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Abstract 24 

A detailed understanding of antibody-based SARS-CoV-2 immunity has critical implications 25 

for overcoming the COVID-19 pandemic and for informing on vaccination strategies. In this 26 

study, we evaluated the dynamics of the SARS-CoV-2 antibody response in a cohort of 963 27 

recovered individuals over a period of 10 months. Investigating a total of 2,146 samples, we 28 

detected an initial SARS-CoV-2 antibody response in 94.4% of individuals, with 82% and 29 

79% exhibiting serum and IgG neutralization, respectively. Approximately 3% of recovered 30 

patients demonstrated exceptional SARS-CoV-2 neutralizing activity, defining them as ‘elite 31 

neutralizers’. These individuals also possessed effective cross-neutralizing IgG antibodies to 32 

SARS-CoV-1 without any known prior exposure to this virus. By applying multivariate 33 

statistical modeling, we found that sero-reactivity, age, time since disease onset, and fever 34 

are key factors predicting SARS-CoV-2 neutralizing activity in mild courses of COVID-19. 35 

Investigating longevity of the antibody response, we detected loss of anti-spike reactivity in 36 

13% of individuals 10 months after infection. Moreover, neutralizing activity had an initial half-37 

life of 6.7 weeks in serum versus 30.8 weeks in purified IgG samples indicating the presence 38 

of a more stable and long-term memory IgG B cell repertoire in the majority of individuals 39 

recovered from COVID-19. Our results demonstrate a broad spectrum of the initial SARS-40 

CoV-2 neutralizing antibody response depending on clinical characteristics, with antibodies 41 

being maintained in the majority of individuals for the first 10 months after mild course of 42 

COVID-19.    43 

44 
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Main 45 

COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 46 

which was first identified in December 20191,2. Since then, the virus has rapidly spread 47 

across the globe and caused more than 90 million proven infections and over 2 million 48 

deaths. Disease severity ranges from asymptomatic infection to symptoms like cough, fever, 49 

muscle pain, and diarrhea to severe courses of infection including pneumonia with severe 50 

respiratory distress and a high risk of death3-5. While the majority of infected individuals 51 

experience a mild course of disease, elderly or individuals with pre-existing conditions are at 52 

higher risk for severe courses of COVID-196. In symptomatic non-hospitalized cases, the 53 

acute course of disease typically spans 7-14 days7,8. However, a significant fraction of 54 

COVID-19 patients suffer long-lasting symptoms post recovery, so called ‘post-COVID 55 

syndrome’9-11 (Augustin et al., submitted).  56 

SARS-CoV-2 infects human cells by using the virus spike (S) protein12 for targeting the 57 

angiotensin converting enzyme-2 (ACE-2) receptor13. The S-protein carries dominant 58 

epitopes against which humoral B and T cell responses are generated upon natural infection 59 

and vaccination14-18. Spike-specific IgM, IgA, and IgG antibodies are detected early after 60 

infection19,20 and IgG antibody levels and IgG memory B cells can persist post infection21.  61 

Neutralizing antibodies (NAbs) are powerful molecules that target viruses and block infection. 62 

Moreover, they can eliminate circulating viruses and infected cells by antibody-mediated 63 

effector functions22,23. As a result, NAbs are crucial to overcome infectious diseases and are 64 

an important correlate of protection24. For SARS-CoV-2, vaccine induced NAbs as well as 65 

purified IgGs from convalescent animals have been shown to protect non-human primates 66 

(NHPs) from infection in a SARS-CoV-2 challenge model25,26. Moreover, highly potent 67 

monoclonal NAbs have been isolated27-29 and are being used for treatment of COVID-19 in 68 

humans30,31.  69 

Given the short time SARS-CoV-2 has been studied, information on long-term antibody 70 

dynamics are limited. Recent studies show that serum neutralizing activity is detectable 71 
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within a week after onset of symptoms32,33 and can persist for the first months after 72 

infection21,23,34. Moreover, studies with symptomatic and hospitalized individuals have shown 73 

that more severe courses of disease result in a stronger SARS-CoV-2 neutralizing antibody 74 

response14,35,36. While these studies provide important insights, a precise quantification of 75 

