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31 Abstract
32

33 The default mode network (DMN), the salience network (SN), and the central executive 

34 network (CEN) could be considered as the core resting-state brain networks (RSN) due to their 

35 involvement in a wide range of cognitive tasks. Despite the large body of knowledge relating to 

36 their regional spontaneous activity (RSA) and functional connectivity (FC) of these networks, less 

37 is known about the influence of task-associated activity on these parameters and on the 

38 interaction between these three networks. We have investigated the effects of the visual-oddball 

39 paradigm on three fMRI measures (amplitude of low-frequency fluctuations for RSA, regional 

40 homogeneity for local FC, and degree centrality for global FC) in these three core RSN networks. 

41 A rest-task-rest paradigm was used and the RSNs were identified using independent component 

42 analysis (ICA) on the resting-state data. We found that the task-related brain activity induced 

43 different patterns of significant changes within the three RS networks. Most changes were strongly 

44 associated with the task performance. Furthermore, the task-activity significantly increased the 

45 inter-network correlations between the SN and CEN as well as between the DMN and CEN, but 

46 not between the DMN and SN. A significant dynamical change in RSA, alongside local and global 

47 FC within the three core resting-state networks following a simple cognitive activity may be an 

48 expression of the distinct involvement of these networks in the performance of the task and their 

49 various outcomes.

50

51

52

53

54
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55 Introduction

56

57 Examination of regional spontaneous brain activity (RSA) and functional connectivity (FC) 

58 during resting-state (RS) conditions appears to be a promising approach for understanding brain 

59 organization at the systems level [1]. Within the several stable RS networks identified up to now, 

60 three networks stand out for their importance and synchronized interplay: the default mode 

61 network (DMN), the salience network (SN), and the central executive network (CEN). These 

62 networks are often jointly referred to as the triple network model [2] and are considered to be the 

63 core neurocognitive networks due to their involvement in a wide range of cognitive tasks [1,3,4].

64

65 Specifically, the DMN is known to be a task-negative network associated with self-

66 referential thoughts and mind-wandering [5]. It shows decreased activation during tasks in which 

67 self-referential and stimulus-independent intellectual activity is not involved [6,7]. Even more, 

68 numerous studies have demonstrated that midline DMN regions are among the most efficiently 

69 wired brain areas, serving as global hubs that bridge different functional systems across the brain  

70 [8,9]. Increased DMN connectivity with regions of other brain networks has been shown to 

71 facilitate performance during goal-directed tasks [10]. Thus, DMN is not engaged only under 

72 resting-state conditions but also under task performance and post-task processes as well [10-12]. 

73

74 The CEN is a task-positive network, engaged in higher-order cognitive and attention 

75 control as well as in working memory, decision making and goal-directed behavior [13-15]. 

76 Conversely, the SN is involved in detecting, filtering and integrating relevant internal (e.g., 

77 autonomic input) and external (e.g., emotional information) salient stimuli in order to guide 
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78 behavior [1,16]. Furthermore, it displays a crucial role in the functional and dynamic switching 

79 between the DMN and CEN (i.e., between task-based and task-free states) [17,18].

80

81 Dynamic interactions between the three networks of the triple network model influence 

82 cognition and emotion, affecting performance and impulsivity [19-21]. Moreover, an altered 

83 interaction between these networks has been shown in patients with major depressive disorder 

84 [22], post-traumatic stress disorder [23], obsessive-compulsive disorder [24], and schizophrenia 

85 [25,26]. Altogether, an increasing body of evidence suggests that aberrant function of the triple 

86 networks underlies the psychopathology of all major psychiatric disorders [27] and disturbed 

87 functional interactions among them may be considered a potential neurophysiological biomarker 

88 for different psychopathological phenomena across several neuropsychiatric disorders [28]. It is 

89 therefore particularly important to understand the physiological fluctuations in the activity and 

90 interactions of these networks in order to be able to differentiate them from pathological 

91 conditions.

92

93 Continuous fluctuations of the main properties of the networks (as RSA and FC) have 

94 been shown during rest and during task-associated activities [29,30]. Much less is known about 

95 the extent to which these properties can be influenced by a specific task and to what extent a 

96 task-associated activity affects the interaction between the networks.

