
Maximum likelihood estimation of the geometric1

niche preemption model2

Jan Graffelman1,2,†
3

email: jan.graffelman@upc.edu4

1 Department of Statistics and Operations Research5

Technical University of Catalonia6

2Department of Biostatistics7

University of Washington8

†corresponding author: Carrer Jordi Girona 1-3, 08034 Barcelona, Spain
tel: 00-34-934011739, fax: 00-34-934016575, E-mail: jan.graffelman@upc.edu

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.27.428381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428381
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract9

The geometric series or niche preemption model is an elementary eco-10

logical model in biodiversity studies. The preemption parameter of this11

model is usually estimated by regression or iteratively by using May’s equa-12

tion. This article proposes a maximum likelihood estimator for the niche13

preemption model, assuming a known number of species and multinomial14

sampling. A simulation study shows that the maximum likelihood estimator15

outperforms the classical estimators in this context in terms of bias and pre-16

cision. We obtain the distribution of the maximum likelihood estimator and17

use it to obtain confidence intervals for the preemption parameter and to de-18

velop a preemption t test that can address the hypothesis of equal geometric19

decay in two samples. We illustrate the use of the new estimator with some20

empirical data sets taken from the literature and provide software for its use.21

Key words: geometric series; preemption t test; broken stick model; rank-abundance22

plot; robustness;23

1 Introduction24

The statistical modeling of the relative abundance of a set of species in an ecolog-25

ical community has a longstanding history (Wilson, 1991). Classical elementary26

models are MacArthur’s (1957) broken stick model, Fisher’s (1943) log series, the27

geometric model (Motomura, 1932) and the log-normal model (Preston, 1962).28

Magurran (2004) provides an excellent introduction to these models. Over the last29

decades, many more refined models have been proposed (Tokeshi, 1990, 1996).30

Notwithstanding, the most elementary models such as the broken stick model and31
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the geometric series form important references and are widely applied (Fattorini,32

2005); they are usually the ones that are first fitted before more complicated al-33

ternatives are considered. In this article we focus on the geometric series, also34

known as the niche preemption hypothesis. This model assumes each species suc-35

cesively exploits a fraction k of the available resources, such that the first species36

exploits fraction k of the total resources, the second species fraction k of the re-37

maining 1 − k resources, and so on. The exploited fraction is reflected by the38

relative abundance of the species in the community. Mathematically, the model is39

described by40

ni
N

=
k(1− k)i−1

1− (1− k)S
i = 1, . . . , S, (1)

whereN is the total number of individuals found, S the total number of species, ni41

the abundance of the ith species, and k the niche preemption parameter. In our no-42

tation, we will use n(i) to refer to the ordered abundances, such that n(1) and n(S)43

represent the most and least abundant species respectively. Doi and Mori (2013)44

gives more historical background on the geometric series. Though the geometric45

model is regarded as deterministic (Magurran, 2004), we note that the right hand46

side of Eq. (1) corresponds to the probability function of a truncated geometric dis-47

tribution. This model implies that the logarithm of the relative abundance decays48

linearly with the rank of the species, as illustrated in a logarithmic rank-abundance49

plot in Figure 1 for various values of k.50

The geometric model has been found adequate for species-poor assemblages,51

resource-poor environments (Fattorini, 2005) and has also been advocated for52

ecosystems that suffer from anthropogenic disturbance (Caruso and Migliorini,53
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Figure 1: Rank-abundance plots for varying k of the geometric model with S =
25, with relative scale (panel A) and logarithmic scale (panel B).

