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Computational models for drug sensitivity prediction have the
potential to revolutionise personalized cancer medicine. Drug
sensitivity assays, as well as profiling of cancer cell lines and
drugs becomes increasingly available for training such models.
Machine learning methods for drug sensitivity prediction must
be optimized for: (i) leveraging the wealth of information about
both cancer cell lines and drugs, (ii) predictive performance and
(iii) interpretability. Multiple methods were proposed for pre-
dicting drug sensitivity from cancer cell line features, some in
a multi-task fashion. So far, no such model leveraged drug in-
hibition profiles. Recent neural network-based recommender
systems arise as models capable of predicting cancer cell line
response to drugs from their biological features with high pre-
diction accuracy. These models, however, require a tailored ap-
proach to model interpretability. In this work, we develop a
neural network recommender system for kinase inhibitor sen-
sitivity prediction called DEERS. The model utilizes molecu-
lar features of the cancer cell lines and kinase inhibition pro-
files of the drugs. DEERS incorporates two autoencoders to
project cell line and drug features into 10-dimensional hidden
representations and a feed-forward neural network to combine
them into response prediction. We propose a novel model in-
terpretability approach offering the widest possible assessment
of the specific genes and biological processes that underlie the
action of the drugs on the cell lines. The approach considers
also such genes and processes that were not included in the set
of modeled features. Our approach outperforms simpler ma-
trix factorization models, achieving R=0.82 correlation between
true and predicted response for the unseen cell lines. Using
the interpretability analysis, we evaluate correlation of all hu-
man genes with each of the hidden cell line dimensions. Subse-
quently, we identify 67 biological processes associated with these
dimensions. Combined with drug response data, these associ-
ations point at the processes that drive the cell line sensitivity
to particular compounds. Detailed case studies are shown for
PHA-793887, XMD14-99 and Dabrafenib. Our framework pro-
vides an expressive, multitask neural network model with a cus-
tom interpretability approach for inferring underlying biologi-
cal factors and explaining cancer cell response to drugs.
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Background
Matching the optimal drugs for individual cancer patients re-
mains a crucial problem of precision medicine (1). Drug sen-
sitivity data from cancer models are frequently generated to

provide the basis for the discovery of molecular markers to
predict drug efficacy. To predict the response of a specific
cell line to a specific drug, there is a need of computational
models that can leverage the abundance of information about
drugs and cancer cell lines.
Strongly parallelized assay formats provide a variety of data
that can be used to comprehensively describe the character-
istics of both cancer cell lines and drugs (2–6). Despite their
drawbacks (7–11), multi-omics cell line data can provide im-
portant insights about the molecular mechanisms underlying
susceptibility to distinct drugs. Arguably, the subclass of ki-
nase inhibitor drugs is best characterized by their kinase in-
hibition profiles, which, apart from the intended on-targets,
manifest also off-target effects. Despite their frequent use
during the early phases of drug development, when inhibitory
profiles of kinase inhibitors are optimized, to our knowledge
such data has not been used for modelling of drug response.
Computational drug sensitivity prediction has been ap-
proached by many machine learning methodologies (12–14),
ranging from traditional algorithms (15–18) to models based
on neural networks and deep learning (19–24).
The problem of drug sensitivity prediction can be stated as a
recommendation problem, where cancer cell lines and drugs
are analogous to users and items, respectively. The goal is
to recommend the best drug for a given cell line. One of
the most popular recommender system techniques is matrix
factorization (MF), where the user-item interaction matrix is
decomposed into a product of two lower-dimensional rectan-
gular matrices. The problem of so called matrix factoriza-
tion with side information incorporates features of users and
items in the factorization process. The simplest approach to
such MF problems involves linear projection of the features
to lower-dimensional hidden space, followed by computing
the dot product between corresponding user and item hid-
den representations in order to obtain user-item interaction
prediction (25–27). Recently, this approach has been modi-
fied by introducing non-linearity in the projection step, where
the projections are computed by neural networks or autoen-
coders, but the corresponding hidden representations are still
connected via a dot product in the linear fashion. Dot prod-
uct, however, as a simple linear function, has a limited abil-
ity to capture the complex user-item interactions in the hid-
den space. To address this issue, deep neural networks have
been proposed to replace the dot product for modeling the
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user-item interactions in the latent space (28, 29). Since neu-
ral networks are known as the universal approximators (30),
they are expected to be more suitable to learn complex rela-
tionships between the hidden representations of the users and
items and the response variable.

While the neural-network based models are more expressive,
previous analyses point out that the deep learning models
do not necessarily outperform simpler models when the lat-
ter are finely tuned, and that some published neural network
model results are hard to reproduce (31). Moreover, deep
neural networks have a reputation of being difficult to inter-
pret due to their non-linearity and complex structure. The
majority of so called explainable artificial intelligence meth-
ods focus on finding attributions between specific neurons in
the network by analyzing the underlying gradient flow (32–
35). Although useful, these methods provide rather standard
utilities (e.g. feature importances), often available also for
traditional machine learning models. Moreover, the insights
derived from such interpretability approaches are limited by
the features chosen for training the model.

We argue that a desired recommender system for the prob-
lem of drug sensitivity prediction should satisfy several ob-
jectives. First, it should solve a multi-task learning problem,
i.e. model multiple drugs and cell lines simultaneously. This
allows to capture general mechanisms driving the drug-cell
lines interactions. Second, it should achieve state-of-the art
predictive performance, especially in the task of predicting
drug sensitivities for new cell lines. This is due to the fact
that in this setting, the new cell line mimics a new patient,
and the recommendation problem corresponds to identifying
the best therapy for that patient. Finally, the model should
be interpretable. Specifically, the model should explain the
rationale behind its predictions and provide biological and
pharmacological insights regarding the mechanism underly-
ing the drugs-cell lines interactions. The emphasis on model
interpretability is crucial in the context of its potential clinical
applications.

To address these objectives, we develop a recommender sys-
tem model for drug sensitivity prediction, called DEERS
(Drug Efficacy Estimation Recommender System). DEERS
incorporates two autoencoders to project the drug and cell
line features, respectively, into lower dimensional represen-
tations, and uses a feed forward network to predict the sen-
sitivities of the cell lines to the drugs based on their hidden
representations. The proposed framework brings several ad-
vantages. First, the model solves a multi-drug and multi-cell
line sensitivity learning problem and utilizes cell lines bio-
logical data and drugs inhibition profiles as side information
(Fig. 1a,b). Second, the model is highly predictive. In a com-
parative analysis, DEERS outperforms two other MF-based
recommender system models, and achieves similarly good
results to the best performing state-of-the art XGBoost algo-
rithm. Third, we provide an approach for model interpretabil-
ity, on two levels: i) meaningful drug and cell line feature
representation learning, and ii) explaining the cell line sen-
sitivities to drugs in terms of the underlying biological pro-
cesses.