97 A simple method to investigate the effects of task-related activation on the RSA is the rest-

98 task-rest paradigm (RTR) [5,31]. To date, a task-induced modulation of the RSA has been 

99 observed following cognitive tasks involving working memory, emotion, visual perception, and 

100 motor training. However, previous studies have mainly focused on whole-brain [31-35] or on 

101 specific brain structures known to be involved in the tasks [36,37]. None of the mentioned studies 
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102 has specifically addressed the impact of a task on the triple network. Moreover, previous 

103 investigations have overall changes in static connectivity in different time periods (before and after 

104 the task), but changes in the relationship between the different networks (particularly in the triple 

105 network, which is the focus of this study) remain poorly understood. Thus, in this study, we have 

106 specifically examined task-induced changes in RSA and FC in the triple network of the RS (DMN, 

107 SN and CEN) and the task-induced effects on the interactions between them.

108

109 Concretely, this study aims to assess the extent of the influence exerted by a well-

110 established task - the visual oddball paradigm [38] on the post-task RS in the regions of the triple 

111 network using the RTR design. The visual oddball paradigm task was chosen as it elicits the blood 

112 oxygen level dependent (BOLD) response in a large set of distributed networks [39-43]. In 

113 particular, the task performance is associated with activation in brain regions linked to the three 

114 networks (the SN [44], the dorsolateral prefrontal cortex (CEN) [45,46], and the cingulate and 

115 prefrontal cortex (DMN) [47]. 

116 For the identification of the triple network regions we applied a group independent 

117 component analysis (ICA) to the RS data. Several different measures of FC can be calculated 

118 from fMRI, each reflecting a different property of the brain networks. For this approach, we chose 

119 two such measures, the regional homogeneity (ReHo) [48] the degree centrality (DC)  [49], as 

120 these are suitable for investigating the voxel level local and global FC, respectively. Furthermore, 

121 the amplitude of low-frequency fluctuations (ALFF) [50], is suitable for depicting the RSA. 

122 Combining these measures enables the complementary characterization of changes in activation 

123 and communication of specific networks or regions.

124
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125 We hypothesised that the task-based activity would distinctly affect the RS RSA as well 

126 as the local and the global connectivity in the triple network. Due to the central role of the SN 

127 during the occurrence of salient stimuli or during the performance of a cognitive task, we also 

128 expected internetwork functional connectivity to increase between the SN and the other two 

129 networks of the triple network model (DMN, CEN).

130 Materials and Methods 

131 Subjects

132 21 right-handed healthy subjects (17 males and four females) were included in this study 

133 (age range between 19 to 40 years; mean: 29 ± 5.6 years). All subjects were healthy and without 

134 a history of neurological or psychiatric disorders. The study was approved by the Ethics 

135 Committee of the Medical Faculty of the RWTH Aachen University, Germany. Written informed 

136 consent was obtained from all subjects following the recommendations of the Declaration of 

137 Helsinki. 

138 Experimental design
139

140 To investigate the effects of task-induced brain activity on the post-task resting-state, the 

141 experiment followed a rest-task-rest (RTR) design consisting of three parts – each part 

142 representing a different brain state: first RS (R1), active state (during the performance of the visual 

143 oddball paradigm) and the second, post-task RS (R2) (Fig 1). 

144
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145 Fig 1. Experimental design of the rest-task-rest paradigm (RTR) which includes two 

146 resting-state conditions (pre- and post-task resting-state, R1 and R2) and the task 

147 condition composed of three subtasks of the visual oddball paradigm (VOP).

148

149 During RS conditions, the subjects were instructed to close their eyes and not focus on 

150 any specific thoughts. All the fMRI data were acquired in a single scanning session and 

151 instructions were given to the subjects in-between each condition via a microphone.

152

153 The visual oddball paradigm comprises of three subtasks: passive (T1), count (T2), and 

154 respond (T3). Two different colored circles were established as frequent (yellow circles) and target 

155 (blue circles) stimuli. During the passive condition, the subjects were asked to simply keep the 

156 stimuli under observation. During the count condition, the subjects were asked to count the target 

157 stimuli (blue circles), and during the respond condition, the subjects were instructed to press a 

158 button with their right index finger as soon as they recognised the target stimuli.