2006) or that exhibit strong dominance of a few species (Keeley and Fothering-54

ham, 2003). Several estimators for k have been proposed in the literature. He55

and Tang (2008) used several estimators and observed that they provide similar56

estimates of k. However, a statistical study that compares the different estimators57

assessing their precision and bias seems not available. The main goal of this article58

is to present a new estimator based on maximum likelihood (ML), and to compare59

the different estimators in terms of bias and precision. The structure of the article60

is the following. In Section 2 we review existing estimators for the niche preemp-61

tion parameter, develop the ML estimator and present the preemption t test. In62

Section 3 we compare the different estimators in a simulation study. Section 463

shows some applications using ecological datasets taken from the literature. We64

finish with a discussion of the different estimators.65
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2 Preemption parameter estimation and the preemp-66

tion t test67

We briefly summarise some popular estimators for k, and develop the maximum68

likelihood estimator. May (1975) proposed to estimate k by solving the equation69

n(S)

N
=
k(1− k)(S−1)

1− (1− k)S
. (2)

This result is obtained by applying Eq. (1) to the mininum abundance with rank70

i = S. This equation can easily be solved on a computer by applying an algorithm71

searching for the root of a non-linear equation. He and Tang (2008) used both the72

minimum and maximum abundance, and proposed the estimator73

k̂HT = 1−
(
n(S)

n(1)

)1/(S−1)

, (3)

which follows from the fact that successive abundances have a constant ratio. The74

least-squares regression estimator (He and Tang, 2008), k̂LS , is obtained by noting75

that the logarithm of the relative abundance is linear in the rank i of the species76

with slope b1 = ln (1− k);77

ln
(ni
N

)
= ln

(
k

(1− k)(1− (1− k)S)

)
+ {ln (1− k)}i (4)

By transforming the slope, we have:78

k̂LS = 1− eb1 , (5)

where b1 is the least squares estimator for the slope obtained by simple linear re-79
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gression of yi = ln
(
ni
N

)
on rank i. We note here that k̂May and k̂HT do not assume80

a statistical model for the data, but employ the geometric series in a completely de-81

terministic manner. The geometric series is considered to be a deterministic niche82

apportionment model (Magurran, 2004, p. 47). Consequently, there is no esti-83

mation of a measure of uncertainty for these estimators. The regression estimator84

k̂LS assumes that deviations from geometric decay follow a normal distribution85

and therefore an expression of the uncertainty of the estimate can be obtained by86

back-transforming the limits of the confidence interval for β1:87

CI(k) =
(
1− eb1+tα/2sb1 , 1− eb1−tα/2sb1

)
, (6)

where sb1 is the standard error of the slope, and tα/2 the upper percentile of a88

Student t distribution with S − 2 degrees of freedom. We proceed by developing89

the maximum likelihood estimator. If the number of species S is considered fixed,90

then the data consists of counts in a limited number of S categories, which can be91

probabilisitically modeled by the multinomial distribution, given by.92

L(θ|n) = N !∏S
i=1 ni!

S∏
i=1

θi
ni =

N !∏S
i=1 ni!

S∏
i=1

(
k(1− k)i−1

1− (1− k)S

)ni
. (7)

Under the geometric model, the parameters of this multinomial distribution are93

restricted, such that the parameter θi is given by the truncated geometric distri-94

bution given by the right hand side of Eq. (1). Maximizing the log-likelihood95

analytically, we find no closed form solution for k. The ML estimator k̂ML must96
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be found by numerically solving the equation97

N − k
S∑
i=1

i · ni − (1− k)S
(
N(1 + kS)− k

S∑
i=1

i · ni

)
= 0 (8)

for k. For communities with few dominant species (large k), the last term in98

Eq. (8) will generally be small, and the ML estimator can be approximated, in99

closed form, by100

k̂ML ≈
N∑S

i=1 i · ni
=

n1 + n2 + · · ·+ nS
n1 + 2n2 + 3n3 + · · ·+ SnS

, (9)

which is the total abundance divided by the abundance-weighted sum of the ranks.101

Eq. (9) can be used as initial estimate for the fast resolution of Eq. (8). By devel-102

oping the second derivative of the log-likelihood function, the variance of the ML103

estimator is obtained as104

V
(
k̂ML

)
=

k2(1− k)2C2
k

N(1− 2k)C2
k +NkCk(1− (1− k)S{1 + kS}) +NSk2(1− k)S(Ck − S)

