2 resting-state networks following the visual oddball parad	igm
3	
 Hasan Sbaihat^{1,2,3}, Ravichandran Rajkumar^{1,3,4}, Shukti Ramkiran^{1,3,4}, Abed Al- Jon Shah^{1,4,5,6}, Tanja Veselinović³, Irene Neuner^{1,3,4} 	-Nasser Assi ² , N.
6	
⁷ ¹ Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich G	SmbH, Jülich,
8 Germanys	
9	
10 ² Department of Medical Imaging, Arab-American University Palestine, AAUP,	, Jenin, Palestine
11	
³ Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aach	hen University,
13 Aachen, Germany	,
14	
⁴ JARA – BRAIN – Translational Medicine, Aachen, Germany	
16	
⁵ Department of Neurology, RWTH Aachen University, Aachen, Germany	
18	
⁶ Institute of Neuroscience and Medicine, INM-11, Forschungszentrum Jülich	GmbH, Jülich,
20 Germany	
21	
22	
23 *Corresponding author	
24 Email: i.neuner@fz-juelich.de (IN)	
25	
26	
²⁷ [¶] These authors contributed equally	
28	
29	
30	

31 Abstract

32

The default mode network (DMN), the salience network (SN), and the central executive 33 network (CEN) could be considered as the core resting-state brain networks (RSN) due to their 34 35 involvement in a wide range of cognitive tasks. Despite the large body of knowledge relating to their regional spontaneous activity (RSA) and functional connectivity (FC) of these networks, less 36 is known about the influence of task-associated activity on these parameters and on the 37 interaction between these three networks. We have investigated the effects of the visual-oddball 38 39 paradigm on three fMRI measures (amplitude of low-frequency fluctuations for RSA, regional 40 homogeneity for local FC, and degree centrality for global FC) in these three core RSN networks. A rest-task-rest paradigm was used and the RSNs were identified using independent component 41 analysis (ICA) on the resting-state data. We found that the task-related brain activity induced 42 43 different patterns of significant changes within the three RS networks. Most changes were strongly associated with the task performance. Furthermore, the task-activity significantly increased the 44 inter-network correlations between the SN and CEN as well as between the DMN and CEN, but 45 46 not between the DMN and SN. A significant dynamical change in RSA, alongside local and global 47 FC within the three core resting-state networks following a simple cognitive activity may be an expression of the distinct involvement of these networks in the performance of the task and their 48 49 various outcomes.

- 50
- 51
- 52
- 53

54

55 Introduction

56

Examination of regional spontaneous brain activity (RSA) and functional connectivity (FC) during resting-state (RS) conditions appears to be a promising approach for understanding brain organization at the systems level [1]. Within the several stable RS networks identified up to now, three networks stand out for their importance and synchronized interplay: the default mode network (DMN), the salience network (SN), and the central executive network (CEN). These networks are often jointly referred to as the triple network model [2] and are considered to be the core neurocognitive networks due to their involvement in a wide range of cognitive tasks [1,3,4].

64

Specifically, the DMN is known to be a task-negative network associated with self-65 66 referential thoughts and mind-wandering [5]. It shows decreased activation during tasks in which 67 self-referential and stimulus-independent intellectual activity is not involved [6,7]. Even more, 68 numerous studies have demonstrated that midline DMN regions are among the most efficiently wired brain areas, serving as global hubs that bridge different functional systems across the brain 69 [8,9]. Increased DMN connectivity with regions of other brain networks has been shown to 70 71 facilitate performance during goal-directed tasks [10]. Thus, DMN is not engaged only under resting-state conditions but also under task performance and post-task processes as well [10-12]. 72

73

The CEN is a task-positive network, engaged in higher-order cognitive and attention control as well as in working memory, decision making and goal-directed behavior [13-15]. Conversely, the SN is involved in detecting, filtering and integrating relevant internal (e.g., autonomic input) and external (e.g., emotional information) salient stimuli in order to guide

behavior [1,16]. Furthermore, it displays a crucial role in the functional and dynamic switching
between the DMN and CEN (i.e., between task-based and task-free states) [17,18].

80

81 Dynamic interactions between the three networks of the triple network model influence 82 cognition and emotion, affecting performance and impulsivity [19-21]. Moreover, an altered 83 interaction between these networks has been shown in patients with major depressive disorder [22], post-traumatic stress disorder [23], obsessive-compulsive disorder [24], and schizophrenia 84 85 [25,26] Altogether, an increasing body of evidence suggests that aberrant function of the triple networks underlies the psychopathology of all major psychiatric disorders [27] and disturbed 86 functional interactions among them may be considered a potential neurophysiological biomarker 87 for different psychopathological phenomena across several neuropsychiatric disorders [28]. It is 88 89 therefore particularly important to understand the physiological fluctuations in the activity and 90 interactions of these networks in order to be able to differentiate them from pathological conditions. 91

92

Continuous fluctuations of the main properties of the networks (as RSA and FC) have been shown during rest and during task-associated activities [29,30]. Much less is known about the extent to which these properties can be influenced by a specific task and to what extent a task-associated activity affects the interaction between the networks.

A simple method to investigate the effects of task-related activation on the RSA is the resttask-rest paradigm (RTR) [5,31]. To date, a task-induced modulation of the RSA has been observed following cognitive tasks involving working memory, emotion, visual perception, and motor training. However, previous studies have mainly focused on whole-brain [31-35] or on specific brain structures known to be involved in the tasks [36,37]. None of the mentioned studies

has specifically addressed the impact of a task on the triple network. Moreover, previous investigations have overall changes in static connectivity in different time periods (before and after the task), but changes in the relationship between the different networks (particularly in the triple network, which is the focus of this study) remain poorly understood. Thus, in this study, we have specifically examined task-induced changes in RSA and FC in the triple network of the RS (DMN, SN and CEN) and the task-induced effects on the interactions between them.

108

109 Concretely, this study aims to assess the extent of the influence exerted by a well-110 established task - the visual oddball paradigm [38] on the post-task RS in the regions of the triple 111 network using the RTR design. The visual oddball paradigm task was chosen as it elicits the blood 112 oxygen level dependent (BOLD) response in a large set of distributed networks [39-43]. In 113 particular, the task performance is associated with activation in brain regions linked to the three 114 networks (the SN [44], the dorsolateral prefrontal cortex (CEN) [45,46], and the cingulate and 115 prefrontal cortex (DMN) [47].

For the identification of the triple network regions we applied a group independent 116 117 component analysis (ICA) to the RS data. Several different measures of FC can be calculated 118 from fMRI, each reflecting a different property of the brain networks. For this approach, we chose 119 two such measures, the regional homogeneity (ReHo) [48] the degree centrality (DC) [49], as 120 these are suitable for investigating the voxel level local and global FC, respectively. Furthermore, 121 the amplitude of low-frequency fluctuations (ALFF) [50], is suitable for depicting the RSA. Combining these measures enables the complementary characterization of changes in activation 122 123 and communication of specific networks or regions.

124

We hypothesised that the task-based activity would distinctly affect the RS RSA as well as the local and the global connectivity in the triple network. Due to the central role of the SN during the occurrence of salient stimuli or during the performance of a cognitive task, we also expected internetwork functional connectivity to increase between the SN and the other two networks of the triple network model (DMN, CEN).