159 Each visual oddball paradigm condition included 200 trials (160 frequent and 40 target 

160 stimuli). The single stimulus was 30 cm in diameter shown on a black background for 

161 500 milliseconds with a variable interstimulus interval (ISI) of 500–10,000 milliseconds. The 

162 stimulus generator board (ViSaGe MKII, Cambridge Research System Ltd.) was used to generate 

163 the stimuli and a thin-film transistor display was used to view the stimuli. The thin-film 

164 transistor display was installed behind the scanner and was viewed using a mirror placed on the 

165 head coil of the magnetic resonance (MR) scanner. 

166 A part of this data set (N = 16), which mainly focused on the analysis of the effects of 

167 different response modalities on the fMRI BOLD activation during the visual oddball paradigm, 

168 has been published previously [51].
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169 MR Data Acquisition
170

171 MR data were acquired using a 3T scanner (TIM-Trio, Siemens Healthineers, Erlangen, 

172 Germany). Sponge pads were used to reduce motion artefacts by limiting the subject’s head 

173 movement. The fMRI data were acquired using an echo planner imaging (EPI) sequence. The 

174 number of volumes were 304 for each task and 180 for each RS condition (repetition time (TR) = 

175 2000 ms, echo time (TE) = 30 ms, flip angle (FA) = 79°, field of view (FOV) = 200 × 200 mm, 64 

176 × 64 matrix, slice thickness = 3 mm, number of slices = 33).

177 Structural images were acquired using a magnetization prepared rapid gradient echo (MP-

178 RAGE) sequence (TR = 2250 ms, TE = 3.03 ms, FA = 9°, FOV = 256 × 265 mm, 64 × 64 matrix, 

179 176 slices, voxel size 1 × 1 × 1 mm3).

180 fMRI Data Analysis
181

182 Task Data
183

184 The analysis of the task-related brain activation was performed using FSL software 

185 package (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The pre-processing included slice 

186 timing correction, brain extraction (using BET) [52], motion correction (MCFLIRT) [53], spatial 

187 smoothing using a Gaussian kernel of full width at half maximum (FWHM) of 5 mm, and high pass 

188 temporal filtering (100s). A time-series of BOLD signal based on the general linear modal for each 

189 individual data set was performed using FILM with local autocorrelation correction [54]. The 

190 functional images were registered to the high-resolution structural images and subsequently to 

191 the Montreal Neurological Institute (MNI) standard space using the FLIRT tool [55]. The first-level 

192 analysis was performed with two explanatory variables (EV). The EVs were convolved with a 

193 double-gamma hemodynamic response function (HRF). Four contrasts were then created: target 

194 stimuli, frequent stimuli, target > frequent, frequent > target.
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195 Group-level mixed-effects analysis was performed for the passive, count and respond sub-tasks 

196 to create a mean for each first level contrast using FLAME with spatial normalization to MNI space 

197 and using a cluster with a significance threshold of Z > 2.3, p = 0.05 [56]. A tripled two-group 

198 difference (“tripled t-test”) Was performed to evaluate the additional activation added to the 

199 passive condition by the count and respond conditions. The activation pattern regions were 

200 defined using Harvard-Oxford Cortical Structural Atlas in FSL software (FMRIB, Oxford, UK).

201 Triple network identification
202

203 The multivariate exploratory linear decomposition into independent components 

204 (MELODIC) tool from the FSL software package was used to identify the triple networks (DMN, 

205 CEN, and SN) using pre-task RS fMRI data. Subject level RS-fMRI data were pre-processed as 

206 follows: the first eight fMRI volume images were removed, followed by slice timing correction, 

207 brain extraction (BET) [52], motion correction (MCFLIRT) [53], spatial smoothing FWHM = 5 mm, 

208 and high-pass temporal filtering 125s. The functional MRI images were co-registered linearly to 

209 high-resolution structural images and nonlinearly to MNI standard space using FLIRT [55]. Group 

210 ICA analysis was used to decompose the pre-task RS data into 20 components.

211

212 To identify the triple networks, a cross-correlation was performed between the functional 

213 brain networks atlas [57] and each of the ICA components. The cross-correlation was performed 

214 using the FSLUTILS (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils) tool implemented in the FSL 

215 software package. ICA components that showed maximum correlation with each of the three 

216 networks in the functional brain networks atlas were chosen. The identified brain networks were 

217 binarized and used in the subsequent analysis as masks. The binarized masks were corrected 

218 for grey matter (GM) by including the voxels which showed more than 50% probability of being 
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219 GM. The GM correction was performed using a tissue segmented MNI152 (2 × 2 × 2 mm3) 

220 template.