SARS-CoV-2 neutralizing activity and dynamics as well as clinical correlates of developing a 76 

protective antibody response are largely unknown.  77 

In this study, we set out to provide a deeper understanding of the neutralizing antibody 78 

response to SARS-CoV-2. To this end, we determined neutralizing serum and IgG activity of 79 

2,146 samples from a longitudinally monitored cohort of 963 individuals over time together 80 

with detailed information on the course of disease and past medical history. We combined 81 

statistical modeling to infer antibody decay rates after SARS-CoV-2 infection and built a 82 

prediction model for evaluating how clinical or disease features correlate with NAb titers. 83 

Finally, we performed longitudinal analyses to study anti-spike antibody levels as well as 84 

NAb titers for a time period of up to 10 months post SARS-CoV-2 infection. Our results 85 

inform on the kinetics, longevity and features affecting the antibody response to SARS-CoV-86 

2. They are critical to understand SARS-CoV-2 immunity and to guide non-pharmacological 87 

interventions and vaccination strategies to overcome COVID-1937.  88 

 89 

  90 
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Results 91 

Establishing a cohort for investigating SARS-CoV-2 immunity  92 

To investigate the development of SARS-CoV-2 immunity, we established a cohort of 93 

COVID-19 patients who recently recovered from SARS-CoV-2 infection. Time since disease 94 

onset was derived from self-reported symptom onset or date of positive naso-/oro-95 

pharyngeal swab. In addition, each participant reported details on the course of infection, 96 

symptoms, and past medical history (Supplementary Table 1). Participants enrolled ranged 97 

from 18-79 years of age (median: 44 years) with a balanced distribution of males (46.1%) 98 

and females (53.9%). Disease severity included asymptomatic (4.6%), mildly symptomatic 99 

(91.69%), and hospitalized individuals (2.6%; Fig. 1, Supplementary Table 1). 23.4% of 100 

participants reported pre-existing conditions that have been described to influence COVID-19 101 

outcomes6.  102 

Blood samples were collected from 963 individuals at study visit 1 (median 7.3 weeks post 103 

disease onset) with follow up analyses at study visit 2 for 616 participants (median 18.8 104 

weeks post disease onset), study visit 3 for 430 participants (median 30.1 weeks post 105 

disease onset), and study visit 4 for 137 participants (median 37.9 weeks post disease onset; 106 

Fig. 1). Other participants were lost in follow-up or did not reach the respective study visit at 107 

the time of our analysis. Anti-spike IgG was quantified by ELISA and chemiluminescent 108 

immunoassays (CLIA) and the NAb response to SARS-CoV-2 was analyzed using both 109 

serum dilutions as well as purified IgG to precisely quantify neutralizing activity (Extended 110 

Data Fig. 1). In total, 4,516 measurements were collected for visit 1 with another 1,867 111 

subsequent measurements for visit 2-4 to determine the SARS-CoV-2 antibody response for 112 

10 months following infection. 113 

 114 

 115 

 116 
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Broad spectrum of the initial SARS-CoV-2 neutralizing antibody response 117 

NAb levels were quantified by testing serum and purified IgG from plasma/serum against 118 

pseudovirus particles expressing the Wuhan01 spike protein (EPI_ESL406716). Serum 119 

neutralization at study visit 1 was categorized based on titer into non- (ID50<10), low- 120 

(ID50=10-25), average- (ID50=25-250), high- (ID50=250-2500), and elite-neutralizers 121 

(ID50>2500; Fig. 2a). Mean serum ID50 titer was 111.3 with 17.7% of individuals that did not 122 

reach 50% neutralization at the lowest serum dilution of 1:10. In addition, all samples were 123 

purified for IgG and the neutralizing response was determined and categorized based on IC50 124 

values into non- (IC50 > 750 µg/ml), low- (IC50 = 500-750 µg/ml), average- (IC50 = 100-500 125 

µg/ml), high- (IC50 = 20-100 µg/ml), and elite-neutralization (IC50 < 20 µg/ml; Fig. 2b). At 126 

study visit 1, out of 963 participants, 10%, 44.8%, and 20% demonstrated low, average, and 127 

high neutralization, respectively. 21% did not mount an IgG neutralizing response of an IC50 128 

below 750 µg/ml. 3.3% of individuals were classified as ‘elite neutralizers’ with IC50 values as 129 

low as 0.7 µg/ml detected in one individual at 8.6 weeks post disease onset. Combining 130 

serum and IgG measurements, 87.3 % individuals showed detectable NAb activity at median 131 

