intersection of the two) were taken to be the final consensus 
candidate targets with high-confidence support across datasets. These target reactions are also 
mapped to genes using the human GEM Recon 1 data (Duarte et al. 2007), and further mapped 
to known drugs inhibiting the gene targets using data from DrugBank v5.1.7 (Wishart et al. 
2018; target list given in Table S7A). The metabolic pathway enrichment of these targets was 
analyzed with Fisher’s exact tests, with the “subSystems” slot in the metabolic model used as 
pathway annotation. For enrichment analysis of cellular transport reactions by each metabolite 
species, the reactions responsible for transporting each metabolite across the cell membrane 
were identified from Recon 1 and used as reaction sets for the Fisher’s exact tests. 

Preparation of Vero E6 cell samples with SARS-CoV-2 infection and remdesivir treatment, RNA-
sequencing, and gene expression data analysis 

Vero E6 cells (ATCC® CRL-1586™) were maintained in Dulbecco’s modified eagle 
medium (DMEM, Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS, 
Gibco), 50 U ml−1 penicillin, 50 μg ml−1 streptomycin, 1 mM sodium pyruvate (Gibco), 10 mM 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Gibco), and 1× MEM non-essential 
amino acids solution (Gibco). The SARS-CoV-2 USA-WA1/2020 strain was obtained from BEI 
Resources (NR-52281). The virus was inoculated on Vero E6 cells and the cell supernatant was 
collected at 72 h post-inoculation (hpi), when extensive cytopathic effects were observed. The 
supernatant, after clarification by centrifugation 15 min at 4 °C at 5,000 xg, was aliquoted and 
stored at −80�°C until use. 500,000 Vero E6 cells were seeded in 6-well plates. The following 
day, the cell medium was replaced with fresh medium supplemented with either DMSO or 1 µM 
remdesivir (Adooq Bioscience), and cells were either mock-infected or infected with SARS-CoV-
2 USA-WA1/2020 (MOI=0.3). Twenty-four hours after infection, cells were collected, and total 
intracellular RNA was extracted using the Qiagen® RNeasy® Plus Mini Kit. Three replicates 
were performed for each group, resulting in a total of six samples. The quality of the extracted 
RNA was assessed with Agilent® 2100 Bioanalyzer. Libraries were prepared on total RNA 
following ribosome RNA depletion with standard protocol according to Illumina®. Total RNA 
sequencing was then performed on the Illumina® NextSeq system, 150bp paired-end runs were 
performed and 100 million raw reads per sample were generated. STAR (Dobin et al. 2013) was 
used to align the reads to reference genome of the African green monkey (Chlorocebus 
sabaeus, https://useast.ensembl.org/Chlorocebus_sabaeus/Info/Annotation), with the SARS-
CoV-2 genome (https://www.ncbi.nlm.nih.gov/nuccore/NC_045512) added to the reference 
genome. DESeq2 (Love et al. 2014) was used for DE analysis between pairs of experimental 
groups (including virus+remdesivir vs control and virus vs control; DE results in Table S8A). 
GSEA (Subramanian et al. 2005) was performed using the implementation in the R package 
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fgsea (Korotkevich et al. 2019), results are provided in Table S8B. The gene set/pathway 
annotations used were the Reactome (Jassal et al. 2020) and KEGG (Kanehisa et al. 2021) 
subsets from the “Canonical Pathway” category in version 7.0 MSigDB database (Liberzon et al. 
2011). 

Genome-scale metabolic modeling of the remdesivir-treated Vero E6 cell samples and 
prediction of anti-SARS-CoV-2 metabolic targets in combination with remdesivir 