The crucial aspect of the proposed interpretability approach
is that it offers the widest possible assessment of the spe-
cific genes and biological processes that underlie the action
of the drugs on the cell lines. The novelty of this approach
stems from the fact that it considers also such genes and pro-
cesses that were not included in the set of modeled features.
Using the interpretablity approach, we demonstrate that the
low-dimensional representations of the model capture the
high dimensional features of drugs or cell lines, specifically
the molecular patterns of cell lines and drug inhibition pro-
files that govern the response of distinct cell lines to drugs
(Fig. 1c). Finally, we find the relationships between drug re-
sponse and biological processes of cell lines (Fig. 1d).

Methods
Analyzed data. The analyzed dataset comprised measure-
ments of drug sensitivity of cell lines using viability assays
for a total of 922 cell lines and 74 drugs, corresponding to
52,730 drug-cell line pairs. The sensitivity measurements
were acquired from the Genomics of Drug Sensitivity in Can-
cer (GDSC) (3) database. GDSC provides two sensitivity
measurements, summarizing the dose-response curve: area
under the curve (AUC) and log half maximal inhibitory con-
centration (IC50), defined as a drug concentration needed to
reduce cell viability by 50%. Both sensitivity metrics were
used to train and assess the performance of the presented
models. Drug sensitivity of a cell line is the prediction tar-
get of our modeling approach.
The group of 74 drugs selected for modeling consisted ex-
clusively of kinase inhibitors. The drugs in this group dif-
fer from other cancer drugs by their mode of action. Data
to characterize the 74 kinase inhibitors were extracted from
the HMS LINCS KINOMEscan data resource (36). The fea-
tures set of these drugs consisted of binding strength across
a panel 294 protein kinases (Fig. 1a). The value for a given
compound-kinase pair represents a percent of control, where
a 100% result means no inhibition of kinase binding to the
ligand in the presence of the compound, and where low per-
cent results mean strong inhibition (37, 38). The data was
acquired for those 74 drugs which were also present in the
GDSC database, yielding a final drug characterization matrix
for 74 drugs and 294 protein kinases.
Data to characterize the 922 cell lines were downloaded from
the GDSC. For the molecular features of the cell lines, we
considered only the genes coding for kinases present in KI-
NOMEscan dataset, as well as any putative gene targets of
all considered compounds. This resulted in the set of 202
genes, for which mRNA expression levels (202 features) and
binary mutation calls (21 features) were extracted for all
cell lines. Furthermore, the dummy-encoded tissue type was
added, producing additional 18 binary features, yielding the
final set of 241 biological features for 922 cell lines (Fig. 1a).

DEERS: a deep neural network model of drug sensi-
tivity accounting for inhibition of protein kinases by
drugs and cancer cell line features. The goal of the pro-
posed model is to predict a response of a given cell line to
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a given drug, i.e. estimate the corresponding AUC or IC50
value, given the drug and cell line feature representations
(Fig. 1a). The final prediction is computed in two steps: first,
we compute lower-dimensional representations of the consid-
ered drug and cell line, and second, the representations are
combined, in order to make the sensitivity estimation. This
problem can be viewed as a matrix factorization task, where
every element of the target matrix y(i,j) is modeled as some
form of a transformation of the corresponding hidden repre-
sentations of the drug and cell line (Fig. 1a).
DEERS is a deep neural network-based recommender sys-
tem. It consists of three major parts: drug autoencoder, cell
line autoencoder and the subsequent feed-forward neural net-
work. (Fig. 1b) (39, 40). The two autoencoder networks have
the same architecture, with one 128-dimensional hidden layer
in both encoder and the decoder with the rectified linear unit
(ReLU) activation function, and the 10-dimensional hidden
representation layer. The subsequent feed-forward network
consists of a 20-dimensional input layer, followed by two
hidden layers of length 512 and 256 with the ReLU activa-
tion. The regularization of the system is incorporated via
the dropout with 0.5 probability, applied in the first, 512-
dimensional hidden layer of the feed-forward network.
Consider a training data point consisting of original drug i
and cell line j feature vector representations along with the
corresponding response value, (xD(i),xC (j),y(i,j)). The in-
put training data vectors are first passed into drug and cell line
autoencoders, producing reduced, 10-dimensional vector rep-
resentations (the hidden representations) (zD(i),zC (j)) and

reconstructed inputs (x′
D

(i)
,x′
C

(j)
) (Fig. 1b). The hidden

representations zD(i) and zC (j) are then concatenated, form-
ing a 20-dimensional vector, which serves as an input for the
subsequent feed-forward neural network, which in turn com-
putes the final response estimate ŷ(i,j) (Fig. 1b).
DEERS has three outputs and three main optimization goals:

minimizing the differences between xD(i) and x′
D

(i)
, mini-

mizing the differences between xC (j) and x′
C

(j)
, and mini-

mizing the errors between y(i,j) and ŷ(i,j). The incorporation
of reconstruction errors causes the network to find informa-
tive representations of the input drug and cell line features. In
addition, it is desired for the hidden dimensions to be inde-
pendent. This enables the hidden representations to capture
more information about the full input data and facilitates eas-
ier interpretations of the hidden dimensions. In the proposed
model, it is achieved by minimizing the squared values in the
off-diagonal entries of the drugs and cell lines covariance ma-
trices in the latent space. All of the described optimization
tasks are captured by a single cost function, which is itera-
tively minimized for each training batch to train the model:

J(W ) = MSE(y− ŷ)

+ rD · MSE(XD −X
′
D)+ rC · MSE(XC −X

′
C)

+d ·
∑

m,n,m 6=n
(KD[m,n])2 +d ·

∑
m,n,m 6=n

(KC [m,n])2,

(1)

where J is the cost function, MSE denotes mean squared er-
ror, W is a set of the model parameters (weights), rD is the
real-valued weight of the drugs reconstruction error, XD is
the drugs data matrix in the training batch, X

′
D is the drugs

data reconstruction matrix in the batch, rC is a real-valued
weight of the cell lines reconstruction error, XC is the cell
lines data matrix in the batch, X

′
C is the cell lines data recon-

struction matrix in the batch, d is a weight of the dependence
penalty, KD is the covariance matrix of drugs hidden repre-
sentations in the batch, and KC is the covariance matrix of
cell lines hidden representations in the batch, and K[m,n]
denotes the m,n-th entry of matrix K.
Intuitively, the cost function weights rD, rC and d control the
contribution of the particular optimization task in the general
optimization goal of the system. Setting all of these weights
to zero would result in a network without decoding tasks and
no dependence restrictions on the hidden dimensions of the
drugs and cell lines.