221 fMRI measures calculation 
222

223 The fMRI measures were computed for both the tasks and RS-fMRI using data processing 

224 and analysis for brain imaging (DPABI) [58], and SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) 

225 toolboxes built on MATLAB software package version 2017b (The Math Works, Inc., Natick, MA, 

226 USA). Pre-processing was performed using the data processing assistant for the RS-fMRI 

227 (DPARSF) [59] advanced edition as follows: first eight fMRI volume images of each condition in 

228 each subject’s dataset were removed, followed by slice timing correction, realignment, nuisance 

229 covariates regression (NCR) and temporal filtering between 0.01 and 0.08 Hz. To get rid of the 

230 nuisance signals, the Friston 24-parameter model was used for covariate regression. The fMRI 

231 measures were calculated for each subject separately in individual brain imaging space. The DC 

232 was computed by applying a Pearson correlation coefficient between the time series of a given 

233 voxel and all other voxels in the whole brain by thresholding each correlation at (r > 0.25, p ≤ 

234 0.001) [60]. ReHo was calculated by estimating the synchronization or similarity between the time 

235 series of a given voxel and 26 nearby neighbor voxels [48] using Kendall’s coefficient of 

236 concordance (KCC) [61]. The ALFF was calculated within the low-frequency range (0.01 – 0.1 

237 Hz) [62]. The fMRI measures were normalised using a Z-value standardization procedure by 

238 subtracting the mean from each voxel and then dividing the value by the standard deviation of the 

239 whole brain. The Z-value standardised measures were co-registered to the MNI standard space 

240 (2 × 2× 2mm3), and, finally, spatial smoothing with FWHM at 4mm3 was performed. 

241

242 Further calculated values
243
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244 The fMRI measures ALFF, ReHo, and DC were extracted from all voxels of the triple network 

245 for each condition in all subjects using the binarized triple network masks. The extracted voxel-

246 level values were used to calculate several parameters of interest, relevant for the examination 

247 of the task effect on the post task resting-state. These parameters and the exact description of 

248 how they were calculated are shown in Table 1.

249

250 Table 1: Description of parameters used to examine the effect of the task on the fMRI 

251 measures in the post-task RS

Parameter Calculation procedure/ meaning

R1 Voxel-level fMRI measures during the first (pre-task) resting-state 
(RS) (baseline)

R2 Voxel-level fMRI measures during the second (post-task) RS.

T1, T2, T3 Voxel-level fMRI measures during the three subtasks of the visual 
oddball paradigm.

RS difference 
(RSD) 

Difference between post- and pre-task RS (R2 - R1) in the voxel-level 
fMRI measures for each subject.

Task (whole)
Task (whole) = (T1 + T2 +T3) / 3

(mean values of the fMRI measures during the three subtasks)

Main task (whole) Task (whole) - R1

RS similarity 
(RSS) Correlation coefficient between R1 and R2 for each subject.

Task effect at 
the group level

Correlation coefficients between the differences (Task (whole) – R1) 
and (R2 - R1). 

All correlation coefficients were computed using Pearson’s correlation 
coefficients at a significance level of p < 0.05.

252

253 The inter-network FC of the three networks were calculated by first extracting the mean of 

254 the BOLD signal time series from the binarized mask of each network, followed by the 
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255 computation of the Pearson’s correlation coefficient between each pair of networks. Fisher r to z 

256 transformation was performed to improve the normal distribution. A paired t-test was used to 

257 examine the difference of FC between the pre- and the post-task RS.

258

259 To investigate the relationship between the behavioral data (e.g. reaction time) and the 

260 fMRI measures, the correlation coefficients between the RSD and subject’s reaction time in the 

261 response condition was performed. Having checked the normality of the data using the 

262 Kolmogorov-Smirnov test, a paired-sample t-test was used in order to find the differences 

263 between the pre- and post-task RS in each fMRI measure. 