7.3 weeks after SARS-CoV-2 infection (Fig. 2c). The serum and IgG neutralization potency 132 

categorization matched for most individuals with a high correlation between serum ID50 titers 133 

and IgG IC50 values (spearman r = -0.72, p < 0.0001; Fig. 2c). Moreover, only 5% samples 134 

had only serum and no IgG neutralization indicating that IgG antibodies forms the dominant 135 

NAb isotype in serum. To further determine the predictive value of IgG binding to the S 136 

protein for SARS-CoV-2 neutralization, we performed an S1-reactive ELISA (Euroimmun) on 137 

all samples of visit 1. 82.8% and 70.2% of individuals possessed spike-reactive IgG (Fig. 2d, 138 

e) and IgA Abs, respectively (Fig. 2d and Extended Data Fig. 2a). Anti-spike IgG levels 139 

were directly proportional to IgG NAb IC50 values (spearman r = -0.62, p < 0.0001; Fig. 2f) 140 

and IgG Ab levels better correlated with serum neutralization than IgA Ab levels (Extended 141 

Data Fig. 2c, d).  142 
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Finally, we determined the fraction of individuals lacking any detectable antibody response. 143 

To this end, we combined the results of different IgG and IgA assays detecting binding to 144 

SARS-CoV-2 S1, S1/S2, and N as well as three neutralization assays (Fig. 2g). Out of the 145 

166 anti-S1-IgG negative (12.7%) or equivocal (4.6%) individuals, we found binding 146 

antibodies in 62.0% in at least one of four assays and neutralizing activity in 54.2% in at least 147 

one of three assays (Fig. 2g, h). Combining these results and accounting for assay-148 

specificity (see methods) we show that only 5.6%-7.3% of individuals do not mount a 149 

detectable antibody response against SARS-CoV-2. Notably, while only 3.6% (1 of 28) of 150 

hospitalized patients and 4.9% (43 of 877) of individuals with mild symptoms lacked anti-151 

SARS-CoV-2 antibodies, 22.7% (10 of 44) asymptomatic individuals were negative for a 152 

detectable antibody response in at visit 1. We conclude that 92.7-94.4% of individuals 153 

naturally infected with SARS-CoV-2 mount an antibody response against the virus within the 154 

first 12 weeks. Among those, we detected a broad variation in neutralizing activity with 155 

approximately 3% generating a highly potent serum and IgG NAb response. 156 

 157 

Sero-reactivity, age, and disease severity predict SARS-CoV-2 neutralization  158 

Next, we analyzed how age, disease severity, gender, and the presence of pre-existing 159 

conditions correlate with the anti-spike antibody and SARS-CoV-2 neutralizing response 160 

(Fig. 3a, Extended Data Fig. 3). The IgG NAb response was significantly higher in older 161 

individuals (p <0.0001), with participants >60 years comprising 7.7% of elite- and 42.8% of 162 

high-neutralizers (Fig. 3a). Hospitalized patients and individuals with symptoms had 163 

significantly higher NAb activity (p = 0.0008 and 0.0003) compared to asymptomatic 164 

individuals, of which 43.2% (25 of 44) lacked detectable IgG NAbs (Fig. 3a). Males showed 165 

higher SARS-CoV-2 neutralization than females (GeoMean IC50 136.3 µg/ml vs. 188.4 µg/ml; 166 

p <0.0001). In addition, individuals with pre-existing conditions had slightly higher NAb 167 

activity compared to those without them (GeoMean IC50 161.9 µg/ml vs. 174.6 µg/ml; p = 168 

0.022; Fig. 3a). Similar to IgG NAb activity, serum neutralizing activity and anti-spike 169 
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antibodies were also higher in older individuals, patients with a more severe course of 170 

disease, and males (Extended Data Fig. 3a-c). Next, we performed a multivariate statistical 171 

analysis to determine the interplay between clinical features and the NAb response. Features 172 

included gender, age, disease severity, presence of pre-existing conditions, disease 173 

symptoms (Supplementary Table 1), weeks since disease onset, and the anti-spike IgG/IgA 174 