Materials and Methods

131 Subjects

132 21 right-handed healthy subjects (17 males and four females) were included in this study 133 (age range between 19 to 40 years; mean: 29 ± 5.6 years). All subjects were healthy and without 134 a history of neurological or psychiatric disorders. The study was approved by the Ethics 135 Committee of the Medical Faculty of the RWTH Aachen University, Germany. Written informed 136 consent was obtained from all subjects following the recommendations of the Declaration of 137 Helsinki.

138 Experimental design

139

To investigate the effects of task-induced brain activity on the post-task resting-state, the experiment followed a rest-task-rest (RTR) design consisting of three parts – each part representing a different brain state: first RS (R1), active state (during the performance of the visual oddball paradigm) and the second, post-task RS (R2) (Fig 1).

144

Fig 1. Experimental design of the rest-task-rest paradigm (RTR) which includes two resting-state conditions (pre- and post-task resting-state, R1 and R2) and the task condition composed of three subtasks of the visual oddball paradigm (VOP).

148

During RS conditions, the subjects were instructed to close their eyes and not focus on any specific thoughts. All the fMRI data were acquired in a single scanning session and instructions were given to the subjects in-between each condition via a microphone.

152

The visual oddball paradigm comprises of three subtasks: passive (T1), count (T2), and respond (T3). Two different colored circles were established as frequent (yellow circles) and target (blue circles) stimuli. During the passive condition, the subjects were asked to simply keep the stimuli under observation. During the count condition, the subjects were asked to count the target stimuli (blue circles), and during the respond condition, the subjects were instructed to press a button with their right index finger as soon as they recognised the target stimuli.

Each visual oddball paradigm condition included 200 trials (160 frequent and 40 target stimuli). The single stimulus was 30 cm in diameter shown on a black background for 500 milliseconds with a variable interstimulus interval (ISI) of 500–10,000 milliseconds. The stimulus generator board (ViSaGe MKII, Cambridge Research System Ltd.) was used to generate the stimuli and a thin-film transistor display was used to view the stimuli. The thin-film transistor display was installed behind the scanner and was viewed using a mirror placed on the head coil of the magnetic resonance (MR) scanner.

A part of this data set (N = 16), which mainly focused on the analysis of the effects of different response modalities on the fMRI BOLD activation during the visual oddball paradigm, has been published previously [51].

169 MR Data Acquisition

170

MR data were acquired using a 3T scanner (TIM-Trio, Siemens Healthineers, Erlangen, Germany). Sponge pads were used to reduce motion artefacts by limiting the subject's head movement. The fMRI data were acquired using an echo planner imaging (EPI) sequence. The number of volumes were 304 for each task and 180 for each RS condition (repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle (FA) = 79°, field of view (FOV) = 200 × 200 mm, 64 × 64 matrix, slice thickness = 3 mm, number of slices = 33). Structural images were acquired using a magnetization prepared rapid gradient echo (MP-

178 RAGE) sequence (TR = 2250 ms, TE = 3.03 ms, FA = 9° , FOV = $256 \times 265 \text{ mm}$, $64 \times 64 \text{ matrix}$, 179 176 slices, voxel size $1 \times 1 \times 1 \text{ mm}^3$).

- 180 **fMRI Data Analysis**
- 181

182 Task Data

183

184 The analysis of the task-related brain activation was performed using FSL software package (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The pre-processing included slice 185 timing correction, brain extraction (using BET) [52], motion correction (MCFLIRT) [53], spatial 186 187 smoothing using a Gaussian kernel of full width at half maximum (FWHM) of 5 mm, and high pass 188 temporal filtering (100s). A time-series of BOLD signal based on the general linear modal for each individual data set was performed using FILM with local autocorrelation correction [54]. The 189 functional images were registered to the high-resolution structural images and subsequently to 190 191 the Montreal Neurological Institute (MNI) standard space using the FLIRT tool [55]. The first-level 192 analysis was performed with two explanatory variables (EV). The EVs were convolved with a 193 double-gamma hemodynamic response function (HRF). Four contrasts were then created: target stimuli, frequent stimuli, target > frequent, frequent > target. 194

Group-level mixed-effects analysis was performed for the passive, count and respond sub-tasks to create a mean for each first level contrast using FLAME with spatial normalization to MNI space and using a cluster with a significance threshold of Z > 2.3, p = 0.05 [56]. A tripled two-group difference ("tripled t-test") Was performed to evaluate the additional activation added to the passive condition by the count and respond conditions. The activation pattern regions were defined using Harvard-Oxford Cortical Structural Atlas in FSL software (FMRIB, Oxford, UK).

201 202

Triple network identification

The multivariate exploratory linear decomposition into independent components 203 (MELODIC) tool from the FSL software package was used to identify the triple networks (DMN, 204 CEN, and SN) using pre-task RS fMRI data. Subject level RS-fMRI data were pre-processed as 205 206 follows: the first eight fMRI volume images were removed, followed by slice timing correction, brain extraction (BET) [52], motion correction (MCFLIRT) [53], spatial smoothing FWHM = 5 mm, 207 and high-pass temporal filtering 125s. The functional MRI images were co-registered linearly to 208 209 high-resolution structural images and nonlinearly to MNI standard space using FLIRT [55]. Group 210 ICA analysis was used to decompose the pre-task RS data into 20 components.

211

To identify the triple networks, a cross-correlation was performed between the functional brain networks atlas [57] and each of the ICA components. The cross-correlation was performed using the FSLUTILS (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils) tool implemented in the FSL software package. ICA components that showed maximum correlation with each of the three networks in the functional brain networks atlas were chosen. The identified brain networks were binarized and used in the subsequent analysis as masks. The binarized masks were corrected for grey matter (GM) by including the voxels which showed more than 50% probability of being

GM. The GM correction was performed using a tissue segmented MNI152 (2 × 2 × 2 mm³)
template.

221 fMRI measures calculation

222

The fMRI measures were computed for both the tasks and RS-fMRI using data processing 223 and analysis for brain imaging (DPABI) [58], and SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) 224 toolboxes built on MATLAB software package version 2017b (The Math Works, Inc., Natick, MA, 225 226 USA). Pre-processing was performed using the data processing assistant for the RS-fMRI (DPARSF) [59] advanced edition as follows: first eight fMRI volume images of each condition in 227 228 each subject's dataset were removed, followed by slice timing correction, realignment, nuisance 229 covariates regression (NCR) and temporal filtering between 0.01 and 0.08 Hz. To get rid of the 230 nuisance signals, the Friston 24-parameter model was used for covariate regression. The fMRI measures were calculated for each subject separately in individual brain imaging space. The DC 231 was computed by applying a Pearson correlation coefficient between the time series of a given 232 voxel and all other voxels in the whole brain by thresholding each correlation at (r > 0.25, p \leq 233 234 0.001) [60]. ReHo was calculated by estimating the synchronization or similarity between the time 235 series of a given voxel and 26 nearby neighbor voxels [48] using Kendall's coefficient of 236 concordance (KCC) [61]. The ALFF was calculated within the low-frequency range (0.01 - 0.1)237 Hz) [62]. The fMRI measures were normalised using a Z-value standardization procedure by 238 subtracting the mean from each voxel and then dividing the value by the standard deviation of the whole brain. The Z-value standardised measures were co-registered to the MNI standard space 239 $(2 \times 2 \times 2 \text{mm}^3)$, and, finally, spatial smoothing with FWHM at 4mm³ was performed. 240

241

242 Further calculated values

243

The fMRI measures ALFF, ReHo, and DC were extracted from all voxels of the triple network for each condition in all subjects using the binarized triple network masks. The extracted voxellevel values were used to calculate several parameters of interest, relevant for the examination of the task effect on the post task resting-state. These parameters and the exact description of how they were calculated are shown in Table 1.