264 Results

265 Behavioural data 
266

267 The mean reaction time of the respond condition was 477ms (SD = 13).

268 Imaging data - task data 
269

270 The task data were initially analysed and reported following the examination of the first 16 

271 participants [51]. The current analysis includes an enlarged collective of test subjects (N = 21) 

272 and confirms previously reported findings. In summary, activation in regions associated with a 

273 response to visual stimulation (occipital cortex) for both the target and the frequent stimuli was 

274 observed during all three subtasks of the visual oddball paradigm. Both, the count and respond 

275 conditions differed significantly from the passive condition in a number of brain regions including 

276 the pre- and post-central gyri, regions of the parietal cortex and the middle and inferior frontal 

277 gyri. Compared to the count condition, the response contrast yielded significant differences in the 

278 parietal operculum, inferior parietal lobule, insula, anterior cingulate cortex, and the posterior 

279 cingulate cortex (PCC).
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280

281 Imaging data -Triple network resting-state data
282

283 The triple network was identified using group independent component analysis (Fig 2). 

284 Specifically, the DMN included the posterior cingulate cortex (PCC), precuneus, angular gyrus, 

285 and medial prefrontal cortex (mPFC); the CEN included the lateral posterior parietal cortex 

286 (LPPC) and dorsolateral prefrontal cortex (DLPFC); the SN included the frontal insular cortex 

287 (FIC), and anterior cingulate cortex (ACC).

288

289 Fig 2. Depiction of the triple networks referred to as the triple network: default mode 

290 network (DMN, blue colour), central executive network (CEN, red colour), and salience 

291 network (SN, green colour). The networks were identified by decomposing the pre-task 

292 resting-state condition into 20 components from 21 subjects.

293

294 RSA and FC across different brain-states
295

296 The fMRI measures showed different values in the RSA and the local and global FC during 

297 the different brain-states (rest-task-rest) (Fig 3). These values differed significantly at the group 

298 level. A pairwise comparison between the pre- and post-task RS (R1 and R2) revealed significant 

299 differences in each network and for each fMRI measure at a significance level of p < 0.05, with 

300 exception of the ReHo measure in the SN (Table 2). 

301

302 Fig 3. fMRI measures (ALFF, ReHo, and DC) from 21 subjects. Visual inspection shows a 

303 change in each of the three fMRI measures in the post-task resting-state (R2) when 

304 compared to pre-task resting-state networks (R1). The differences between R1 and R2 were 
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305 significant in each network and in each fMRI measure at significance level p < 0.05, with 

306 exception of the ReHo measure in the salience network (SN).

307

308 Table 2. A paired-samples t-test was performed to compare the pre-task resting-state (R1) 

309 and post-task resting-state (R2) conditions in the triple network (default mode network 

310 (DMN), salience network (SN), and central executive network (CEN)), in each fMRI 

311 measurement (21 Subjects). There was a significant difference of p < 0.05 between R1 and 

312 R2 in each network and in each fMRI measurement, with the exception of the SN from the 

313 ReHo measurement.

Brain 

network

 Mean 

values in 

R1 

 Standard 

deviation 

of values 

in R1

 Mean 

values in 

R2 

 Standard 

deviation 

of values 

in R2 

P-Value  T-Value 

Amplitude of low frequency fluctuations (ALFF)

DMN 0.1935 0.3429 0.1120 0.3344 0.0000 22.33

CEN 0.1592 0.3690 0.0420 0.3569 0.0000 20.92

SN -0.0475 0.3207 -0.0787 0.3151 0.0000 10.17

Regional homogeneity (ReHo)

DMN 0.8096 0.6722 0.8333 0.6511 0.0161 2.40

CEN 0.7172 0.5942 0.5955 0.6045 0.0000 9.01

SN 0.0936 0.4972 0.0809 0.4908 0.1431 1.46

Degree centrality (DC)

DMN 0.1278 0.3705 0.1154 0.3628 0.0280 2.19

CEN 0.2673 0.3669 0.2231 0.3295 0.0000 5.69

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.26.428223doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.26.428223
http://creativecommons.org/licenses/by/4.0/


SN 0.0276 0.3269 0.0726 0.3250 0.0000 9.71

314

315 Concretely, the ALFF values decreased significantly in all three observed networks (p < 

316 0.001 in all three networks). For the local connectivity parameter (ReHo), a significant increase in 

317 the DMN (p = 0.016) was observed, while the ReHo value decreased in the CEN (p < 0.001) and 

318 remained without statistically significant alteration in the SN. The long-range connectivity (DC) 

319 decreased significantly in the DMN and CEN (p = 0.028; p < 0.001), while increasing in the SN (p 

320 < 0.001).