As with the metabolic modeling of the other datasets on SARS-CoV-2 infection, iMAT 
(Shlomi et al. 2008) together with ACHR was used to compute the metabolic flux distribution for 
each of the experimental groups, using the median expression TPM values of each group as the 
input to iMAT. Reactions with differential fluxes (DF) between groups (including virus+remdesivir 
vs control and virus vs control) were identified as described above, and their significant 
metabolic pathway enrichment was tested with Fisher’s exact tests, with pathways defined by 
the “subSystems” from the Recon 1 model (Duarte et al. 2007; results in Table S9). The DE 
result of virus+remdesivir vs control group and the mean flux distribution of the virus+remdesivir 
group computed with iMAT were used as inputs for MTA to predict metabolic reactions whose 
knock-out can further transform the virus+remdesivir metabolic state to the normal control state 
(results in Table S10A). The top 10% and 20% MTA-predicted targets were tested for significant 
enrichment for the targets of a list of experimentally validated synergistic drugs with remdesivir 
(Nguyenla et al. 2020) using Fisher’s exact test (performed on the metabolic reaction level as 
described above). Metabolic pathway enrichment analysis of the top MTA-predicted targets was 
performed as described above (results in Table S10B). 

Notes on statistical analysis and visualization 

R version 3.6.3 was used for all statistical tests. P values lesser than 2.22e-16 may not 
be computed accurately and are reported as “P<2.22e-16” throughout the text. The Benjamini-
Hochberg (BH) method was used for P value adjustment throughout the text. The R packages 
ggplot2 (Wickham 2016), ComplexHeatmap (Gu et al. 2016) and visNetwork (https://cran.r-
project.org/web/packages/visNetwork/index.html) were used to create the visualizations. 

Data and code availability 

The gene expression data analyzed in this study are from published studies, with 
detailed information given in Table 1. The bulk RNA-seq data for SARS-CoV-2 infection in Vero 
E6 cells with remdesivir treatment will be deposited to the GEO database (dataset ID pending). 
The code used for the analyses can be found in the GitHub repository: 
https://github.com/ruppinlab/covid_metabolism. 
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Figure Legends 

Figure 1. Analysis of SARS-CoV-2-induced gene expression changes with 12 published 
datasets. (A) PCA plot using the rank-based inverse normal-transformed differential expression 
(DE) log fold-change values (virus-infected compared to control samples) across all the 
datasets analyzed. (B) Visualization of the overlap of the top significant DE genes (n=400, all at 
least have FDR<0.1) between each pair of datasets analyzed using Fisher’s exact tests 
(Methods). The dot size corresponds to the effect size of the overlap as measured by odds ratio, 
and the color corresponds to the negative log10 adjusted one-sided P value (grey means below 
0.05). (C) Visualization of the overlap of the top significantly enriched pathways (FDR<0.1) from 
the gene set enrichment analysis (GSEA) between each pair of datasets analyzed using 
Fisher’s exact tests (Methods). The meanings of dot size and color are the same as (B), dots 
with black border correspond to infinity odds ratio. (D) A summary visualization of the GSEA 
result for the top consistently altered pathways during SARS-CoV-2 infection across the 
datasets, with more importance given to the various in vivo patient datasets (Methods). The dot 
color corresponds to the negative log10 adjusted P values from GSEA, with two sets of colors 
(red-orange and blue-purple) distinguishing up-regulation from down-regulation (positive or 
negative normalized enrichment scores, i.e. NES); dot size corresponds to the absolute value of 
NES measuring the strength of enrichment. The left and right-hand side blocks represent the 
pathways that tend to be consistently up-regulated and down-regulated in infected vs control 
samples, respectively; within each block, the pathways are ordered by negative sum of log P 
values across datasets (i.e. Fisher’s method). (E) Heatmap summarizing the landscape of 
metabolic pathway alterations (based on gene expression) during SARS-CoV-2 across 
datasets. The heatmap color corresponds to the GSEA NES values (explained above) for 
KEGG metabolic pathways grouped into major categories. Only the metabolic pathways with 
FDR<0.2 enrichment in at least one dataset are included in the heatmap. The dataset labels 
used in this figure correspond to those given in Table 1. 