Compared models. We compare the proposed model to
four other methods; two of which are based on traditional
machine learning algorithms, while the other two are forms
of matrix factorization.
In order to evaluate the traditional methods in a multi-task
setting, where the data for all drugs and all cell lines are
modeled at once, the traditional methods are used to predict
drug response for the union of drugs and cell lines features.
To this end, for every data point (xD(i),xC (j),y(i,j)), we
first concatenate vectors xD

(i) and xC
(j), forming one 535-

dimensional vector per drug-cell line pair. Applying this to
all available data points produces a 52730 × 535 input data
matrix X and the corresponding 52730-dimensional vector
with true response values y. This data is used to train and
evaluate two common machine learning algorithms: Elastic
net (41) and XGBoost (42). The former is a linear model and
the latter is a more complex, nonlinear model.
The compared matrix factorization models aim at solving a
similar matrix-factorization type of problem (Fig. 1a) and can
be seen as simpler or reduced versions of the proposed model.
The first is a basic matrix factorization with side information
method, reducing the dimension of the additional informa-
tion about both drugs and cell lines using linear projections,
and applying a dot product to produce the prediction of the
response variable (here, the sensitivity of cell lines to drugs).
We refer to this model as Lin MF (Fig. S1a). The basic ar-
chitecture of this model is the same as the model applied by
Yang et al. (26).
The second of the compared matrix factorization-based mod-
els is an non-linear extension of the basic model, where the
dimensionality reduction is performed via one-layered au-
toencoders and data reconstruction is also taken into consid-
eration (Fig. S1b). Similarly as in Lin MF, the final pre-
diction is obtained by taking the dot product of the corre-
sponding hidden representations, in contrast to the proposed
DEERS model, where a separate feed-forward network is
used to obtain the response estimate (Fig. 1b). We refer to
this model as Autoen MF. To estimate the parameters of both
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Lin MF and Autoen MF we use gradient descent optimization
implemented in Adam optimizer (43).

Experimental setup and model training. In order to as-
sess the performance of the considered models on the unseen
cell lines, we construct the validation and test sets by first ran-
domly selecting two sets of 100 unique cell lines each. We
then extract the data points containing selected cell lines, pro-
ducing the validation and test sets with ∼ 5000 drug-cell line
pairs each. The rest of the pairs corresponding to the remain-
ing 722 unique cell lines (with ∼ 42,000 pairs) constitute the
training set.
Before the training, the input cell line data were preprocessed
by standard scaling of the continuous gene expression data
so that every feature has zero mean and unit standard devia-
tion, while binary coding variants and dummy encoded tissue
types were unmodified. For the input drug data, all features
were standardized in the same way as the gene expression.
Since the GDSC AUC values are in the range of [0, 1], they
were not scaled, while the log IC50 values were linearly pre-
processed with min-max scaler to the [0, 1] range. Notably,
all values necessary to perform each of the applied prepro-
cessing schemes were calculated only on the training set and
applied to the validation and test sets.
We use the training and validation sets in order to find the
optimal set of hyperparameters, consisting of: network ar-
chitecture, cost function weights rD, rC and d, regulariza-
tion type and learning rate. We establish the DEERS ar-
chitecture as consisting of two-layer autoencoders, with 10-
dimensional hidden representations (Fig. 1b). The subse-
quent feed-forward network has two hidden layers of size
512 and 256. The optimal cost function weights were set to
rd = 0.1, rC = 0.25 and d = 0.1. As a regularization type, we
use combination of dropout applied in the first hidden layer of
the feed-forward network (Fig. 1b) and early stopping. With
these hyperparameters fixed, for every split of the data (into
the training, validation and test sets) we tune the learning rate,
dropout rate and number of epochs for early stopping.
After all parameters are found, we use them to train the model
using the union of training and validation sets, and apply the
resulting model to the test set in order to assess the perfor-
mance. We repeat this procedure five times with different cell
lines in training, validation and test sets in order to improve
the robustness of the results.
We adopt the similar methodology for the compared models,
where we first tune the hyperparameters using training and
validation sets, and then apply the final retrained model to
the test set, using the same data splits for training, valida-
tion and testing for all models. In addition, we incorporate
a simple data augmentation scheme, where we add a random
gaussian noise with zero mean to the cell lines gene expres-
sion data and the corresponding AUC or IC50 values. The
standard deviations of cell lines and response noise were 0.6
and 0.15, respectively. The augmentation was performed it-
eratively in every batch during training, tripling the original
batch size. This data augmentation scheme was added for the
two models involving autoencoders, i.e. both the Autoen MF
and the DEERS model.

Interpretation of hidden dimensions in DEERS. This
analysis aims at an explanation of the model predictions from
the biological standpoint. In order to incorporate all available
data for model interpretation, we first re-train the model with
all available 922 cell lines and 74 drugs, without excluding
any cell lines, and using IC50 as a drug response metric.
The interpretation of the hidden dimensions concerns assign-
ing a biological meaning to the individual dimensions of the
hidden space. To this end, we first pass the input drugs and
cell lines input representations into their corresponding, al-
ready trained autoencoders, producing a 10-dimensional rep-
resentation for each 294-dimensional input data vector corre-
sponding to a drug and a 10-dimensional representation for
each 241-dimensional input data vector corresponding to a
cell line, respectively.

Associating input features with hidden dimensions. To com-
pute the association of each input feature with each hidden di-
mension, we utilize the Integrated Gradients method (35), by
computing the attributions between input features and the ten
neurons constituting the hidden representation layers. This is
performed separately for the drug and the cell line autoen-
coders, and the attributions are averaged across the drugs
and cell lines, respectively. As a result, we obtain drugs
and cell lines feature-representation attribution matrices of
size 294 × 10 and 241 × 10, respectively, where each entry
is a score reflecting how much a given feature impacts the
given variable in the hidden space. We then perform the row-
wise hierarchical clustering on the resulting attribution ma-
trices, grouping features associated with the same dimension
together. The clustering was performed after normalizing the
rows to unit norm, using the Ward linkage method and the
Euclidean distance metric. This interpretability approach is
applied separately for the 10 dimensions encoding the drugs
and for the 10 dimensions encoding the cell lines.