321

322 Associations between the pre- and post-task resting-state 
323 differences and the task 
324

325 The RSS values were calculated separately for the triple networks (DMN, CEN and SN) 

326 for each of the fMRI measures (ALFF; ReHo and DC) are shown in Table 3.  The RSS values 

327 were comparable for all three parameters across all three networks. 

328

329 Table 3. Mean values, standard deviation, and the range of the resting-state similarity 

330 (RSS) calculated separately for each resting-state fMRI parameter (ALFF, ReHo, and DC) 

331 and for each of the triple networks (default mode network (DMN), salience network (SN), 

332 and central executive network (CEN).

RSS

(Mean)

RSS

(SD)

RSS

(Range)

DMN

ALFF 0.8818 0.029 0.824 – 0.925

ReHo 0.8118 0.039 0.698 - 0.876
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DC 0.7563 0.0657 0.575 - 0.884

CEN

ALFF 0.8736 0.044 0.763 - 0.946

ReHo 0.7788 0.051 0.655 - 0.867

DC 0.7574 0.097 0.425 - 0.864

SN

ALFF 0.8855 0.048 0.721 - 0.934

ReHo 0.7583 0.045 0.664 - 0.851

DC 0.7561 0.083 0.498 - 0.880

333

334

335 The correlation between the differences between post-task and pre-task RS parameters 

336 (RSD = R2 - R1) and the fMRI measures resulting from the pure task effects (task (Whole) - R1) are 

337 depicted in (Fig 4). Significant positive correlations were found in DMN for ALFF (r = 0.48, p = 

338 0.02) and DC (r = 0.58, p = 0.005); in CEN for ALFF (r = 0.44, p = 0.04), ReHo (r = 0.69, p = 

339 0.004) and DC (r = 0.67, p = 0.008); and in SN for ALFF (r = 0.69, p = 0.004), ReHo (r = 0.58, p 

340 = 0.004), and DC (r = 0.49, p = 0.02).

341

342 Fig 4. Correlations between the fMRI measures resulting from the pure task(whole) effects 

343 and the RSD in the triple network, including the DMN, CEN, and SN of the fMRI measures.

344

345 Further, a significant negative correlation was observed between the RS differences 

346 (RSD) in DC and the subject’s reaction time in the respond condition in the SN (r = -0.46, p = 
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347 0.04), but not in ReHo or ALFF measurements. No significant correlations between the fMRI 

348 measurements and the reaction time could be observed in DMN and CEN (Fig 5). 

349

350 Fig 5. Correlation between the resting-state differences (RSD) and the subject’s reaction 

351 time to the respond condition of the VOP, depicted in the triple networks and each fMRI 

352 measurement. Only the SN shows a significant negative correlation in the DC 

353 measurement. 

354

355 Inter-network interaction 
356

357 The functional connectivity between the DMN and CEN increased significantly following 

358 the performance of the task (p = 0.015). The connectivity strength between the DMN and the SN 

359 remained stable (p = 0.25), whereas it increased significantly between the SN and CEN (p = 

360 0.0004) (Fig 6).

361

362 Fig 6. Strength of the FC between each pair of networks in the triple network in the pre- 

363 and post-task resting-state. There is a significant increase in FC between the DMN and 

364 CEN, and between the CEN and the SN in the post-task resting-state (p < 0.05). The bars 

365 represent the standard error. 