Figure 2. Genome-scale metabolic modeling (GEM)-based analysis of SARS-CoV-2-
induced metabolic alterations across datasets. GEM was used to compute the metabolic 
fluxes from the gene expression profiles, and reactions with differential fluxes (DF) between the 
SARS-CoV-2-infected and control groups were identified for each dataset (Methods). (A) 
Visualization of the overlap of the top DF reactions between each pair of datasets analyzed 
using Fisher’s exact tests (Methods). The dot size corresponds to the effect size of the overlap 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.27.428543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428543
http://creativecommons.org/licenses/by-nc-nd/4.0/


as measured by odds ratio, and the color corresponds to the negative log10 adjusted one-sided 
P value (grey means below 0.05). (B) A summary visualization of the metabolic pathway 
enrichment result for the top consistent DF reactions across the datasets, with more importance 
given to the various in vivo patient datasets (Methods). Y-axis represents the odds ratio of 
enrichment, the dot color corresponds to the adjusted P value from Fisher’s exact tests, and dot 
size corresponds to the number of enriched reactions within each pathway. Half-dots plotted on 
the top border line correspond to infinity odds ratio values. The pathways on the X-axis are 
ordered by P value and only those with FDR<0.1 are shown. (C) A summary visualization of the 
top metabolites with consistently altered cellular transport patterns during SARS-CoV-2 infection 
across the datasets, with more importance given to the various in vivo patient datasets 
(Methods). The dot color corresponds to the rank biserial correlation (rrb) as one measure of the 
DF effect size, with positive value (red color) corresponding to higher net cellular import from the 
extracellular space or lower net export in infected vs control samples, vice versa for negative 
value (blue color); dot size corresponds to another measure of DF effect size, which is the 
absolute percentage of flux value change relative to the flux in the control group (%dflux; 
Methods). The left-hand side block contains metabolites that tend to show overall higher net 
cellular import (or lower export) in infected vs control samples across many datasets (despite 
the lack of full coherence), vice versa for the right-hand side block. (D-H) Visualization of the 
relatively consistent DF patterns in selected enriched pathways. The metabolic network is based 
on the human GEM Recon 1 (Duarte et al. 2007), and pathways are taken from the 
“subSystems” annotation in the GEM. Metabolites are represented by nodes, reactions are 
represented by directed (hyper) edges, with edge direction corresponding to the consensus 
reaction direction and edge color corresponding to the consensus DF direction across datasets 
(Methods). Red and blue colors correspond to increased and decreased fluxes, respectively; 
grey color corresponds to reactions not showing consistent DF changes across datasets, some 
of such reactions are not shown to increase clarity. (D) Pyrimidine biosynthesis. (E) TCA cycle 
(left-hand side); the right-hand side contains the cytoplasmic counterparts of the TCA cycle 
intermediate metabolites, their interconversion and cytosol-mitochondrial transport. (F) Inositol 
phosphate metabolism. (G) Glycine, serine, and threonine metabolism. (H) Fatty acid 
elongation. Metabolites are labeled by their names in (D,E,G) or IDs from Recon 1 in (F,H), with 
suffixes denoting their cellular compartments: [c] cytosol; [m] mitochondria. The mapping 
between the IDs and metabolite names in (F,H) is given in Table S5D. 