Associating biological processes with hidden dimensions
encoding the cell lines data. In this interpretability analysis,
we exploit the fact that the cell line autoencoder in DEERS
is trained to reconstruct the data and to find low-dimensional
representations that reflect the true properties of the analyzed
cell lines. The produced hidden representations of the cell
lines are organized into a 922 × 10 matrix ZC , where ev-
ery row j corresponds to a single cell line hidden represen-
tation, and every column c represents the values of a given
hidden variable across all cell lines. Next, we examine the
full genome-wide gene expression data of the full set 17,419
genes extracted from GDSC. In this way, this analysis goes
beyond the restricted set of the modeled input 241 cell line
features. Using this data, we construct a 922 × 17419 matrix
GC , where every row j corresponds to a single cell line gene
expression profile, and every column g represents the expres-
sion values of a given gene across the examined cell lines.
We then compute a 17,419×10 correlation matrix C, where
every entry C[g,c] corresponds to Spearman correlation co-
efficient between gth column of GC and cth column of ZC ,
i.e. the correlation between the expression of a given gene
and a value of a given hidden dimension across 922 consid-
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ered cell lines (Fig. 1c) .
Given such correlation matrix C, we create a ranked list of
genes for every hidden dimension, where the ranking metric
is the correlation coefficient of the genes with that dimension.
The genes at the top and bottom of the ten resulting ranked
lists are the ones that are most positively or negatively cor-
related with the corresponding dimensions, respectively. We
then take the first and the last 1000 genes with correspond-
ing correlation coefficients for every hidden dimension and
run the GSEA Preranked analysis (44) against gene sets that
are involved in specific biological processes as defined by
the Biological Process GO Terms (Fig. 1c). The GSEA Pre-
ranked is performed using the gseapy Python package (44–
46). We then extract the top 15 enriched terms with the small-
est FDR value for every hidden dimension, which indicates
the general biological mechanisms are most related to that di-
mension. Finally, we eliminate the redundant gene ontology
terms using the Revigo tool (47), assigning the set of biolog-
ical mechanisms to every dimension of the cell lines hidden
space.

Results
DEERS was developed with two aims in mind. One, to
achieve state-of-the art predictive performance in predicting
the response of cancer cell lines to kinase inhibitor drugs.
Second, to identify the biological mechanisms that drive this
response. Below, we evaluate the performance of DEERS in
comparison to other models and conduct its interpretability
analysis.

Evaluation of the predictive performance of DEERS in
comparison to other models. The predictive performance
of DEERS is compared with four other methods. Two of
those, Elastic net and XGBoost, are traditional, frequently
used machine learning algorithms. Remaining two, referred
to as Lin MF and Autoen MF, are versions of matrix factor-
ization with side information (see Methods for a description
of the compared models). In order to evaluate the perfor-
mance of DEERS and other models on a test set containing
responses of unseen cell lines, we first pass the drugs and cell
lines input data to the model and obtain a table of predicted
responses for each drug and cell line pair. Given such a ta-
ble, we calculate the Pearson correlation and RMSE of the
true to predicted responses across all drug-cell line pairs. In
addition to such metrics calculated globally, we also group
the previously described table, and calculate correlation (ab-
breviated corr.) and RMSE of true and predicted responses
across pairs per given drug or cell line. To aggregate the per-
drug and the per-cell line results, we take the median across
the cell lines and drugs, respectively. The per cell line re-
sults mimic an envisioned clinical application of the model,
where prediction of drug efficacy will be predicted for a new
patient with specific tumor features, enabling a personalized
medicine approach. This evaluation scheme yields six per-
formance metrics per model (referred to as “Pairs RMSE”,
“Pairs corr.”, “Per-drug RMSE”, “Per-drug corr.”, “Per-cl
RMSE” and “Per-cl corr.”). These metrics are evaluated both

for IC50 (Tab. 1) and AUC (Tab. 2).
In general, IC50 as a prediction target was easier to learn than
AUC. Indeed, in terms of correlation between predicted and
true response values, better results are obtained by all models
for IC50 than for AUC.
With IC50 as the response variable, the DEERS model
mostly outperforms or at least performs similarly well as the
other two matrix factorization-based models with regard to
all of the six performance metrics (indicated by bolded val-
ues in Tab. 1). For IC50, the XGBoost outperforms the other
traditional method, Elastic net, in all performance measures.
This indicates that nonlinear models are needed to capture the
dependence of IC50 on drug and cell line features. DEERS
and XGBoost achieve comparable evaluation results (with
the best model according to each evaluation metric marked in
red in Tab. 1). In particular, DEERS obtains a high Pearson
correlation coefficient r=0.82, calculated on all drug-cell line
pairs in the test set. Moreover, the median per cell line corre-
lation of r=0.86 indicates that DEERS achieves the state-of-
the-art performance in predicting cell line responses to drugs,
which most closely resembles the hypothetical clinical setup.
Notably, compared to per-cell line correlation, all models ob-
tain relatively poor results in terms of per-drug correlation.
This may be due to the fact that our input data is asymmetric
as it covers much fewer drugs (74) than cell lines (922).
In the case of AUC as the response variable, the com-
parison of model performance yields similar results as the
IC50. Here again DEERS outperforms the other two matrix
factorization-based methods, while from the two traditional
methods XGBoost performs better than Elastic net (Tab. 2).
Overall, the performance of DEERS is very similar to XG-
Boost. For AUC, the DEERS achieves r=0.76 Pearson corre-
lation coefficient calculated on all drug-cell line pairs in the
test set. For the per-cell line results, the median correlation
across the unseen cell lines is r=0.82, constituting the best
result by a small margin.

Evaluation of the added value of inhibition profiles. In
order to quantify the benefit of incorporating inhibition pro-
files of the drugs, we estimated the performance of DEERS
with drug putative targets as drug input data. This model is
referred to as “DEERS without inhibition profiles” in Tab. 1.
To this end, the reduced drug features were defined by a bi-
nary matrix with 74 rows corresponding to kinase inhibitors
and 92 drug targets, and entries 1 if the drug has the gene
as target and 0 otherwise. With this alternative drug input
data and IC50 as a target variable, we evaluated DEERS us-
ing the same procedure as previously, with all hyperparam-
eters besides learning and dropout rates unchanged. Learn-
ing and dropouts rates were tuned using validation set in the
same manner as before. DEERS with inhibition profiles out-
performs DEERS with binary targets in 3 evaluation metrics
(Pairs RMSE, Pairs corr., Per-cl corr.), achieves the same re-
sults in 2 metrics (Per drug RMSE and Per-cl RMSE) and
slightly underperforms in Per-drug corr. metric. The im-
provement in Pairs RMSE, Pairs corr., Per-cl corr. metrics
constitutes 11.1%, 2.5%, and 2.4% relative increase, respec-
tively.
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Table 1. Predictive performance of DEERS and compared models when using IC50 as a drug response metric. The presented values are averages of metrics taken
across five experiments with different data splits, along with the corresponding standard deviations. The presented per-drug and per-cell line results are medians taken
across all considered drugs and cell lines, respectively. The evaluated models are split into two categories: frequently used, traditional machine learning algorithms (T) and
recommender system class (RS). Best results within a model category are highlighted with bold font, while the best results overall are underlined. Abbreviations: alg. –
algorithm, corr. – correlation, cl – cell line, w/o inhib. profs. – without inhibition profiles.

Alg.
type.

Pairs
RMSE

Pairs
corr.

Per-drug
RMSE

Per-drug
corr.

Per-cl
RMSE

Per-cl
corr.