,

(10)

with Ck = 1− (1− k)S , and this variance can be estimated by substituting k̂ for105

k. Because the ML estimator is asymptotically unbiased, efficient, and normally106

distributed (Casella and Berger, 2002, Chapter 10), we can construct a 100(1−α)107

percent confidence interval for k which is given by108

CI(1−α)(k) = k̂ML ± zα/2 ·
√
V
(
k̂ML

)
. (11)

The limits of this confidence interval allow for hypothesis testing with k, and they109

can also be used to show the uncertainty in the estimate of k in a rank-abundance110
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plot (See Figures 3 and 4) by painting a corresponding grey area around the line111

of decay. We study the statistical properties of the new ML estimator and its clas-112

sical counterparts in a simulation study in Section 3.113

114

Many biodiversity studies are of comparative nature. It is often of interest to115

compare two (or more) independent samples with respect to some measure of di-116

versity. Such tests have been developed for the Shannon index (Hutcheson, 1970)117

and for Simpson’s index (Brower et al., 1998), but are apparently not available118

for the preemption parameter of the geometric series. To test the null hypothesis119

k1 = k2 against k1 6= k2, we can use the test statistic120

T =
k̂1 − k̂2√

V
(
k̂1

)
+ V

(
k̂2

) . (12)

The development of this test is analogous to a standard two-sample t test for equal-121

ity of means without assuming equality of variances for the two groups (DeGroot,122

1986), using the Welch modification. Under the null, statistic T follows a student123

t distribution with degrees of freedom (df) given by:124

df =

(
V
(
k̂1

)
+ V

(
k̂2

))2
V
(
k̂1

)2
/N1 + V

(
k̂2

)2
/N2

. (13)

We refer to this test as the preemption t test. Some examples are given in Section 4125

below. In practice, N1 and N2 are large, and the standard normal distribution can126

be used for the calculation of the p-value.127
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3 Monte Carlo simulations128

We simulate species counts by drawing samples from the multinomial distri-129

bution given by Eq. (7), for given N,S and a considering a sequence of val-130

ues (0.1, 0.2, . . . 0.9) for preemption parameter k. We repeat simulations 10,000131

times, computing all four estimators presented in the previous section. Boxplots132

of the values of the estimators obtained in the simulations are shown in Figure 2.133

This figure shows the ML estimator has the smallest variance for all values of k.134

All other estimators typically have more bias than the ML estimator. Table 1 sum-135

marizes the results of the simulation, quantifying bias, variance and mean squared136

error (MSE) for all estimators and different values of k.137
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Figure 2: Monte Carlo simulations for the geometric series. Distribution of the
different estimators for N = 2, 000, S = 25 and various values of k.
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For small value of k (≤ 0.20) the estimators of May, He and Tang, and the regres-138

sion estimator have positive bias, and for larger values they have negative bias.139

Table 1 shows that the ML estimator has the smallest bias, variance and MSE in140

all settings, and is clearly the estimator with the best statistical properties. The141

least-squares estimator has generally less bias than the estimators of May and He142

and Tang. The estimator of May has the largest variance, and also presents more143

outliers. Similar results were obtained for larger and smaller values of N (results144

not shown).145
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k Method mean bias var mse
0.1 ML 0.1007 0.0007 0.00001 0.00001

May 0.1084 0.0084 0.00012 0.00019
HT 0.1063 0.0063 0.00007 0.00011
LS 0.1020 0.0020 0.00002 0.00002

0.2 ML 0.2005 0.0005 0.00002 0.00002
May 0.2156 0.0156 0.00025 0.00049
HT 0.2132 0.0132 0.00018 0.00035
LS 0.2053 0.0053 0.00007 0.00010

0.3 ML 0.3006 0.0006 0.00003 0.00003
May 0.2862 -0.0138 0.00035 0.00054
HT 0.2879 -0.0121 0.00027 0.00041
LS 0.2959 -0.0041 0.00016 0.00018