366

367

368
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369 Discussion
370 In this study, we investigated the effects of a simple visual-oddball paradigm on three 

371 basic fMRI measurements of the RS – ALFF (RSA), ReHo, and DC (the local and the global 

372 functional connectivity, respectively) - in the three networks - DMN, CEN, and SN. Our analysis 

373 revealed that the brain activity following completion of the task had a significant effect on all 

374 examined parameters in all networks, except for the measure of local connectivity (ReHo) in the 

375 SN. Furthermore, the task performance induced a significant increase in the inter-network 

376 correlations between the SN and CEN, as well as between the DMN and CEN, but not between 

377 the DMN and SN. Also, the differences between the pre- and the post-task RS (R2 - R1) were 

378 strongly associated with the main task influence (task (Whole) - R1) in all three networks (ALFF and 

379 DC in the three networks, ReHo in the CEN and SN). Finally, at a behavioral level, the task 

380 performance (subject’s reaction time in the respond condition) correlated solely with the RS 

381 difference in DC for the SN.

382

383 Our findings indicate dynamic, disparate alterations in the post-task resting-state brain 

384 networks as a function of immediately preceding cognitive experiences. Thereby, the extent of 

385 the changes in the RS networks can be said to be closely associated with the magnitude of the 

386 direct task-effects measurable during the task performance. 

387

388 Within the DMN, the ALFF values decreased significantly, indicating a reduction of the DMN RSA 

389 following task performance. This effect has been reported previously [63-65]. As the DMN is 

390 regularly deactivated during the task performance [66,67], the continued reduction of the RSA 

391 observed after the task could be an expression of a redistribution of cognitive resources in the 

392 subsequent rest phase but could also indicate a neuronal correlate of task-induced temporal 

393 fatigue after a cognitive engagement [64]. In our study, the ALFF decrease in the DMN was 
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394 accompanied by a decrease in DC. Similar findings have been previously reported after subjects 

395 performed a sustained auditory working memory task [65]. Interestingly, the local FC (ReHo) 

396 increased significantly in the DMN. Local FC is defined by the temporal coherence or 

397 synchronization of the BOLD time series within a set of a given voxel’s nearest neighbors [26]. 

398 ReHo represents the most efficient, reliable, and widely used index of local FC [68,69]. An 

399 increase in ReHo indicates an increased local synchronization of spontaneous neural activity [65]. 

400 Moreover, it was previously postulated that ReHo correlates with measures of functional 

401 segregation such as local efficiency and clustering coefficients [70]. Thus, increased ReHo in the 

402 DMN following task completion may reflect a restriction of information transfer to spatially close 

403 areas, as well as functional segregation from distant hubs and decreased communication with 

404 remote brain regions [71]. This result complements the observation of the decreased DC values 

405 in the post-task RS in DMN. 

406

407 A significant increase in global brain connectivity (DC) was found in the SN in the post-

408 task RS. This finding is in concordance with the established role of the SN as a network known to 

409 demonstrate competitive interactions during cognitive information processing [6,19] and, thus, 

410 having a critical role in switching between two other major RS networks (the DMN and the CEN 

411 [1]. In particular, the main hubs of the SN, the frontal inferior insula and ACC, are known to share 

412 significant topographic reciprocal connectivity and form a tightly coupled network, ideally placed 

413 to integrate information from several brain regions [72,73]. Thus, they seem to moderate arousal 

414 during cognitively demanding tasks and play a unique function in initiating control signals that 

415 activate the CEN and deactivate the DMN [74].

416

417 The finding of a significant decrease of the RSA (ALFF) in the post-task RS in SN is slightly 

418 more complex to explain. Previous investigations have linked increased ALFF values in some 
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419 parts of the SN to a hyperarousal state in patients with MDD [75]. The reduction of the RSA in the 

420 post-task RS in our study may be an expression of a decreased arousal and decreased stimulus 

421 monitoring immediately after a completion of a task.

422 The connectivity analysis between the three networks revealed an increased 

423 synchronization (in terms of a significantly increased connectivity strength) for the SN with the 

424 CEN but not with the DMN in the post-task RS compared to the pre-task RS. This may be an 

425 after-task of the inter-network interactions during the paradigm performance. Indeed, Sridharan 

426 and colleagues have shown that the connectivity strength during the visual oddball paradigm 

427 particularly increased between the main nodes of the SN (frontal anterior insula and ACC) and all 

428 main nodes of the CEN, while the interactions between the SN and DMN were less pronounced 

429 [74]. 