Elastic net T
0.09
±0.002

0.80
±0.007

0.08
±0.019

0.31
±0.155

0.080.080.08
±0.002±0.002±0.002

0.84
±0.003

XGBoost T
0.080.080.08
±0.002±0.002±0.002

0.830.830.83
±0.009±0.009±0.009

0.080.080.08
±0.017±0.017±0.017

0.400.400.40
±0.131±0.131±0.131

0.080.080.08
±0.001±0.001±0.001

0.860.860.86
±0.006±0.006±0.006

Lin MF RS
0.09
±0.003

0.78
±0.011

0.09
±0.002

0.30
±0.040

0.080.080.08
±0.002±0.002±0.002

0.85
±0.007

Autoen MF RS
0.10
±0.003

0.76
±0.012

0.09
±0.004

0.24
±0.039

0.09
±0.004

0.84
±0.004

DEERS w/o
inhib. profs.

RS
0.09
±0.002

0.80
±0.012

0.080.080.08
±0.002±0.002±0.002

0.380.380.38
±0.047±0.047±0.047

0.080.080.08
±0.002±0.002±0.002

0.84
±0.003

DEERS RS
0.080.080.08
±0.001±0.001±0.001

0.820.820.82
±0.004±0.004±0.004

0.080.080.08
±0.002±0.002±0.002

0.37
±0.019

0.080.080.08
±0.001±0.001±0.001

0.860.860.86
±0.006±0.006±0.006

Table 2. Predictive performance of DEERS and compared models when using AUC as a drug response metric. Table columns and formatting the same as in Tab. 1.

Alg. type
Pairs
RMSE

Pairs
corr.

Per-drug
RMSE

Per-drug
corr.

Per-cl
RMSE

Per-cl
corr.

Elastic net T
0.13
±0.002

0.71
±0.011

0.11
±0.050

0.23
±0.188

0.12
±0.003

0.77
±0.005

XGBoost T
0.120.120.12
±0.002±0.002±0.002

0.770.770.77
±0.013±0.013±0.013

0.100.100.10
±0.050±0.050±0.050

0.340.340.34
±0.176±0.176±0.176

0.110.110.11
±0.002±0.002±0.002

0.810.810.81
±0.012±0.012±0.012

Lin MF RS
0.13
±0.003

0.73
±0.011

0.110.110.11
±0.004±0.004±0.004

0.340.340.34
±0.039±0.039±0.039

0.120.120.12
±0.004±0.004±0.004

0.80
±0.010

Autoen MF RS
0.13
±0.006

0.75
±0.011

0.110.110.11
±0.005±0.005±0.005

0.27
±0.019

0.120.120.12
±0.004±0.004±0.004

0.80
±0.004

DEERS RS
0.120.120.12
±0.006±0.006±0.006

0.760.760.76
±0.014±0.014±0.014

0.110.110.11
±0.005±0.005±0.005

0.340.340.34
±0.032±0.032±0.032

0.120.120.12
±0.004±0.004±0.004

0.820.820.82
±0.005±0.005±0.005

Evaluation on an independent dataset. In order to es-
timate the performance of DEERS on other data than cell
line sensitivities from GDSC, we extracted drug sensitivity
data from the Cancer Cell Line Encyclopedia (CCLE) (2)
project. Next, we constructed a dataset consisting of an in-
tersection between the our analyzed dataset (containing data
for 74 drugs derived from GDSC for kinase inhibitors), and
the CCLE dataset in terms of cell lines and drugs, along with
corresponding, min-max-scaled CCLE IC50 values. The data
regarding the intersection between GDSC and CCLE, as well
as CCLE IC50 values were extracted using the PharmacoDB
package (48, 49). The resulting dataset contained 351 com-
mon cell lines and 5 common drugs (Crizotinib, Lapatinib,
PD0325901, PLX-4720 and Sorafenib), constituting 1747
pairs in total. The cell lines and drugs were described by the
same features as in the original GDSC dataset. We next used
the GDSC data corresponding to the remaining 571 cell lines
that are not present in the CCLE-GDSC intersection dataset
and all 74 drugs to train DEERS. From those 571 cell lines of
GDSC, 50 were randomly chosen to construct the validation
dataset for tuning the learning and dropout rates (see Meth-
ods). We then re-trained the model with the best hyperparam-
eters on all 571 cell lines and applied it to the CCLE-GDSC
intersection dataset, obtaining IC50 predictions for unseen
cell lines. It is important to note that the maximum obtain-

able correlation between the model predictions and the true
IC50 values in the intersection dataset in this experiment is
0.53, defined by the correlation between the true IC50 values
in the CCLE dataset and the true IC50 values in the GDSC
for these cell line-drug pairs. Given this upper bound, the
obtained correlation result of 0.40 is relatively high.
Taken together, these results demonstrate that thanks to its
deep neural network-based recommender system architecture
and utilization of informative drug features, DEERS obtains
state-of-the art performance in predicting cell lines sensitiv-
ity to drugs in a multitask setup. In contrast to the other
well performing model, XGBoost, however, DEERS obtains
highly informative reduced-dimension representations of the
cell line and drug features, respectively. This aspect of the
model is discussed below.

Attributions between input features and hidden dimen-
sions using neural network analysis. As the first step of
the DEERS model interpretability analysis, we computed the
attributions between the input features and the hidden dimen-
sions using Integrated Gradients (see Methods). Next, we
performed hierarchical clustering of the resulting attribution
matrix, in which the rows were the features, and columns
were the hidden dimensions. The clustering identifies well-
defined groups of features associated with each specific hid-
den dimension (Fig. 2). There is very little overlap between
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feature groups for both drugs and cell lines, indicating that
hidden dimensions are independent in terms of which fea-
tures affect them the most. This independence effect is also
evident when we compare the covariance matrices of drugs
and cell lines represented in a hidden space, when depen-
dence penalty was incorporated and not incorporated into the
overall cost function (Fig. S2). The number of drug input fea-
tures associated with a single hidden dimension ranges from
20 for dimensions 2 and 8, to 44 for dimension 1. For the
cell lines, this number ranges from 11 for hidden dimension
7 and 44 for hidden dimension 1.
The exact groups of features corresponding to hidden dimen-
sions of the drug autoencoder and to hidden dimensions of
the cell line autoencoder are listed in tables S1 and S2, re-
spectively. As an example, in the drugs case, hidden di-
mension 3 is associated with the inhibition of a group of ki-
nases (BRSK1, CAMK2B, CDK3, CDK5, CDK16, CHEK1,
DCLK1, DRAK1, ERBB4, ERK5, FRK, HCK, LIMK2,
MAPKAPK2, MK14, MLK1, MP2K6, NDR2, PCTK3,
PIM1, PIM2, PLK1, PRKR, TYRO3, VGFR1, VGFR2,
YANK3 and YSK1). For the cell lines example, hidden di-
mension 3 is associated with the expression of genes BLK,
BRSK1, BTK, CSK, DDR1, EGFR, EPHA2, FGFR2, GAK,
LCK, MET, NLK, NUAK1, NUAK2, PIM2, PLK2, RIOK1
and ZAP70, as well as one-hot encoded tissue indication fea-
tures corresponding to leukemia, lung NSCLC, lymphoma,
myeloma, pancreas and urogenital system.

