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1 Introduction  

LC-MS is the leading technique to measure the cellular proteome.          
LC-MS is routinely performed as tandem-MS, as this procedure allows          
in-depth identification of the proteome, and delivers information such as          
sequence and post-translational modifications based on a database search         
of the secondary mass spectra (MS2)1. When analyzing tandem-MS data,          
the full information of primary peptide mass spectra (MS1) and MS2 is            
mostly simplified, and no current pipeline converts the full wealth of           
data into a format amenable for ML. In addition, the plethora of publicly             
available MS data is a mostly untapped resource for advanced ML           
techniques. It is thus desirable to establish a connection between          
available LC-MS data and ML applications in order to unravel any latent            
but biologically or technically relevant information. Advanced ML        
methods like deep learning models have shown great potential to predict           
peptide features of different charge states, as well as estimate their           
intensity2, tumor classification using imaging mass spectrometry3 and        
peptide MS2 spectra prediction4. 
To address the issue of data connectivity, we created MS2AI, a pipeline            
ensuring that advanced ML techniques are applicable to large scale MS           
data. This is done by standardizing heterogeneous data resources for          
reliable repurposing, and further enrichment with experimental and        

peptide-centric metadata. MS2AI solves the fundamental challenges of        
ML in MS suffering from the lack of convenient acquisition of           
large-scale training and test data. MS2AI automatically extracts        
compatible entries (analyzed with MaxQuant) from the largest public         
repository of LC-MS data, PRIDE5, and stores these in an homogenous           
and ML ready standardized format.  

2 Methods 
2.1 Automated data retrieval 
MS2AI fetches metadata from all ~12.000 PRIDE projects using the          
PRIDE API and stores it in a MongoDB collection. These projects can            
be filtered according to specific metadata entries (see supplementary         
paper table 1). For convenience, MS2AI contains a complete database          
collection of PRIDE project metadata (as of January 202) that is easily            
updatable to include newer projects. 
Currently, MS2AI can only process projects that come with peptide          
identifications from the MaxQuant suite, which is the predominantly         
used software for bottom-up proteomics. This information yields details         
about peptide identity and quantification, such as the peptide location,          
sequence, intensity and modifications. By restricting the database to         
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MaxQuant identifications, MS2AI ensures a more homogenous       
identification and extraction of peptides across all projects and their raw           
data files. 
Based on the PRIDE metadata file, which is automatically filtered with           
regards to MaxQuant analysis and user-specified requirements, MS2AI        
retrieves the MaxQuant output files, along with the corresponding raw          
files from the PRIDE database. These raw files are in a proprietary file             
format used by the majority of MS instruments in PRIDE, and contain            
information from the data acquisition process, most notably the objects          
in the m/z–retention time–intensity space6. 
The following data transformations are executed after raw file download;          
(1) conversion of raw files into the community standard mzML data           
format using the ThermoRawFileParser7, and (2) further extraction from         
the mzML file, including all MS2 spectra, and values in the           
m/z–retention time–intensity space from the MS1 spectra. The output of          
the processed raw files are stored in the local data directory, while the             
raw files themselves are discarded (see supplementary data for file          
storage structure). 
Along with the automatic PRIDE data retrieval, MS2AI also allows for           
the extraction of local in-house data. This requires the MaxQuant and           
corresponding raw file(s) to be available to the software. The key steps            
of the extraction are identical to the steps taken during the PRIDE            
method. The user has the possibility to provide additional metadata to           
their local data comparable to the metadata (instrument, modifications,         
etc.) available on PRIDE to seamlessly integrate local and         
PRIDE-received data.  
 