430 In the CEN, the spontaneous brain activity (ALFF) decreased alongside the measures of 

431 the local and global connectivity. At a broad level, the CEN is included in higher order executive 

432 functioning, including the cognitive control of thought, emotion regulation, and working memory 

433 [16,76,77] and is thus activated during efforts to exert self-control, reappraise threatening stimuli, 

434 and to suppress intrusive, unpleasant thoughts [78-80]. CEN activity has been shown to be anti-

435 correlated with activity in the DMN in healthy adults [1,19,74],  while some investigations indicate 

436 that the CEN also exhibits an inhibitory control on the DMN [81]. Thus, the decrease in RSA in 

437 the CEN following completion of a cognitive paradigm may be the basis for the restoration of the 

438 regular activity of the DMN within the scope of a decline in DMN inhibition which occurred as a 

439 result of increased CEN activity during the task performance.

440 Interestingly, the connectivity between the CEN and DMN also increased in the post-task 

441 resting-state. This finding is consistent with the literature on the cooperative activity of the DMN 

442 and the CEN during different mental operations [82]. An increased coupling between some parts 
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443 of these two networks has been shown in problem-solving tasks [83], social working memory [84], 

444 and during creative idea production [85]. Furthermore, a significant interaction between the DMN 

445 and the CEN has also been shown during the RS condition [86]. Thereby, this interaction seems 

446 to fluctuate dynamically across short time scales [87], indicating that the temporal relationships 

447 between the DMN and CEN shifts depending on the change in the attention focus and the 

448 immediately preceding activity. Thus, the increased connectivity between the DMN and the CEN 

449 in the post-task RS observed in our study may be an expression of the shifting of attention after 

450 task completion.

451

452 Several subregions of the triple networks are known to be activated during the 

453 performance of cognitively demanding tasks [88]. In the case of the visual oddball paradigm 

454 performed in our study, the main task specific activation has been reported previously by Warbrick 

455 and colleagues [51]. The target detection specifically involved parts of the DMN (PCC) and the 

456 SN (Insula, ACC). The insula activation was common to the count and respond conditions. The 

457 intensive involvement of different subregions of the triple networks in the performance of the task 

458 may have contributed to the significant changes in the triple network model networks in the post-

459 task RS compared to the pre-task RS. Indeed, we have found positive correlations between the 

460 extent of the differences between R1 and R2 regarding specific parameters and the actual task 

461 effect on the same parameters in the triple networks. These correlations were significant in the 

462 DMN for ALFF and DC measures and in the CEN and the SN for all three fMRI measures. A close 

463 relationship between the cognitive level of the previous task and the extent of the modulation in 

464 the brain networks has been reported previously. Barnes and colleagues observed that the 

465 changes in endogenous dynamics in post-task RS is directly related to the difficulty of task 

466 performance [89]. In the case of the visual oddball paradigm used here, the levels of cognitive 

467 demand for all the three subtasks are not widely different and the whole paradigm did not require 
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468 high cognitive effort. However, we observed that the extent of the changes in the RSA and local 

469 as well as global connectivity in the core RS networks in the post-task condition follows the extent 

470 of the task-induced changes within those networks. Thus, the task-induced modification of the RS 

471 activity and connectivity seems to be influenced by the intensity of the immediately preceding 

472 activation within the observed regions/networks.

473

474 A significant correlation between the behavioral outcomes in the visual oddball paradigm 

475 and the changes in the fMRI parameters could only be observed in the SN. Participants showing 

476 better performance (shorter response times in the response subtask) had a higher increase in 

477 global connectivity when comparing the second and the first RS. Thus, higher flexibility of the SN 

478 may be associated with better cognitive performance. This supports the observation that subjects 

479 with lower SN-network interactions have more pronounced inattention scores [90].

480

481 Conclusion 
482 Our findings confirm significant dynamical changes in RSA, alongside local and global 

483 connectivity within the triple networks following a simple cognitive activity. As discussed above, 

484 the change in patterns differed noticeably between the networks and was tightly associated with 

485 the task-related brain activity. The observed changes may be an expression of the distinct 

486 involvement of the networks in the performance of the task and their various roles in the 

487 processing and integration of the immediately preceding experience. Our results provide further 

488 insight into the dynamics within and between the triple networks and contribute to a better 

489 understanding of their functional importance and interplay.
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