Linking hidden dimensions to the general biological
mechanisms. In the next step of the interpretability analy-
sis, we associate each hidden dimension of the cell line au-
toencoder with a biological process. To this end, for each
hidden dimension and each gene, we correlate the values of
the hidden dimension with the expression values of the gene
across cell lines. For a given hidden dimension, the obtained
correlations are then ranked and we apply gene set enrich-
ment analysis (GSEA) to identify biological processes posi-
tively or negatively correlated with that dimension (Fig. 1c).
Importantly, this analysis links the dimensions to all genes
measured in the cell lines, that is, also to the genes outside
of the cell line features used in the model (see Methods for
a full description of this analysis). Here, we run the GSEA
considering the gene-sets included in the Gene Ontology Bi-
ological Processes. The analysis and subsequent filtering of
redundant terms yield a final set of GO terms for each dimen-
sion of the hidden space of the cell line autoencoder (Fig 3).
We identify 67 GO terms in total, many of which are related
to cancer (e.g. DNA replication, regulation of cell cycle pro-
cess, regulation of angiogenesis). The number of enriched
terms per dimension varies from 6 to 13. The majority of en-
richment scores (67%) are positive, which indicates that they
are positively correlated with that dimension. Conversely, the
negatively signed FDR value implies that the given term is
negatively correlated. Markedly, the sets of enriched terms
almost do not overlap between the dimensions, indicating the
independence of the dimensions in terms of their associated
biological mechanisms. Out of 67 terms, only 12 are asso-
ciated with more than one hidden dimension, from which 10

are associated with two dimensions.
When inspecting the heatmap (Fig. 3), we identify groups
of biological mechanisms associated with specific hidden di-
mensions. For example, hidden dimension 2 is mainly linked
with DNA replication and cell cycle, as terms enriched in
it include: DNA replication, DNA-dependent DNA repli-
cation, G1/S transition of mitotic cell cycle and regulation
of cell cycle process. Dimension 4 is related to protein
metabolism (post-translational protein modification, cellular
protein metabolic process, cellular protein modification pro-
cess), while dimension 3 is connected with DNA and RNA
metabolism (DNA metabolic process, RNA metabolic pro-
cess, rRNA metabolic process) and known cancer-related
processes like regulation of MAPK cascade and regulation
of angiogenesis. Other such terms include regulation of ex-
trinsic apoptotic signaling pathway (dimension 9), cellular
response to DNA damage stimulus (dimension 6), cellular
response to tumor necrosis factor (dimension 0) and DNA
damage response, signal transduction by p53 class media-
tor (dimension 1). Interestingly, some of the terms are not
commonly linked to cell cycle or other processes related to
oncogenesis, e.g. for dimension 8 the set of enriched terms
includes central nervous system development, nervous sys-
tem development and axonogenesis. This analysis provides
a form of interpretation of hidden dimensions from the bi-
ological standpoint and facilitates a better understanding of
the model prediction based on cell lines hidden representa-
tions. Overall, the obtained list of biological processes re-
flects the repertoire of common biological mechanisms that
are affected by the analyzed kinase inhibitors in the set of
analyzed cell lines, and as a general summary can only be
obtained from such a multitask learning model as DEERS.

Case studies. We further focus the analysis on three case
studies, showing how the model predictions and true re-
sponses can be explained and interpreted for individual drugs
and features. For this purpose, we examine three spe-
cific compounds: the pan-CDK inhibitor PHA-793887, the
ALK/CDK7 inhibitor XMD14-99 and the BRAF inhibitor
Dabrafenib (Fig. 4). First, we establish which features are
most important for the model prediction given the input data
for a particular compound. To this end, we calculate the at-
tributions between input features and the final output layer of
the model using the Integrated Gradients method (35). The
attributions are first computed separately for each cell line
and IC50 as the response variable, and next summarized by
averaging over all cell lines. Second, for each compound we
display the cell lines in two chosen dimensions of the hidden
space of the cell line autoencoder, and color them by their
IC50 response to the compound. In this way, we identify
such regions in this space that are correlated with sensitivity
to the compound. Finally, we explore in detail how well one
chosen hidden dimension correlates with the true response
and we list the biological processes that are associated with
that dimension (as per analysis in Fig. 3). Altogether, the case
studies identify such features and hidden dimensions that are
important for modeling the response, and such biological pro-
cesses that are important for the action of the three analyzed
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drugs.

PHA-793887 is an inhibitor of multiple cyclin dependent
kinases (CDK) with activity against CDK2, CDK1 and
CDK4 (50). According to the attribution analysis, the ac-
tivity against CDK is reflected in the most informative drug
features, where CDK2 kinase belongs to the most important
drug features for prediction (Fig. 4a, top row panel). Inter-
estingly, cell line features corresponding to CDK family do
not obtain top attribution values. Instead, the highest aver-
age attributions are associated with the expression of BTK,
PIM2 and TEC genes, suggesting that their activity in the cell
lines is important for PHA-793887 action (Fig. 4a, second
row panel). Representing cell lines in two dimensions (by
hidden dimensions 3 and 0) identifies a region corresponding
to a good response of PHA-793887 (Fig. 4a, third row panel).
This validates that that in general the hidden dimensions
well represent the cell line data and that in particular these
two hidden dimensions well capture the cell line response
to PHA-793887. However, most of the cell lines response
variance can be explained using hidden dimension 3 alone,
which is negatively correlated with the true response (Pear-
son correlation r = -0.40; Fig. 4a, bottom row panel). The
biological process terms enriched for different dimensions,
visualized in Fig. 3, can provide the meaning behind these di-
mensions. Analysing the processes associated with the most
informative dimension 3 can shed the light on the way the
response to PHA-793887 is conveyed in the cell lines. The
hidden dimension 3 is associated with eight biological pro-
cesses, five of them positively (DNA metabolic process, reg-
ulation of cellular macromolecule biosynthetic process, RNA
metabolic process, rRNA metabolic process, ribonucleopro-
tein complex assembly) and three of them negatively (regula-
tion of cell migration, regulation of MAPK cascade, regula-
tion of angiogenesis). Since the GSEA analysis is performed
using gene expression data, large values of hidden variable
3 (which correspond to a better response) implicitly indicate
the over-expression of genes associated with the five posi-
tively enriched terms, whereas the over-expression of genes
related to three negatively enriched terms can indicate poor
response.