0.4 ML 0.4005 0.0005 0.00005 0.00005
May 0.3813 -0.0187 0.00068 0.00103
HT 0.3834 -0.0166 0.00053 0.00081
LS 0.3930 -0.0070 0.00031 0.00035

0.5 ML 0.5005 0.0005 0.00006 0.00006
May 0.4792 -0.0208 0.00102 0.00145
HT 0.4814 -0.0186 0.00082 0.00117
LS 0.4907 -0.0093 0.00047 0.00056

0.6 ML 0.6001 0.0001 0.00007 0.00007
May 0.5788 -0.0212 0.00127 0.00172
HT 0.5808 -0.0192 0.00106 0.00143
LS 0.5894 -0.0106 0.00063 0.00074

0.7 ML 0.7002 0.0002 0.00007 0.00007
May 0.6798 -0.0202 0.00137 0.00178
HT 0.6815 -0.0185 0.00117 0.00151
LS 0.6891 -0.0109 0.00072 0.00084

0.8 ML 0.8001 0.0001 0.00006 0.00006
May 0.7829 -0.0171 0.00129 0.00158
HT 0.7841 -0.0159 0.00114 0.00139
LS 0.7895 -0.0105 0.00075 0.00086

0.9 ML 0.9001 0.0001 0.00004 0.00004
May 0.8896 -0.0104 0.00072 0.00083
HT 0.8902 -0.0098 0.00066 0.00076
LS 0.8924 -0.0076 0.00048 0.00054

Table 1: Mean, variance, bias and mean squared error for different estimators of
preemption parameter k.
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4 Analysis of empirical data sets146

In this section we apply the different estimators to some empirical datasets taken147

from the ecological literature. Many data sets are available at the Ecological Reg-148

ister (Alroy, 2015). We use Australian bird abundances (Fattorini, 2005; Magur-149

ran, 1988) and Indian dung beetles (Ganeshaiah et al., 1997; Magurran, 2004) to150

illustrate the difference between estimators of the preemption parameter. We use151

the dung beetle data from Mehrabi et al. (2014) to illustrate the preemption t-test.152

4.1 Australian bird abundances153

The abundances of S = 31 bird species in wet sclerophyll forest, totalling N =154

834 individuals were recorded. Figure 3 shows the rank-abuance plot of this data,155

with a fitted line for each of the four estimators discussed in Section 2. The numer-156

ical estimates of the preemption parameter are very similar for all four estimators157

(See Table 2) and by visual inspection the geometric model is seen to fit the data158

very well. The grey zone in the plot is determined by the confidence limits for the159

ML estimator. All other estimators give values inside this confidence interval, and160

can be considered not to differ significantly from the ML estimate.

Estimator k̂ se 95% CI
May 0.149 - -
HT 0.146 - -
LS 0.142 - (0.136, 0.148)
ML 0.143 0.0051 (0.133, 0.153)

Table 2: Estimates of the preemption parameter for the Australian bird data ac-
cording to different methods (se = standard error, CI = confidence interval).

161
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Figure 3: Rank-abundance plot of Australian birds in wet sclerophyll forest. Fitted
lines represent geometric models estimated by maximum likelihood (ML), May’s
equation (May), He-Tang’s estimator and least-squares regression (LS).