Figure 3. Genome-scale metabolic modeling (GEM)-based prediction of anti-SARS-CoV-2 
targets that act via reversing the virus-induced metabolic alterations. The robust metabolic 
transformation algorithm (rMTA, Valcárcel et al. 2019) was used to predict metabolic reactions 
whose knock-out can reverse the SARS-CoV-2-induced metabolic changes using each of the 
collected datasets (Methods). (A) Visualization of the overlap of the top 10% MTA-predicted 
target reactions between each pair of datasets analyzed using Fisher’s exact tests (Methods). 
The dot size corresponds to the effect size of the overlap as measured by odds ratio, and the 
color corresponds to the negative log10 adjusted one-sided P value (grey means below 0.05). 
(B) A summary visualization of the enrichment of the top 10% MTA-predicted targets from each 
dataset for the antiviral hits (i.e. those whose KO inhibits SARS-CoV-2 infection) identified in the 
two published CRISPR-Cas9 screens (Wei et al. 2020 and Daniloski et al. 2020; Methods). Y-
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axis represents the odds ratio of enrichment, the dot color corresponds to the negative log10 
adjusted one-sided P value from Fisher’s exact tests, and dot size corresponds to the number of 
enriched target reactions. The datasets are ordered by P values, the first 8 datasets have 
FDR<0.1. (C) cases of significant enrichment (FDR<0.1) of top 10% MTA-predicted targets from 
each dataset for the experimentally validated anti-SARS-CoV-2 drug sets from previous studies 
(compiled by Kuleshov et al. 2020). Axes and the meanings of dot color and size are similar to 
(B) but the axes are flipped and the adjusted P values are not log-transformed. Half-dots plotted 
on the top border line correspond to infinity odds ratio values. (D) significant cases of significant 
enrichment (FDR<0.1) of top 10% MTA-predicted targets from each dataset for the host 
proteins involved in host-SARS-CoV-2 protein-protein interactions (from Stukalov et al. 2020; 
data from Gordon et al. 2020 was also analyzed but no significant enrichment was found). Axes 
and the meanings of dot color and size are similar to (C) but raw P values instead of adjusted P 
values are plotted (all the displayed cases have adjusted P=0.08). (E) A summary of the area 
under ROC curve (AUROC) value of the MTA prediction using each dataset, based on positive 
and negative sets (i.e. genes whose KO inhibits or promotes the viral infection, respectively) 
from the two published CRISPR-Cas9 screen data (Wei et al. 2020 and Daniloski et al. 2020; 
Methods). The error bars (vertical lines through the dots) represent 95% confidence intervals. 
(F) Example ROC curves from two of the best-performing datasets. The curves are colored by 
color gradients corresponding to the threshold of top MTA predictions. (G) Summary of the 
metabolic pathways significantly enriched (FDR<0.1) by the final list of consensus candidate 
targets identified across datasets (Methods). Three significant pathways including cellular 
transport were identified (the first three items on the X axis). The rest of the items on the X axis 
are for significant enrichment results (FDR<0.1) by each metabolite species within the cellular 
transport pathway. Y axis and the meanings of dot color and size are similar to (B).  

Figure 4. Analysis of the gene expression and metabolic flux profile of remdesivir 
treatment and prediction of metabolic targets for anti-SARS-CoV-2 in combination with 
remdesivir. (A) PCA plot of the gene expression profiles for the Vero E6 samples from all 
experimental groups: control (no virus or remdesivir treatment), virus (SARS-CoV-2-infected), 
virus+remdesivir (SARS-CoV-2-infected treated by remdesivir), remdesivir (remdesivir treatment 
alone without virus). There are 3 replicates in each group. (B) A visualization of selected 
differentially expressed pathways comparing the virus+remdesivir group to the control group 
using gene set enrichment analysis (GSEA). Y-axis represents normalized enrichment score 
(NES), positive value means higher expression in the virus+remdesivir group compared to 
control, vice versa. Pathways on the X-axis are ordered by their NES values, all pathways 
displayed have adjusted P<0.05; pathways with names in red are those that are not significantly 
different (adjusted P>0.2) when comparing the virus group to the control group using GSEA, i.e. 
changes in these pathways may arise from remdesivir-specific effects. The dot color 
corresponds to the negative log10 adjusted GSEA P value, and dot size corresponds to the 
number of enriched genes (i.e. “leading edge” genes in GSEA). (C) PCA plot of the average 
metabolic flux profile computed using the iMAT algorithm (Shlomi et al. 2008; Methods) 
representative of each of the experimental groups, the labels are the same as (A). (D) A 
visualization of metabolic pathway enrichment result of the differential metabolic fluxes in the 
virus+remdesivir group vs the control group, using Fisher’s exact tests (Methods). Y-axis 
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represents the odds ratio of enrichment, the horizontal dashed line corresponds to odds ratio of 
1. The dot color corresponds to the negative log10 adjusted one-sided P value from Fisher’s 
exact tests, and dot size corresponds to the number of enriched target reactions. The datasets 
are ordered by P values, all pathways displayed have FDR<0.1. (E) The robust metabolic 
transformation algorithm (rMTA, Valcárcel et al. 2019) was used to predict metabolic reactions 
whose knock-out can further transform the metabolic state of the remdesivir-treated SARS-CoV-
2-infected cells back to the normal control state, using the Vero E6 cell samples (Methods). The 
significant metabolic pathways (FDR<0.1) enriched by the top 20% MTA-predicted targets are 
shown. Axes and the meanings of dot color and size are similar to (D). The pathways with 
names in bold text are also significantly enriched (FDR<0.1) by the top 10% MTA-predicted 
targets. 
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