249

250 Table 1: Description of parameters used to examine the effect of the task on the fMRI

251 measures in the post-task RS

Parameter	Calculation procedure/ meaning
R1	Voxel-level fMRI measures during the first (pre-task) resting-state (RS) (baseline)
R2	Voxel-level fMRI measures during the second (post-task) RS.
T1, T2, T3	Voxel-level fMRI measures during the three subtasks of the visual oddball paradigm.
RS difference	Difference between post- and pre-task RS (R2 - R1) in the voxel-level
(RSD)	fMRI measures for each subject.
Tack	Task _(whole) = (T1 + T2 +T3) / 3
I ask (whole)	(mean values of the fMRI measures during the three subtasks)
Main task _(whole)	Task _(whole) - R1
RS similarity (RSS)	Correlation coefficient between R1 and R2 for each subject.
	Correlation coefficients between the differences (Task (whole) – R1)
Task effect at	and (R2 - R1).
the group level	All correlation coefficients were computed using Pearson's correlation coefficients at a significance level of $p < 0.05$.

252

The inter-network FC of the three networks were calculated by first extracting the mean of the BOLD signal time series from the binarized mask of each network, followed by the

computation of the Pearson's correlation coefficient between each pair of networks. Fisher r to z
transformation was performed to improve the normal distribution. A paired t-test was used to
examine the difference of FC between the pre- and the post-task RS.

258

To investigate the relationship between the behavioral data (e.g. reaction time) and the fMRI measures, the correlation coefficients between the RSD and subject's reaction time in the response condition was performed. Having checked the normality of the data using the Kolmogorov-Smirnov test, a paired-sample t-test was used in order to find the differences between the pre- and post-task RS in each fMRI measure.

264 **Results**

265 **Behavioural data**

266

267 The mean reaction time of the respond condition was 477ms (SD = 13).

²⁶⁸ Imaging data - task data

269

270 The task data were initially analysed and reported following the examination of the first 16 271 participants [51]. The current analysis includes an enlarged collective of test subjects (N = 21) and confirms previously reported findings. In summary, activation in regions associated with a 272 response to visual stimulation (occipital cortex) for both the target and the frequent stimuli was 273 274 observed during all three subtasks of the visual oddball paradigm. Both, the count and respond 275 conditions differed significantly from the passive condition in a number of brain regions including 276 the pre- and post-central gyri, regions of the parietal cortex and the middle and inferior frontal gyri. Compared to the count condition, the response contrast yielded significant differences in the 277 278 parietal operculum, inferior parietal lobule, insula, anterior cingulate cortex, and the posterior cingulate cortex (PCC). 279

280

281 282	Imaging data -Triple network resting-state data
283	The triple network was identified using group independent component analysis (Fig 2).
284	Specifically, the DMN included the posterior cingulate cortex (PCC), precuneus, angular gyrus,
285	and medial prefrontal cortex (mPFC); the CEN included the lateral posterior parietal cortex
286	(LPPC) and dorsolateral prefrontal cortex (DLPFC); the SN included the frontal insular cortex
287	(FIC), and anterior cingulate cortex (ACC).
288	
289	Fig 2. Depiction of the triple networks referred to as the triple network: default mode
290	network (DMN, blue colour), central executive network (CEN, red colour), and salience
291	network (SN, green colour). The networks were identified by decomposing the pre-task
292	resting-state condition into 20 components from 21 subjects.
293	
294 295	RSA and FC across different brain-states
296	The fMRI measures showed different values in the RSA and the local and global FC during
297	the different brain-states (rest-task-rest) (Fig 3). These values differed significantly at the group
298	level. A pairwise comparison between the pre- and post-task RS (R1 and R2) revealed significant
299	differences in each network and for each fMRI measure at a significance level of p < 0.05, with
300	exception of the ReHo measure in the SN (Table 2).
301	
302	Fig 3. fMRI measures (ALFF, ReHo, and DC) from 21 subjects. Visual inspection shows a
302 303	Fig 3. fMRI measures (ALFF, ReHo, and DC) from 21 subjects. Visual inspection shows a change in each of the three fMRI measures in the post-task resting-state (R2) when
302 303 304	Fig 3. fMRI measures (ALFF, ReHo, and DC) from 21 subjects. Visual inspection shows a change in each of the three fMRI measures in the post-task resting-state (R2) when compared to pre-task resting-state networks (R1). The differences between R1 and R2 were

significant in each network and in each fMRI measure at significance level p < 0.05, with

exception of the ReHo measure in the salience network (SN).

307

Table 2. A paired-samples t-test was performed to compare the pre-task resting-state (R1) and post-task resting-state (R2) conditions in the triple network (default mode network (DMN), salience network (SN), and central executive network (CEN)), in each fMRI measurement (21 Subjects). There was a significant difference of p < 0.05 between R1 and R2 in each network and in each fMRI measurement, with the exception of the SN from the

313 **ReHo measurement**.

Brain network	Mean values in R1	Standard deviation of values in R1	Mean values in R2	Standard deviation of values in R2	P-Value	T-Value
	Am	plitude of low	frequency fluc	tuations (ALFF	-)	
DMN	0.1935	0.3429	0.1120	0.3344	0.0000	22.33
CEN	0.1592	0.3690	0.0420	0.3569	0.0000	20.92
SN	-0.0475	0.3207	-0.0787	0.3151	0.0000	10.17
		Regional	homogeneity	(ReHo)		
DMN	0.8096	0.6722	0.8333	0.6511	0.0161	2.40
CEN	0.7172	0.5942	0.5955	0.6045	0.0000	9.01
SN	0.0936	0.4972	0.0809	0.4908	0.1431	1.46
		Degr	ee centrality ([DC)		
DMN	0.1278	0.3705	0.1154	0.3628	0.0280	2.19
CEN	0.2673	0.3669	0.2231	0.3295	0.0000	5.69

	SN	0.0276	0.3269	0.0726	0.3250	0.0000	9.71
314							
315	Concr	etely, the ALF	F values decre	eased significa	intly in all thre	e observed ne	tworks (p <
316	0.001 in all th	ree networks).	For the local of	connectivity pa	rameter (ReHo	o), a significant	increase in
317	the DMN (p =	0.016) was ob	oserved, while	the ReHo valu	e decreased i	n the CEN (p <	: 0.001) and
318	remained with	nout statistical	ly significant a	alteration in the	e SN. The lon	g-range conne	ctivity (DC)
319	decreased sig	nificantly in th	e DMN and CI	EN (p = 0.028;	p < 0.001), wł	nile increasing	in the SN (p
320	< 0.001).						
321							
322 323 324	Associat differenc	ions betv es and th	veen the _l le task	pre- and p	oost-task	resting-s	tate
325	The R	SS values we	re calculated s	separately for t	he triple netw	orks (DMN, CI	EN and SN)
326	for each of th	e fMRI measu	ires (ALFF; Re	eHo and DC) a	are shown in ⁻	Table 3. The	RSS values
327	were compara	able for all thre	e parameters	across all thre	e networks.		
328							
329	Table 3. Mea	an values, sta	andard devia	tion, and the	range of the	e resting-state	∍ similarity
330	(RSS) calcula	ated separate	ely for each re	esting-state fl	MRI paramete	er (ALFF, ReH	o, and DC)
331	and for each	of the triple	networks (de	fault mode ne	etwork (DMN)	, salience net	twork (SN),
332	and central e	executive net	work (CEN).				
		RS	S	RSS		RSS	
						<u> </u>	