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.27.428381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428381
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.2 Indian dung beetles162

Figure 4 shows the rank-abundance plot of the Indian dung beetle data. Note that163

there is a considerable difference between May’s classical estimator and the ML164

estimate. The ML estimator is 31% larger. Expected relative frequencies (in the165

log scale) have been calculated and plotted in Figure 4 to show the fit of all es-166

timators. This shows May’s estimator underestimates the frequency of the most167

abundant beetle, and overestimates the frequencies of almost all other species.168

The ML estimator fits the abundant species much better and is seen to underesti-169

mate the rare species. The values of the different estimators are given in Table 3.170

We note that May’s classical estimator, He-Tang’s estimator and the regression171

estimator are all outside the confidence interval of the ML estimator. There is172

clearly a significant difference between the ML estimator and its alternatives, the173

ML estimator suggesting a stronger decay.174
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Figure 4: Rank-abundance plot of Indian dung beetles. Lines represent geometric
decay according to four different estimators. Grey areas indicate the confidence
regions for the ML and LS estimators.
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Estimator k̂ se 95% CI
May 0.312 - -
HT 0.334 - -
LS 0.325 - (0.296, 0.353)
ML 0.407 0.0076 (0.392, 0.422)

Table 3: Estimates of the preemption parameter for the Indian dung beetles ac-
cording to different methods.

4.3 Preemption t test with Costa Rican dung beetles175

Mehrabi et al. (2014) performed a comparitive biodiversity study, where the counts176

of dung beetles, an important indicator taxon, were registered along eight tran-177

sects under two conditions, micro-habitat standardized placement (treatment) and178

random placement (control) of baited traps. We use the transect level counts ob-179

tained by summing over traps sampled under the same condition. It is of interest180

two compare estimates of diversity parameters under the two conditions. Figure 5181

shows the rank-abundance plots for the eight transects where the preemption pa-182

rameter has been estimated for both conditions. Table 4 shows the ML estimates183

of the preemption parameter, and the results of the preemption t test described in184

Section 2. Figure 5 shows overlapping confidence intervals for transect pairs C-D,185

I-J, K-L and M-N. The preemption t test results in Table 4 show non-significant186

differences and overlapping confidence intervals for the first three of these, and187

a borderline p-value for transect M-N. All other transect pairs have very small188

p-values, indicating signigicant differences in the preemption parameter for the189

two conditions. For these transects, the ML estimator gives a faster decay for the190

control transects. This corroborates the finding of Mehrabi et al. (2014) that the191

micro-habitat standardized transects were more diverse.192
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Transects k̂1 CI(k1) k̂2 CI(k2) T p-value
A-B 0.715 (0.697 , 0.732) 0.644 (0.626 , 0.662) 5.480 0.000
C-D 0.623 (0.601 , 0.644) 0.615 (0.587 , 0.643) 0.414 0.679
E-F 0.508 (0.490 , 0.527) 0.457 (0.441 , 0.473) 4.113 0.000
G-H 0.525 (0.506 , 0.544) 0.456 (0.437 , 0.475) 5.012 0.000
I-J 0.391 (0.373 , 0.409) 0.400 (0.384 , 0.416) -0.704 0.481
K-L 0.480 (0.453 , 0.507) 0.471 (0.444 , 0.498) 0.475 0.635
M-N 0.464 (0.434 , 0.494) 0.423 (0.394 , 0.451) 1.979 0.048
O-P 0.559 (0.536 , 0.582) 0.424 (0.402 , 0.446) 8.256 0.000

Table 4: ML estimates (k̂1, k̂2) of preemption parameter k for eight pairs of tran-
sects under two conditions, T -statistic and p-value of a preemption t-test.
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5 Conclusions and discussion193

We have developed a maximum likelihood estimator for the niche preemption pa-194

rameter of the geometric model. In this work, we assume the number of species195

S to be known, such that multinomial sampling with a fixed number of categories196

applies. In empirical studies, fixing S maybe reasonable if the community of197

interest has been exhaustively surveyed, and the number of species is known in198

advance. The geometric model has been found adequate for species-poor com-199

munities (Magurran, 2004) such as those in process of colonization (He and Tang,200