According to GDSC annotations, XMD14-19 targets include
ALK, CDK7, LTK and others. The known target LTK is
listed as one of the most important drug features (i.e., with
a large attribution; Fig. 4b, top row panel). Cell line features
with top attributions for XMD14-19 strongly overlap with
those related to PHA-793887 (Fig. 4b, second row panel).
In particular, the top three to features are exactly the same
(expression of BTK, PIM2 and TEC genes), indicating some
similarity between these two drugs. Hidden dimensions 3 and
4 allow to visualize regions in the cell line hidden space with
distinctive responses (Fig. 4b, third row panel). Similarly to
PHA-793887, hidden dimension 3 carries the most informa-
tion about cell lines response to XMD14-99 and thus we can
conclude that the same biological processes may be associ-
ated with the response to these two drugs (Fig. 4b, bottom
row panel).

In the case of Dabrafenib, both drug and cell line feature

sensitivities are consistent with its design and clinical us-
age. Dabrafenib is a selective inhibitor of mutant BRAF ki-
nase, approved by the FDA for the treatment of metastatic
melanoma with mutant BRAF(V600) (51, 52). Accordingly,
the two most important cell line features are BRAF mutation
and skin tissue indicator (Fig. 4c, second row panel). The
inhibition of BRAF also emerges among the most informa-
tive drug features, though being preceded by the inhibition of
RAF1, MLK and AMPK (Fig. 4c, top row panel). The hid-
den dimensions 3 and 4 capture significant information about
cell lines response (Fig. 4c, third row panel), with the hidden
dimension 4 being the sole good indicator of the Dabrafenib
efficacy (Fig. 4c, fourth panel). The hidden dimension 4 has
nine positively enriched biological process terms associated
with it (Figures 3; 4c, bottom row panel). Thus, we con-
clude that a better response to Dabrafenib corresponds to the
over-expression of genes involved in: neutrophil mediated
immunity, positive regulation of I-kappaB kinase/NF-kappaB
signaling, regulation of cell migration, post-translational pro-
tein modification, cellular protein metabolic process, cellular
protein modification process, extracellular matrix organiza-
tion, regulated exocytosis, and cell morphogenesis involved
in differentiation.

Associating biological processes to all of the analyzed
drugs. In the final step of the interpretability analysis, we
associate biological processes to all of the analyzed drugs.
This analysis is based on the idea behind the bottom pan-
els of Fig. 4. Just like for PHA-793887, XMD14-99 and
Dabrafenib, we can calculate the correlation coefficient be-
tween the response profile for a given drug and a given hid-
den dimension across cell lines, for each of 74 drugs and each
of 10 hidden dimensions (Fig. 1d). This calculation yields a
74 × 10 matrix, in which each entry represents a Spearman
correlation coefficient for a given compound and hidden di-
mension. We then utilize the associations between hidden
dimensions and biological processes presented in Fig. 3 in
order to connect drugs to biological processes. For a given
drug and process, we first establish which hidden dimension
is enriched for that process. Next, we assign a correspond-
ing correlation coefficient between the drug response and the
dimension to the drug and process pair. If more than one
hidden dimension is enriched for the process, we take the
average of the corresponding correlations. This analysis pro-
duces a 74 × 67 drug-process matrix, where each entry is a
correlation coefficient indicating how important a given bi-
ological process is for driving the response of a cell line to
a given drug. We divide this matrix into five sub-matrices
by the main target pathways of the drugs: RTK signaling,
PI3K/MTOR signaling, ERK MAPK signaling, Cell cycle,
and Others. Finally, we perform the row-wise hierarchical
clustering of each such drug-process sub-matrix in order to
group drugs by the similarity of processes that drive their effi-
cacy (Fig. 5). The obtained clustermaps clearly indicate such
processes that are shared among drugs targeting the same
pathways, as well as point at their differences, some of which
are related to the particular gene targets.
All drugs targeting the RTK signaling pathway (Fig. 5a)
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are positively correlated with a large group of processes
related to DNA replication and cell cycle (DNA repli-
cation, DNA-dependent DNA replication, G1/S transition
of mitotic cell cycle, cellular macromolecule biosynthetic
process, cytoskeleton-dependent cytokinesis, mitochondrial
translational elongation, regulation of cell cycle process,
translational elongation, negative regulation of transcription
from RNA polymerase II promoter, regulation of transcrip-
tion from RNA polymerase II promoter) as well as pro-
cesses related to transport and sensory perception (ubiquitin-
dependent protein catabolic process, processes endosomal
transport, cellular protein localization, monovalent inorganic
cation transport, sensory perception of chemical stimulus and
chemical synaptic transmission). These drugs, however, vis-
ibly divide into two distinct groups with respect to a group
of processes related to RNA metabolism and regulation of
MAPK cascade and angiogenesis (RNA metabolic process,
rRNA metabolic process, ribonucleoprotein complex assem-
bly, regulation of MAPK cascade, regulation of angiogene-
sis). This difference is the reflection of putative targets of
the drugs; drugs which have ERBB2 or EGFR as the putative
targets are not correlated with these processes, while remain-
ing drugs are negatively correlated with them. In general, the
RTK signaling drugs with shared target genes have similar
associated processes and cluster together.

Drugs targeting the PI3K/MTOR signaling pathways gen-
erally share very similar profiles of association with bio-
logical processes (Fig. 5b). All of the drugs in this cate-
gory have consistent positive correlation with five processes
(epidermis development, cell-cell junction assembly, regula-
tion of autophagy, plasma membrane bounded cell projec-
tion assembly and cilium organization), which distinguishes
PI3K/MTOR signaling from other drug categories. There
are, however still some processes which tend to be corre-
lated only with a subset of drugs. For example, seven drugs
(AKT inhibitor VIII, ZSTK474, Omipalisib, Buparlisib,
GSK1059615, WYE-125132 and Torin 2) exhibit stronger
negative correlation with five previously listed processes re-
lated to RNA metabolism and regulation of MAPK cascade
and angiogenesis, while others do not. The associations with
the foregoing processes seem to be more prevalent in drugs
which have the mammalian target of rapamycin (mTOR) ki-
nase among their putative targets in addition to phosphoinosi-
tide 3-kinases (PI3Ks), with the exception of Dactolisib. No-
tably, two drugs presumably targeting solely mTOR (WYE-
125132, Torin 2) have very similar association profiles across
all 67 processes. Another considerable group of processes
with relatively high correlation in the PI3K/MTOR signaling
category consists of eight processes: negative regulation of
cytokine production, positive regulation of MAPK cascade,
positive regulation of intracellular signal transduction, posi-
tive regulation of peptidyl-tyrosine phosphorylation, proteol-
ysis, regulation of defense response, regulation of extrinsic
apoptotic signaling pathway and regulation of immune re-
sponse. Two out of three drugs associated with these pro-
cesses (TGX221 and AZD6482) target solely PI3Kbeta. As-
sociations with the listed eight processes are also noticeable

in the cell cycle category (Fig. 5d), specifically for CGP-
082996, CGP-60474, Seliciclib and Palbociclib.
In general, these results can serve as a validation and expla-
nation of the model predictions, as well as provide insights
regarding the drugs mechanisms of action and drivers of the
cell lines response. Considering drug-biological process as-
sociations within a certain drug category enables insights into
drugs action on a more general level than putative targets or
target pathway information alone.