	(Mean)	(SD)	(Range)
		DMN	
ALFF	0.8818	0.029	0.824 – 0.925
ReHo	0.8118	0.039	0.698 - 0.876

DC	0.7563	0.0657 0.575 - 0.884	
		CEN	
ALFF	0.8736	0.044	0.763 - 0.946
ReHo	0.7788	0.051	0.655 - 0.867
DC	0.7574	0.097	0.425 - 0.864
		SN	
ALFF	0.8855	0.048	0.721 - 0.934
ReHo	0.7583	0.045	0.664 - 0.851
DC	0.7561	0.083	0.498 - 0.880

333

334

The correlation between the differences between post-task and pre-task RS parameters (RSD = R2 - R1) and the fMRI measures resulting from the pure task effects (task _(Whole) - R1) are depicted in (Fig 4). Significant positive correlations were found in DMN for ALFF (r = 0.48, p = 0.02) and DC (r = 0.58, p = 0.005); in CEN for ALFF (r = 0.44, p = 0.04), ReHo (r = 0.69, p = 0.004) and DC (r = 0.67, p = 0.008); and in SN for ALFF (r = 0.69, p = 0.004), ReHo (r = 0.58, p = 0.004), and DC (r = 0.49, p = 0.02).

341

344

Further, a significant negative correlation was observed between the RS differences (RSD) in DC and the subject's reaction time in the respond condition in the SN (r = -0.46, p =

0.04), but not in ReHo or ALFF measurements. No significant correlations between the fMRI
measurements and the reaction time could be observed in DMN and CEN (Fig 5).

349

Fig 5. Correlation between the resting-state differences (RSD) and the subject's reaction time to the respond condition of the VOP, depicted in the triple networks and each fMRI measurement. Only the SN shows a significant negative correlation in the DC measurement.

354

355 Inter-network interaction

356

The functional connectivity between the DMN and CEN increased significantly following the performance of the task (p = 0.015). The connectivity strength between the DMN and the SN remained stable (p = 0.25), whereas it increased significantly between the SN and CEN (p = 0.0004) (Fig 6).

361

Fig 6. Strength of the FC between each pair of networks in the triple network in the preand post-task resting-state. There is a significant increase in FC between the DMN and CEN, and between the CEN and the SN in the post-task resting-state (p < 0.05). The bars represent the standard error.

366

367

368

369 **Discussion**

In this study, we investigated the effects of a simple visual-oddball paradigm on three 370 basic fMRI measurements of the RS – ALFF (RSA), ReHo, and DC (the local and the global 371 functional connectivity, respectively) - in the three networks - DMN, CEN, and SN. Our analysis 372 373 revealed that the brain activity following completion of the task had a significant effect on all 374 examined parameters in all networks, except for the measure of local connectivity (ReHo) in the SN. Furthermore, the task performance induced a significant increase in the inter-network 375 correlations between the SN and CEN, as well as between the DMN and CEN, but not between 376 377 the DMN and SN. Also, the differences between the pre- and the post-task RS (R2 - R1) were 378 strongly associated with the main task influence (task (Whole) - R1) in all three networks (ALFF and DC in the three networks, ReHo in the CEN and SN). Finally, at a behavioral level, the task 379 380 performance (subject's reaction time in the respond condition) correlated solely with the RS 381 difference in DC for the SN.

382

Our findings indicate dynamic, disparate alterations in the post-task resting-state brain networks as a function of immediately preceding cognitive experiences. Thereby, the extent of the changes in the RS networks can be said to be closely associated with the magnitude of the direct task-effects measurable during the task performance.

387

Within the DMN, the ALFF values decreased significantly, indicating a reduction of the DMN RSA following task performance. This effect has been reported previously [63-65]. As the DMN is regularly deactivated during the task performance [66,67], the continued reduction of the RSA observed after the task could be an expression of a redistribution of cognitive resources in the subsequent rest phase but could also indicate a neuronal correlate of task-induced temporal fatigue after a cognitive engagement [64]. In our study, the ALFF decrease in the DMN was

accompanied by a decrease in DC. Similar findings have been previously reported after subjects 394 performed a sustained auditory working memory task [65]. Interestingly, the local FC (ReHo) 395 396 increased significantly in the DMN. Local FC is defined by the temporal coherence or 397 synchronization of the BOLD time series within a set of a given voxel's nearest neighbors [26]. ReHo represents the most efficient, reliable, and widely used index of local FC [68,69]. An 398 increase in ReHo indicates an increased local synchronization of spontaneous neural activity [65]. 399 400 Moreover, it was previously postulated that ReHo correlates with measures of functional 401 segregation such as local efficiency and clustering coefficients [70]. Thus, increased ReHo in the DMN following task completion may reflect a restriction of information transfer to spatially close 402 403 areas, as well as functional segregation from distant hubs and decreased communication with 404 remote brain regions [71]. This result complements the observation of the decreased DC values in the post-task RS in DMN. 405

406

407 A significant increase in global brain connectivity (DC) was found in the SN in the post-408 task RS. This finding is in concordance with the established role of the SN as a network known to demonstrate competitive interactions during cognitive information processing [6,19] and, thus, 409 having a critical role in switching between two other major RS networks (the DMN and the CEN 410 411 [1]. In particular, the main hubs of the SN, the frontal inferior insula and ACC, are known to share 412 significant topographic reciprocal connectivity and form a tightly coupled network, ideally placed to integrate information from several brain regions [72,73]. Thus, they seem to moderate arousal 413 during cognitively demanding tasks and play a unique function in initiating control signals that 414 activate the CEN and deactivate the DMN [74]. 415

416

The finding of a significant decrease of the RSA (ALFF) in the post-task RS in SN is slightly more complex to explain. Previous investigations have linked increased ALFF values in some

parts of the SN to a hyperarousal state in patients with MDD [75]. The reduction of the RSA in the
post-task RS in our study may be an expression of a decreased arousal and decreased stimulus
monitoring immediately after a completion of a task.

422 The connectivity analysis between the three networks revealed an increased synchronization (in terms of a significantly increased connectivity strength) for the SN with the 423 CEN but not with the DMN in the post-task RS compared to the pre-task RS. This may be an 424 425 after-task of the inter-network interactions during the paradigm performance. Indeed, Sridharan and colleagues have shown that the connectivity strength during the visual oddball paradigm 426 427 particularly increased between the main nodes of the SN (frontal anterior insula and ACC) and all main nodes of the CEN, while the interactions between the SN and DMN were less pronounced 428 429 [74].