2.2 Peptide representation 
From the extracted information described in section 2.1, we are able to            
create a run representation (RR) of the entire LC-MS run (see figure 1).             
However, due to the sheer amount of m/z and retention time entries in             
the LC-MS spectra, data reduction is paramount, as LC-MS base          
resolution would make ML methods insurmountably computationally       
challenging (see supplementary data Figure 6). The user can freely          
define the range of m/z and retention time to be summarized into a single              
data point of the RR; the smaller the range in both m/z and retention              
time, the less data loss will occur, at the expense of increased data size.              
This increase in size has an effect on both storage space and the runtime              
of any future ML applications (see supplementary data section 6). To           
account for the inevitable data-loss on the RR, we have constructed a            
4-channel data representation of the MS1 spectra consisting of: (1) mean           
value of all summarized data-points, (2) minimum value of all          
summarized data-points, (3) maximum value of all summarized        
data-points, (4) absolute number of summarized data-points. To avoid         
unwanted bias in the intensities, all intensities in a single raw file are             
normalized based on the highest value in the individual raw file. The            
peptide representation (PR) consisting of the peptide and the         
neighbourhood, which size is configurable, are drawn directly from RR,          
along with the MS2 spectra for the corresponding peptide.  
The MS2 information is either extracted exactly as represented in the           
mzML file (with differing length of m/z-intensity space), or in a binned            
fashion, to ensure equal length and homogeneity between spectra. The          
m/z bin-size of MS2 can be calculated in two methods; fixed length (e.g             
500 bin in 0-2500 m/z) or in a variable length (e.g. 500 bins in              
0-precursor m/z). Furthermore, intensity information of bins can be kept          
as the mean of normalized values, or dichotomized indicating whether or           
not a peak exists in the binned area. All of these options give users full               
flexibility to adjust the PR to their specifications. 
Each PR is accompanied by all relevant information from the MaxQuant           
output file, which is appended to a MongoDB collection for machine           
learning purposes. This collection can then be filtered and sorted to help            
transitioning into any ML application, by changing or removing entries          
based on needs. 
 
 
2.3 Machine learning applications 
The MS2AI PR is well suited for a multitude of ML applications, as it              
delivers homogenous data representations of heterogeneous MS       
experiments. The generation of PRs, along with the metadata         
accompanying each of the peptide data, trivialize the task of getting from            
unsuitable raw data to ML ready peptide information files. 
MS2AI also includes a functional convolutional neural network that uses          
a tailored data generator for TensorFlow8, allowing easy integration of          

the 4-channel images along with m/z and rt information from MS1 and            
the MS2 spectra. In order to demonstrate the utility of MS2AI, we            
trained and tested a simple neural network (see supplementary         
information Figure 6) on ~200.000 PRs from 307 different projects          
(filtered from ~69.000.000 total PRs with 98th percentile score filter)          
separated into peptides with an oxidation on methionine, and peptides          
without an oxidation on methionine. We then trained and tested whether           
the network could, using MS1 and MS2 information, distinguish the two           
classes. Doing this we obtained 95% training accuracy and 93%          
validation accuracy along with 85% test accuracy on a different set of            
PRIDE projects consisting of 25.000 PRs; entire projects from which          
none of the data were not used for training or validation. This separation             
of training and test data causes highest possible heterogeneity between          
data points and robustness in the neural network capabilities (see          
supplementary information section 5). 
 

3 Conclusion 
MS2AI is the first automated pipeline for strategic and large scale           
extraction and processing of LC-MS experiments that allows hassle-free         
and powerful ML applications in the realm of computational proteomics. 
By combining the measurements in the multidimensional area around a          
peak on the m/z–retention time–intensity space with the fragmentation         
MS2 spectra. MS2AI also offers unique concise peptide data         
representation that contain the most vital MS1 and MS2 information to           
describe a given peptide; m/z values, retention times and measured          
intensities. This PR is highly customizable and thus enables researchers          
to summarize peptide information in accordance to specific needs, along          
with a comprehensive database structure of known information on the          
peptides gathered from MaxQuant. 
In general MS2AI will allow powerful applications of ML techniques          
performed in the field of MS, opening the door for more in-depth            
analysis of the proteome, as demonstrated by our example network          
identifying peptide modifications. 

Figures 

Figure 1. Pipeline structure and workflow, with legends explaining 
what files are transferred to future parts of the workflow, and a 
large scale image of the data representation of MS1 data. 
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