2008). In such circumstances, the number of competing species may indeed very201

well be known, and fixing S then seems reasonable. Importantly, in such a de-202

sign, zero abundances are admitted, because not all species are observed, due to203

the fact that some are rare, or not present in the sample by mere chance. The204

proposed ML estimator can deal with zeros, as the latter arise naturally under the205

multinomial distribution. May’s classical estimator cannot cope with zeros, as206

these lead to k = 0 or k = 1. He and Tang’s estimator can neither be used, be-207

cause it will always produce k = 1 if a zero is present. Estimation by regression208

with log transformed relative abundances neither works for giving ln (0) = −∞209

for zero counts. Indeed, to sensibly apply all the classical estimators, zeros must210

first be discarded, and S reduced correspondingly. For the ML estimator, zeros211

are unproblematic. The approximate form (Eq. (9)) gives the same estimate with212

and without zeros, and the exact form (Eq. (8)) typically shows only minor vari-213

ation due to different S under removal or inclusion of zeros. In future work, the214

maximum likelihood approach presented here could be extended to the double ge-215

ometric model from Alroy (2015).216
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217

In comparative biodiversity studies, multiple samples of similar communities are218

often obtained. In order to sensibly do so, the same set of species is typically de-219

termined for all samples. It easily occurs that some of the rarer species are absent220

in some of the sampled sites. In order to apply the classical estimators, the zeros221

must be discarded, and consequently S starts to vary over the samples. To keep222

the same S constant, one can subset the analysis to those species that appear in223

all samples, but this obviously entails a loss of information. The ML estimator224

is based on the multinomial distribution and admits zeros, neatly avoiding these225

problems.226

227

The least-squares regression estimator (He and Tang, 2008; Caruso and Miglior-228

ini, 2006; Fattorini, 2005) is popular, and intuitively appealing, but it suffers from229

certain inconsistencies. Importantly, the geometric model has, for given N and230

S, only one parameter, the preemption parameter k. However, linear regression231

estimates two parameters, slope β1 and intercept β0. Eq. (5) estimates k from the232

slope, but that may be considered arbitary. Because β0 also depends on k (see233

Eq. (4)), an alternative estimator for k, which will typically give a different point234

estimate, can be obtained from the intercept. Drawing a standard least-squares235

regression line with intercept b0 and slope b1 in the rank-abundance plot will often236

give a line that visually fits the data well, but it amounts to overfitting because237

the model of interest has in fact only one parameter. May’s, He-Tang’s and the238

proposed ML estimator are more coherent for estimating a single parameter.239

240

We also note that the line fitted by May’s methods always passes through241

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.27.428381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428381
http://creativecommons.org/licenses/by-nc-nd/4.0/


(S, ln
(
n(S)/N

)
), thereby always artifically fitting the most rare species without242

error. Consequently, May’s method capitalizes on the rare species. The prob-243

abilities of occurrence of the rare species are poorly estimated, because only a244

few individuals of them have been observed. Describing the geometric decay245

with an ordinary least squares regression (Eq. (4)) gives the same weight to246

highly abundance species whose proportion is determined with small relative247

error as to rare species whose proportion is determined with high relative error,248

and that looks at least questionable. The proposed ML estimator capitalizes on249

the abundant species and is less affected by the rare ones. The ML estimator250

therefore focusses on those measurements that have less relative error, which251

is a desirable property. If one singleton of an additional species is found, the252

numerator of Eq. (9) increases by 1 and the denominator by S + 1, which will in253

general hardly affect the ML estimate of k, showing clearly its robustness to the254

inclusion or deletion of some rare species.255

256

There are many ecological studies in which the preemption parameter of the ge-257

ometric series is estimated and reported, but a quantification of the uncertainty in258

the estimate is almost never given. The derivation of the ML estimator and its dis-259

tribution in this article enable, by means of confidence intervals, the expression of260

the uncertainty in the estimation of the preemption parameter, and the comparison261

of such estimates by means of the preeemption t test.262
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6 Software263

An R package (R Development Core Team, 2004) named MLpreemption has264

been written providing functions for estimation of the preemption parameter by265

maximum likelihood and other methods. The package also includes the preemp-266

tion t test and the datasets analysed in this paper, and is available on CRAN and267

on the author’s homepage.268
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