430 In the CEN, the spontaneous brain activity (ALFF) decreased alongside the measures of 431 the local and global connectivity. At a broad level, the CEN is included in higher order executive functioning, including the cognitive control of thought, emotion regulation, and working memory 432 [16,76,77] and is thus activated during efforts to exert self-control, reappraise threatening stimuli, 433 434 and to suppress intrusive, unpleasant thoughts [78-80]. CEN activity has been shown to be anticorrelated with activity in the DMN in healthy adults [1,19,74], while some investigations indicate 435 436 that the CEN also exhibits an inhibitory control on the DMN [81]. Thus, the decrease in RSA in 437 the CEN following completion of a cognitive paradigm may be the basis for the restoration of the 438 regular activity of the DMN within the scope of a decline in DMN inhibition which occurred as a result of increased CEN activity during the task performance. 439

Interestingly, the connectivity between the CEN and DMN also increased in the post-task
resting-state. This finding is consistent with the literature on the cooperative activity of the DMN
and the CEN during different mental operations [82]. An increased coupling between some parts

of these two networks has been shown in problem-solving tasks [83], social working memory [84], 443 and during creative idea production [85]. Furthermore, a significant interaction between the DMN 444 445 and the CEN has also been shown during the RS condition [86]. Thereby, this interaction seems to fluctuate dynamically across short time scales [87], indicating that the temporal relationships 446 between the DMN and CEN shifts depending on the change in the attention focus and the 447 immediately preceding activity. Thus, the increased connectivity between the DMN and the CEN 448 449 in the post-task RS observed in our study may be an expression of the shifting of attention after 450 task completion.

451

452 Several subregions of the triple networks are known to be activated during the 453 performance of cognitively demanding tasks [88]. In the case of the visual oddball paradigm performed in our study, the main task specific activation has been reported previously by Warbrick 454 and colleagues [51]. The target detection specifically involved parts of the DMN (PCC) and the 455 SN (Insula, ACC). The insula activation was common to the count and respond conditions. The 456 457 intensive involvement of different subregions of the triple networks in the performance of the task may have contributed to the significant changes in the triple network model networks in the post-458 task RS compared to the pre-task RS. Indeed, we have found positive correlations between the 459 460 extent of the differences between R1 and R2 regarding specific parameters and the actual task 461 effect on the same parameters in the triple networks. These correlations were significant in the DMN for ALFF and DC measures and in the CEN and the SN for all three fMRI measures. A close 462 relationship between the cognitive level of the previous task and the extent of the modulation in 463 the brain networks has been reported previously. Barnes and colleagues observed that the 464 465 changes in endogenous dynamics in post-task RS is directly related to the difficulty of task 466 performance [89]. In the case of the visual oddball paradigm used here, the levels of cognitive demand for all the three subtasks are not widely different and the whole paradigm did not require 467

high cognitive effort. However, we observed that the extent of the changes in the RSA and local
as well as global connectivity in the core RS networks in the post-task condition follows the extent
of the task-induced changes within those networks. Thus, the task-induced modification of the RS
activity and connectivity seems to be influenced by the intensity of the immediately preceding
activation within the observed regions/networks.

473

A significant correlation between the behavioral outcomes in the visual oddball paradigm and the changes in the fMRI parameters could only be observed in the SN. Participants showing better performance (shorter response times in the response subtask) had a higher increase in global connectivity when comparing the second and the first RS. Thus, higher flexibility of the SN may be associated with better cognitive performance. This supports the observation that subjects with lower SN-network interactions have more pronounced inattention scores [90].

480

481 Conclusion

482 Our findings confirm significant dynamical changes in RSA, alongside local and global 483 connectivity within the triple networks following a simple cognitive activity. As discussed above, the change in patterns differed noticeably between the networks and was tightly associated with 484 485 the task-related brain activity. The observed changes may be an expression of the distinct involvement of the networks in the performance of the task and their various roles in the 486 487 processing and integration of the immediately preceding experience. Our results provide further insight into the dynamics within and between the triple networks and contribute to a better 488 489 understanding of their functional importance and interplay.

490 Acknowledgements

This study is considered to be part of the doctoral thesis (Dr. rer. medic.) of Mr. Hasan Sbaihat, 491 Faculty of Medicine, RWTH Aachen University, Germany. Hasan Sbaihat would like to thank the 492 493 Palestinian German Science Bridge (PGSB), Federal Ministry of Education and Research Germany, and the Palestine Academy for Science and Technology (PALAST) for their assistance 494 and scholarship funding. The authors would like to thank Dr. Jorge Arrubla and Tracy Warbrick 495 for their help in data acquisition, and Dr. Shivakumar Viswanathan for providing advice on 496 497 statistics. Finally, authors would like to thank Ms. Claire Rick and Mr. Dennis Thomas for 498 proofreading the manuscript.

499

500 **References**

501

Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula
 function. Brain Struct Funct. 2010 May 29;214(5–6):655–67. doi: 10.1007/s00429-010-

504 0262-0

2. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model.
 Trends in Cognitive Sciences. 2011 Oct;15(10):483–506. doi: 10.1016/j.tics.2011.08.003

3. Wu X, Li Q, Yu X, Chen K, Fleisher AS, Guo X, et al. A Triple Network Connectivity Study of

Large-Scale Brain Systems in Cognitively Normal APOE4 Carriers. Front Aging Neurosci.
2016 Sep 28;8. doi: 10.3389/fnagi.2016.00231

4. Krishnadas R, Ryali S, Chen T, Uddin L, Supekar K, Palaniyappan L, et al. Resting state

511 functional hyperconnectivity within a triple network model in paranoid schizophrenia. The

512 Lancet. 2014 Feb;383:S65. doi: 10.1016/S0140-6736(14)60328-7

513 5. Lin P, Yang Y, Gao J, De Pisapia N, Ge S, Wang X, et al. Dynamic Default Mode Network

across Different Brain States. Sci Rep. 2017 Apr 6;7(1). doi: 10.1038/srep46088

515	6. Greicius MD	, Krasnow B	, Reiss AL	, Menon V. Functional	connectivity	y in the resting	g brain: A
-----	----------------	-------------	------------	-----------------------	--------------	------------------	------------

- 516 network analysis of the default mode hypothesis. Proceedings of the National Academy
- of Sciences. 2002 Dec 27;100(1):253–8. doi: 10.1073/pnas.0135058100
- 518 7. Greicius MD, Menon V. Default-Mode Activity during a Passive Sensory Task: Uncoupled
- from Deactivation but Impacting Activation. Journal of Cognitive Neuroscience. 2004
- 520 Nov;16(9):1484–92. doi: 10.1162/0898929042568532
- 8. van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends in Cognitive

522 Sciences. 2013 Dec;17(12):683–96. doi: 10.1016/j.tics.2013.09.012

- 523 9. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the
- 524 Structural Core of Human Cerebral Cortex. Friston KJ, editor. PLoS Biol. 2008 Jul
- 525 1;6(7):e159. doi: 10.1371/journal.pbio.0060159
- 10. Elton A, Gao W. Task-positive Functional Connectivity of the Default Mode Network
- 527 Transcends Task Domain. Journal of Cognitive Neuroscience. 2015 Dec;27(12):2369–81.
- 528 doi: 10.1162/jocn_a_00859
- 529 11. Wang Z, Liu J, Zhong N, Qin Y, Zhou H, Li K. Changes in the brain intrinsic organization in
- 530 both on-task state and post-task resting state. NeuroImage. 2012 Aug;62(1):394–407.
- 531 doi: 10.1016/j.neuroimage.2012.04.051
- 12. Li B, Wang X, Yao S, Hu D, Friston K. Task-Dependent Modulation of Effective Connectivity
- 533 within the Default Mode Network. Front Psychology. 2012;3. doi:
- 534 10.3389/fpsyg.2012.00206
- 13. Müller NG, Knight RT. The functional neuroanatomy of working memory: Contributions of
- human brain lesion studies. Neuroscience. 2006 Apr;139(1):51–8. doi:
- 537 10.1016/j.neuroscience.2005.09.018
- 14. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and
- 539 principles. Trends in Cognitive Sciences. 2010 Jun;14(6):277–90. doi:

540 10.1016/j.tics.2010.04.004

541	15. Li Q, Liu J, Wang W, Wang Y, Li W, Chen J, et al. Disrupted coupling of large-scale
542	networks is associated with relapse behaviour in heroin-dependent men. jpn. 2018 Jan
543	1;43(1):48–57. doi: 10.1503/jpn.170011
544	16. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable
545	Intrinsic Connectivity Networks for Salience Processing and Executive Control. Journal of
546	Neuroscience. 2007 Feb 28;27(9):2349–56. doi: 10.1523/JNEUROSCI.5587-06.2007
547	17. Goulden N, Khusnulina A, Davis NJ, Bracewell RM, Bokde AL, McNulty JP, et al. The
548	salience network is responsible for switching between the default mode network and the
549	central executive network: Replication from DCM. NeuroImage]. 2014 Oct;99:180–90.doi:
550	10.1016/j.neuroimage.2014.05.052
551	18. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in
552	switching between central-executive and default-mode networks. Proceedings of the
553	National Academy of Sciences. 2008 Aug 22;105(34):12569–74. doi:
554	10.1073/pnas.0800005105
555	19. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. From The Cover:
556	The human brain is intrinsically organized into dynamic, anticorrelated functional
557	networks. Proceedings of the National Academy of Sciences. 2005 Jun 23;102(27):9673-
558	8. doi: 10.1073/pnas.0504136102
559	20. Shannon BJ, Raichle ME, Snyder AZ, Fair DA, Mills KL, Zhang D, et al. Premotor functional
560	connectivity predicts impulsivity in juvenile offenders. Proceedings of the National
561	Academy of Sciences. 2011 Jun 27;108(27):11241–5. doi: 10.1073/pnas.1108241108
562	21. Chand GB, Dhamala M. Interactions Among the Brain Default-Mode, Salience, and Central-
563	Executive Networks During Perceptual Decision-Making of Moving Dots. Brain
564	Connectivity. 2016 Apr;6(3):249–54. doi: 10.1089/brain.2015.0379

565	22. Zheng H, Xu I	L, Xie F, Guo X, Zhang J,	Yao L, et al. The Altered	Triple Networks Interaction
-----	-------------------	---------------------------	---------------------------	------------------------------------

- 566 in Depression under Resting State Based on Graph Theory. BioMed Research
- 567 International [Internet]. 2015;2015:1–8. doi: 10.1155/2015/386326
- 23. Liu Y, Li L, Li B, Feng N, Li L, Zhang X, et al. Decreased Triple Network Connectivity in
- 569 Patients with Recent Onset Post-Traumatic Stress Disorder after a Single Prolonged
- 570 Trauma Exposure. Sci Rep. 2017 Oct 3;7(1). doi: 10.1038/s41598-017-12964-6
- 571 24. Fan J, Zhong M, Gan J, Liu W, Niu C, Liao H, et al. Altered connectivity within and between
- 572 the default mode, central executive, and salience networks in obsessive-compulsive
- 573 disorder. Journal of Affective Disorders. 2017 Dec;223:106–14. doi:
- 574 10.1016/j.jad.2017.07.041
- 575 25. Manoliu A, Riedl V, Zherdin A, Mühlau M, Schwerthöffer D, Scherr M, et al. Aberrant
- 576 Dependence of Default Mode/Central Executive Network Interactions on Anterior Insular
- 577 Salience Network Activity in Schizophrenia. Schizophrenia Bulletin. 2013 Mar

578 21;40(2):428–37. doi: 10.1093/schbul/sbt037

- 579 26. Jiang L, Zuo X-N. Regional Homogeneity. Neuroscientist. 2016 Jul 9;22(5):486–505. doi:
- 580 10.1177/1073858415595004
- 581 27. Menon B. Towards a new model of understanding The triple network, psychopathology

and the structure of the mind. Medical Hypotheses. 2019 Dec;133:109385. doi:

- 583 10.1016/j.mehy.2019.109385
- 28. Imperatori C, Massullo C, Carbone GA, Panno A, Giacchini M, Capriotti C, et al. Increased
- 585 Resting State Triple Network Functional Connectivity in Undergraduate Problematic
- 586 Cannabis Users: A Preliminary EEG Coherence Study. Brain Sciences. 2020 Feb
- 587 28;10(3):136. doi: 10.3390/brainsci10030136
- 588 29. Sakoğlu Ü, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD. A method for
- 589 evaluating dynamic functional network connectivity and task-modulation: application to

590	schizophrenia.	Magn Reson	Mater Phy. 20	010 Feb 17;2	3(5–6):351–66. doi:
-----	----------------	------------	---------------	--------------	---------------------

591 10.1007/s10334-010-0197-8

- 30. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST. Dynamic
- 593 reconfiguration of human brain networks during learning. Proceedings of the National
- 594 Academy of Sciences [Internet]. 2011 Apr 18;108(18):7641–6. doi:
- 595 10.1073/pnas.1018985108
- 31. Albert NB, Robertson EM, Miall RC. The Resting Human Brain and Motor Learning. Current
 Biology. 2009 Jun;19(12):1023–7. doi: 10.1016/j.cub.2009.04.028
- 598
- 32. Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M. Learning sculpts the
- spontaneous activity of the resting human brain. Proceedings of the National Academy of
 Sciences. 2009 Oct 5;106(41):17558–63. doi: 10.1073/pnas.0902455106
- 33. Stevens WD, Buckner RL, Schacter DL. Correlated Low-Frequency BOLD Fluctuations in
- 603 the Resting Human Brain Are Modulated by Recent Experience in Category-Preferential
- 604 Visual Regions. Cerebral Cortex. 2009 Dec 21;20(8):1997–2006. doi:
- 605 10.1093/cercor/bhp270
- 34. Taubert M, Lohmann G, Margulies DS, Villringer A, Ragert P. Long-term effects of motor
- training on resting-state networks and underlying brain structure. NeuroImage. 2011

608 Aug;57(4):1492–8. doi: 10.1016/j.neuroimage.2011.05.078

35. Sami S, Robertson EM, Miall RC. The Time Course of Task-Specific Memory Consolidation

- 610 Effects in Resting State Networks. Journal of Neuroscience. 2014 Mar 12;34(11):3982–
- 611 92. doi: 10.1523/JNEUROSCI.4341-13.2014
- 36. Hartzell JF, Tobia MJ, Davis B, Cashdollar NM, Hasson U. Differential lateralization of
- hippocampal connectivity reflects features of recent context and ongoing demands: An
- examination of immediate post-task activity. Hum Brain Mapp. 2014 Oct 8;36(2):519–37.