Discussion and conclusions
In this work, we propose a deep neural network recommender
system-based approach to the problem of kinase inhibitor
sensitivity prediction based on side information about drugs
and cancer cell lines. The proposed model, DEERS, com-
bines dimensionality reduction of the cell line and drug fea-
tures using autoencoders and neural network-based predic-
tion based on the obtained hidden representations. The mod-
eled drug features are the strengths of inhibition of kinases
by the drugs. The cell line features include expression and
mutation calls for the same kinases in cancer cell lines, com-
plemented by primary tissue type of origin for the cell lines.
To our knowledge, this type of modeling using these types of
input data has not been applied before to predict sensitivity
to kinase inhibitors.
Our focus on modeling kinase inhibitors is motivated by the
fact that binding profiles across kinases represent exquisite
data to characterize such drugs. Alternative information
about drugs could be the list of specific known drug targets.
In contrast to continuous and rich data about kinase inhi-
bition, however, annotations of known targets are relatively
incomplete. The quality of the kinase binding data that we
used is assured by a standardized assay platform interrogat-
ing a large number of kinases. Therefore, off-target inhibition
effects are most likely captured completely. An alternative
could be to use information on which signaling pathways are
affected by a drug since this information is often provided
in drug databases. However, clearly the information about
target pathways is only high-level, less detailed than using
kinase binding data, and suffers from incomplete understand-
ing about the complete set of pathways that a drug effects in
different cellular contexts.
The DEERs model aims at two goals: 1) high predictive
performance and 2) outstanding model interpretability. Our
analysis constitutes a thorough comparative assessment of
model performance, evaluating both traditional and variants
of matrix factorization-based methods. Out of the two tra-
ditional models, XGBoost achieves better results than Elas-
tic net, indicating that accounting for non-linear interac-
tions among features is crucial for prediction performance.
DEERS outperforms the other two matrix factorization-based
approaches, Lin MF (basic matrix factorization model) and
Autoen MF (a model using autoencoders for dimensionality
reduction and a dot-product for combining the reduced data
to make prediction). We observe little difference in perfor-
mance between the Lin. MF model and Autoen. MF (Tables
2, 1), although, importantly, the latter has a more difficult
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optimization goal. Indeed, similar to DEERS, Autoen MF
reconstructs the input features from the reduced representa-
tions. The advantage of DEERS over these two MF-based
models is most likely caused by the incorporation of the feed-
forward network which combines the hidden representations,
instead of the simple dot product. Compared to the dot prod-
uct, which only considers element-wise product, these addi-
tional feed-forward network layers allow the system to adjust
the weights after the data encoding step and to estimate a
more complex function that maps from the hidden represen-
tations to the response. Importantly, despite the more com-
plex mapping, the hidden dimensions in the DEERS model
are still clearly indicative of the true response in some cases.
Across all compared models, both DEERS and XGBoost
show top and very similar performance. In contrast to XG-
Boost, however, DEERS is easier to interpret, as it provides
highly informative 10-dimensional representations of the in-
put cell lines molecular setup and the drug features.
Extensive interpretability analysis demonstrates that the 10
hidden dimensions of the drug and cell line autoencoders
seem to capture the majority of important information for
both drugs and cell lines. The results imply mutual indepen-
dence of hidden dimensions (Fig. 2, 3, S2) and also suggest
that the hidden representations are representative of the drug
and cell line input data. In particular, hidden dimensions 3
and 4 show as most relevant for driving the cell lines drug re-
sponse for the majority of drugs (Fig. 3, 5), as demonstrated
by the presented examples (Fig. 4, bottom panels). The corre-
lation analysis of genome-wide cell lines features and hidden
representations, combined with GSEA, helps to provide bio-
logical meaning to the hidden dimensions (Fig. 3). The same
analysis performed using the restricted set of kinase- and tis-
sue type-related 241 cell lines features that are used to train
the models would have resulted in the bias towards GO terms
or pathways related to protein kinases in general. Instead,
using genome-wide gene expression helps to identify the en-
riched terms which are not influenced by the choice of fea-
tures in the training data and spanning a broader range of bio-
logical processes. Moreover, this methodology is potentially
very versatile, as different drugs and cell lines properties out-
side of the training data can be correlated, and different gene
set libraries can be queried for enrichments. We show that
combining the influence of distinct hidden dimensions for
drug response, and biological processes associated with the
hidden dimensions constitutes a framework which can di-
rectly explain drug response by concrete biological mecha-
nisms. Such a map facilitates the easier explanation of drugs
mechanisms of action and can potentially identify the new,
unexpected ones (Fig. 5). Overall, this study shows how data
encoding combined with the series of analyses can help to
increase the interpretability even in the case of deep neural
network recommender models, while maintaining the com-
plex nature of such systems.
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Fig. 5. Associations between cell lines biological processes (horizontal axes) and all of the 74 analyzed drugs (vertical axes), plotted separately for (a) RTK
signaling, (b) PI3K/MTOR signaling, (c) ERK MAPK signaling, (d) Cell cycle and (d) Others target pathways. First, for every drug, the Spearman correlation coefficient
between every cell line hidden dimension and the response is computed, as shown in Fig. 4. These correlations are then assigned to biological processes associated with a
given hidden dimension (see Fig. 3). If more than one hidden dimension is related to a process, an average of correlation is taken and assigned to the process. Drugs were
hierarchically clustered using the Euclidean distance and average linkage within a given target pathway category. The horizontal axis is shared for all panels. The vertical
axis tick label is formatted as: Drug Name; Putative Targets. Drugs target pathways and putative targets are taken from GDSC annotations. The labels are color-coded by the
target pathway. For some drugs, putative targets have not been listed for readability. Those targets are: * – PI3K (class 1), MTORC1, MTORC2, ** – PI3Kalpha, PI3Kdelta,
PI3Kbeta, PI3Kgamma, *** – CDK1,CDK2,CDK5,CDK7,CDK9, PKC, **** – RC, ROCK2, NTRK2, FLT3, IRAK1, others, ***** – BRSK2, FLT4, MARK4, PRKCD, RET, SRPK1.
The color scale of correlation heatmaps is the same for all categories. See Fig. 3 for term names abbreviations.
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