615 doi: 10.1002/hbm.22644

616	37. Gregory MD, Agam Y, Selvadurai C, Nagy A, Vangel M, Tucker M, et al. Resting state
617	connectivity immediately following learning correlates with subsequent sleep-dependent
618	enhancement of motor task performance. NeuroImage [Internet]. 2014 Nov;102:666–73.
619	doi: 10.1016/j.neuroimage.2014.08.044
620	38. Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked
621	by unpredictable auditory stimuli in man. Electroencephalography and Clinical
622	Neurophysiology. 1975 Apr;38(4):387–401. doi: 10.1016/0013-4694(75)90263-1
623	
624	39. Bledowski C. Localizing P300 Generators in Visual Target and Distractor Processing: A
625	Combined Event-Related Potential and Functional Magnetic Resonance Imaging Study.
626	Journal of Neuroscience. 2004 Oct 20;24(42):9353-60. doi: 10.1523/JNEUROSCI.1897-
627	04.2004
628	40. Gur RC, Turetsky BI, Loughead J, Waxman J, Snyder W, Ragland JD, et al. Hemodynamic
629	responses in neural circuitries for detection of visual target and novelty: An event-related
630	fMRI study. Hum Brain Mapp. 2007;28(4):263–74. doi: 10.1002/hbm.20319
631	41. Kiehl KA, Stevens MC, Laurens KR, Pearlson G, Calhoun VD, Liddle PF. An adaptive
632	reflexive processing model of neurocognitive function: supporting evidence from a large
633	scale (n = 100) fMRI study of an auditory oddball task. NeuroImage. 2005 Apr;25(3):899-
634	915. doi: 10.1016/j.neuroimage.2004.12.035
635	42. Strobel A, Debener S, Sorger B, Peters JC, Kranczioch C, Hoechstetter K, et al. Novelty and
636	target processing during an auditory novelty oddball: A simultaneous event-related
637	potential and functional magnetic resonance imaging study. NeuroImage. 2008
638	Apr;40(2):869-83. doi: 10.1016/j.neuroimage.2007.10.065
639	43. Warbrick T, Mobascher A, Brinkmeyer J, Musso F, Richter N, Stoecker T, et al. Single-trial

640	P3 amplitude and latenc	v informed event-related fMRI	models vield different BOLD
040			

- response patterns to a target detection task. NeuroImage. 2009 Oct;47(4):1532–44. doi:
- 642 10.1016/j.neuroimage.2009.05.082
- 44. Linden DEJ. The Functional Neuroanatomy of Target Detection: An fMRI Study of Visual
- and Auditory Oddball Tasks. Cerebral Cortex. 1999 Dec 1;9(8):815–23. doi:
- 645 10.1093/cercor/9.8.815
- 45. McCarthy G, Luby M, Gore J, Goldman-Rakic P. Infrequent Events Transiently Activate
- 647 Human Prefrontal and Parietal Cortex as Measured by Functional MRI. Journal of

648 Neurophysiology. 1997 Mar 1;77(3):1630–4. doi: 10.1152/jn.1997.77.3.1630

- 46. Yoshiura T, Zhong J, Shibata DK, Kwok WE, Shrier DA, Numaguchi Y. Functional MRI
- 650 study of auditory and visual oddball tasks. NeuroReport. 1999 Jun;10(8):1683–8. doi:
- 651 10.1097/00001756-199906030-00011
- 47. Halgren E, Marinkovic K, Chauvel P. Generators of the late cognitive potentials in auditory
- and visual oddball tasks. Electroencephalography and Clinical Neurophysiology. 1998

654 Feb;106(2):156–64. doi: 10.1016/s0013-4694(97)00119-3

- 48. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis.
- 656 NeuroImage. 2004 May;22(1):394–400. doi: 10.1016/j.neuroimage.2003.12.030
- 49. Zuo X-N, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, et al. Network
- 658 Centrality in the Human Functional Connectome. Cerebral Cortex. 2011 Oct
- 659 2;22(8):1862–75. doi: 10.1093/cercor/bhr269
- 50. Yu-Feng Z, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, et al. Altered baseline
- brain activity in children with ADHD revealed by resting-state functional MRI. Brain and
- 662 Development. 2007 Mar;29(2):83–91. doi: 10.1016/j.braindev.2006.07.002
- 51. Warbrick T, Reske M, Shah NJ. Do EEG paradigms work in fMRI? Varying task demands in
- the visual oddball paradigm: Implications for task design and results interpretation.

665	NeuroImage. 2013 Aug;77:177–85. doi: 10.1016/j.neuroimage.2013.03.026
666	52. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002 Nov;17(3):143-
667	55. doi: 10.1002/hbm.10062
668	53. Jenkinson M, Bannister P, Brady M, Smith S. Improved Optimization for the Robust and
669	Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage. 2002
670	Oct;17(2):825–41. doi: 10.1006/nimg.2002.1132
671	54. Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal Autocorrelation in Univariate Linear
672	Modeling of FMRI Data. NeuroImage. 2001 Dec;14(6):1370-86. doi:
673	10.1006/nimg.2001.0931
674	55. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain
675	images. Medical Image Analysis. 2001 Jun;5(2):143–56. doi: 10.1016/s1361-
676	8415(01)00036-6
677	56. Woolrich MW, Behrens TEJ, Beckmann CF, Jenkinson M, Smith SM. Multilevel linear
678	modelling for FMRI group analysis using Bayesian inference. NeuroImage. 2004
679	Apr;21(4):1732–47. doi: 10.1016/j.neuroimage.2003.12.023
680	57. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding Subject-Driven
681	Cognitive States with Whole-Brain Connectivity Patterns. Cerebral Cortex. 2011 May
682	26;22(1):158-65. doi: 10.1093/cercor/bhr099
683	58. Yan C-G, Wang X-D, Zuo X-N, Zang Y-F. DPABI: Data Processing & Analysis for (Resting-
684	State) Brain Imaging. Neuroinform. 2016 Apr 13;14(3):339–51. doi: 10.1007/s12021-016-

- 685 9299-4
- 59. Yan. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front
 Syst Neurosci. 2010. doi: 10.3389/fnsys.2010.00013
- 688 60. Takeuchi H, Taki Y, Nouchi R, Sekiguchi A, Hashizume H, Sassa Y, et al. Degree centrality
- and fractional amplitude of low-frequency oscillations associated with Stroop interference.

690	NeuroImage. 2015 Oct;119:197–209. doi: 10.1016/j.neuroimage.2015.06.058
691	61. Gideon RA. The Correlation Coefficients. J Mod App Stat Meth. 2007 Nov 1;6(2):517–29.
692	doi: 10.22237/jmasm/1193890500
693	62. Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, et al. An improved approach to
694	detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI:
695	Fractional ALFF. Journal of Neuroscience Methods. 2008 Jul;172(1):137-41. doi:
696	10.1016/j.jneumeth.2008.04.012
697	63. McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. A Parametric Manipulation of
698	Factors Affecting Task-induced Deactivation in Functional Neuroimaging. Journal of
699	Cognitive Neuroscience. 2003 Apr 1;15(3):394–408. doi: 10.1162/089892903321593117
700	64. Pyka M, Beckmann CF, Schöning S, Hauke S, Heider D, Kugel H, et al. Impact of Working
701	Memory Load on fMRI Resting State Pattern in Subsequent Resting Phases. Lauwereyns
702	J, editor. PLoS ONE. 2009 Sep 25;4(9):e7198. doi: 10.1371/journal.pone.0007198
703	65. Tommasin S, Mascali D, Gili T, Eid Assan I, Moraschi M, Fratini M, et al. Task-Related
704	Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network.
705	Front Phys. 2017 Jul 25;5. doi: 10.3389/fphy.2017.00031
706	66. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering
707	Minds: The Default Network and Stimulus-Independent Thought. Science. 2007 Jan
708	19;315(5810):393–5. doi: 10.1126/science.1131295
709	67. Thomason ME, Chang CE, Glover GH, Gabrieli JDE, Greicius MD, Gotlib IH. Default-mode
710	function and task-induced deactivation have overlapping brain substrates in children.
711	NeuroImage [Internet]. 2008 Jul;41(4):1493–503. doi: 10.1016/j.neuroimage.2008.03.029
712	68. Zuo X-N, Xu T, Jiang L, Yang Z, Cao X-Y, He Y, et al. Toward reliable characterization of
713	functional homogeneity in the human brain: Preprocessing, scan duration, imaging
714	resolution and computational space. NeuroImage. 2013 Jan;65:374–86. doi:

715 10.1016/j.neuroimage.2012.10.017

716	69. Zuo X-N, Xing X-X. Test-retest reliabilities of resting-state FMRI measurements in human
717	brain functional connectomics: A systems neuroscience perspective. Neuroscience &
718	Biobehavioral Reviews. 2014 Sep;45:100–18. doi: 10.1016/j.neubiorev.2014.05.009
719	70. Lee T-W, Xue S-W. Linking graph features of anatomical architecture to regional brain
720	activity: A multi-modal MRI study. Neuroscience Letters. 2017 Jun;651:123–7. doi:
721	10.1016/j.neulet.2017.05.005
722	71. Respino M, Hoptman MJ, Victoria LW, Alexopoulos GS, Solomonov N, Stein AT, et al.
723	Cognitive Control Network Homogeneity and Executive Functions in Late-Life
724	Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2020
725	Feb;5(2):213–21. doi: 10.1016/j.bpsc.2019.10.013
726	72. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the
727	body. Nat Rev Neurosci. 2002 Aug;3(8):655–66. doi: 10.1038/nrn894
728	73. Critchley HD, Wiens S, Rotshtein P, Öhman A, Dolan RJ. Neural systems supporting
729	interoceptive awareness. Nat Neurosci. 2004 Jan 18;7(2):189–95. doi: 10.1038/nn1176
730	74. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in
731	switching between central-executive and default-mode networks. Proceedings of the
732	National Academy of Sciences. 2008 Aug 22;105(34):12569–74. doi:
733	10.1073/pnas.0800005105
734	75. Liu C-H, Guo J, Lu S-L, Tang L-R, Fan J, Wang C-Y, et al. Increased Salience Network
735	Activity in Patients With Insomnia Complaints in Major Depressive Disorder. Front
736	Psychiatry. 2018 Mar 20;9. doi: 10.3389/fpsyt.2018.00093
737	76. Petrides M. Lateral prefrontal cortex: architectonic and functional organization. Phil Trans R
738	Soc B. 2005 Apr 29;360(1456):781–95. doi: 10.1098/rstb.2005.1631
739	77. Akiki TJ, Averill CL, Abdallah CG. A Network-Based Neurobiological Model of PTSD:

- 740 Evidence From Structural and Functional Neuroimaging Studies. Curr Psychiatry Rep.
- 741 2017 Sep 19;19(11). doi: 10.1007/s11920-017-0840-4
- 742 78. Turner BM, Rodriguez CA, Liu Q, Molloy MF, Hoogendijk M, McClure SM. On the Neural
- and Mechanistic Bases of Self-Control. Cerebral Cortex. 2018 Jan 24;29(2):732–50. doi:
- 744 10.1093/cercor/bhx355
- 745 79. Gagnepain P, Hulbert J, Anderson MC. Parallel Regulation of Memory and Emotion
- 546 Supports the Suppression of Intrusive Memories. J Neurosci. 2017 May 30;37(27):6423–
- 747 41. doi: 10.1523/JNEUROSCI.2732-16.2017
- 80. Wessing I, Rehbein MA, Postert C, Fürniss T, Junghöfer M. The neural basis of cognitive
- 749 change: Reappraisal of emotional faces modulates neural source activity in a
- frontoparietal attention network. NeuroImage [Internet]. 2013 Nov;81:15–25. doi:
- 751 10.1016/j.neuroimage.2013.04.117
- 752 81. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou Z-W, Williams LM, et al. Causal
- interactions between fronto-parietal central executive and default-mode networks in
- humans. Proceedings of the National Academy of Sciences. 2013 Nov
- 755 18;110(49):19944–9. doi: 10.1073/pnas.1311772110
- 756 82. Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated
- thought: component processes, dynamic control, and clinical relevance. Ann NY Acad

758 Sci. 2014 Feb 6;1316(1):29–52. doi: 10.1111/nyas.12360

- 83. Gerlach KD, Spreng RN, Gilmore AW, Schacter DL. Solving future problems: Default
- 760 network and executive activity associated with goal-directed mental simulations.
- 761 NeuroImage. 2011 Apr;55(4):1816–24. doi: 10.1016/j.neuroimage.2011.01.030
- 762 84. Meyer ML, Spunt RP, Berkman ET, Taylor SE, Lieberman MD. Evidence for social working
- 763 memory from a parametric functional MRI study. Proceedings of the National Academy of
- 764 Sciences. 2012 Jan 23;109(6):1883–8. doi: 10.1073/pnas.1121077109

765	85. Beaty RE, Benedek M, Barry Kaufman S, Silvia PJ. Default and Executive Network Coupling
766	Supports Creative Idea Production. Sci Rep. 2015 Jun 17;5(1). doi: 10.1038/srep10964
767	86. Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic Architecture
768	Underlying the Relations among the Default, Dorsal Attention, and Frontoparietal Control
769	Networks of the Human Brain. Journal of Cognitive Neuroscience. 2013 Jan;25(1):74–86.
770	doi: 10.1162/jocn_a_00281
771	
772	
773	87. Chang C, Glover GH. Time–frequency dynamics of resting-state brain connectivity
774	measured with fMRI. NeuroImage. 2010 Mar;50(1):81–98. doi:
775	10.1016/j.neuroimage.2009.12.011
776	88. Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, et al. A Core
777	System for the Implementation of Task Sets. Neuron. 2006 Jun;50(5):799-812. doi:
778	10.1016/j.neuron.2006.04.031
779	89. Barnes A, Bullmore ET, Suckling J. Endogenous Human Brain Dynamics Recover Slowly
780	Following Cognitive Effort. Brembs B, editor. PLoS ONE. 2009 Aug 14;4(8):e6626. doi:
781	10.1371/journal.pone.0006626
782	90. Cai W, Chen T, Szegletes L, Supekar K, Menon V. Aberrant Time-Varying Cross-Network
783	Interactions in Children With Attention-Deficit/Hyperactivity Disorder and the Relation to
784	Attention Deficits. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2018
785	Mar;3(3):263–73. doi: 10.1016/j.bpsc.2017.10.005
786	
787	
788	

Y = -61

Z = -61

X = -44

Y = -55

Z = 44

X = 4

 $\mathbf{Z} = \mathbf{8}$

Post-task RS

1

0

0

1

0

ReHo

 $\mathbf{X} = \mathbf{0}$

 $\mathbf{X} = \mathbf{0}$

 $\mathbf{X} = \mathbf{0}$