ELISA measurements. We applied a stepwise regression that adds new features only if they 175 

significantly improved the model according to a likelihood ratio test. The resulting IC50 176 

prediction model (Adjusted R2 = 0.461) revealed that IgG antibody levels are most predictive 177 

for SARS-CoV-2 neutralizing activity (p = 10-99), followed by age (p = 6.1*10-7), IgA antibody 178 

levels (p = 7.6*10-6), time since disease onset (p = 0.01) and fever during infection (p = 0.02; 179 

Fig. 3b, c). Similarly, age, anti-spike antibody levels, times since disease onset and fever 180 

during acute infection were also found to be highly predictive of serum ID50 (Extended Data 181 

Fig. 4a, 4b). Additionally, we built a Bayesian network model to determine the feature 182 

dependencies and how they predict the SARS-CoV-2 IgG neutralizing response (Fig. 3d). 183 

When applying the stepwise regression model only for predicting the presence of anti-spike 184 

antibodies, we observed that gender (IgG p = 8.5*10-5; IgA p = 2.2*10-10) and the disease 185 

symptoms, cough (IgA p = 0.01), diarrhea (IgG p = 0.02) or change in taste (IgG p = 0.002; 186 

IgA p = 0.04) are predictive of anti-spike antibody levels (Extended Data Fig. 4b, c). In 187 

addition, we investigated the possible effect of viral load obtained from naso-/oro-pharyngeal 188 

swabs at the time of diagnosis on the antibody response at study visit 1, but no correlation 189 

was found (Extended Data Fig. 4d, e). In summary, higher IgG levels, older age and fever 190 

during acute infection are highly predictive of the development of SARS-CoV-2 neutralizing 191 

activity. 192 

 193 

Elite SARS-CoV-2 neutralizers exhibit SARS-CoV-1 cross-neutralization 194 

Individuals mounting a highly potent neutralizing antibody response are often considered 195 

‘elite neutralizers’38. These individuals are of particular interest i.) to identify factors 196 
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associated with the development of effective humoral immunity, ii.) to guide vaccine design, 197 

and iii.) to isolate highly potent neutralizing monoclonal antibodies39. In order to characterize 198 

the small fraction of SARS-CoV-2 elite neutralizers in our cohort (3%; IC50 < 20 µg/ml; Fig. 199 

2b), we selected 15 individuals of each group of non, low, average, high and elite-200 

neutralizers (Extended Data Fig. 5a-c) testing them against authentic SARS-CoV-2 as well 201 

as SARS-CoV-1 pseudovirus. Neutralization of SARS-CoV-2 pseudovirus against authentic 202 

virus correlated closely in all groups with authentic virus (spearman r = 0.79; Extended data 203 

Fig. 5d). SARS-CoV-1 neutralization was not observed in non- and low-neutralizers and only 204 

in 1 out of 15 average neutralizers. However, in the high and elite neutralizing groups, 8/15 205 

and 15/15 samples carried SARS-CoV-1 cross-neutralizing activity, respectively, with 206 

potencies (IC50) as low as 5.1 µg/ml IgG. Of note, while all SARS-CoV-2 elite neutralizers 207 

demonstrated SARS-CoV-1 cross-neutralization, variation in potency is ranging from 12.1 – 208 

634.9 µg/ml and an overall low correlation (spearman r = 0.3745; Fig. 4b). Next, we studied 209 

the neutralizing potency of the elite neutralizers against six different SARS-CoV-2 strains 210 

carrying several mutations that became prominent at a global level40 (Fig. 4c, Extended 211 

Data Fig. 5). IgG from elite neutralizers was potent against all tested SARS-CoV-2 strains 212 

including both S1 and S2 mutants as well as variants (BAVP1, DRC94) carrying the D614G 213 

mutation (Fig. 4c, Extended Data Fig. 5). We conclude, that individuals mounting a potent 214 

SARS-CoV-2 NAb response possess cross-reactive antibodies against SARS-CoV-1 without 215 

any known prior exposure and are effective in neutralizing various prevalent SARS-CoV-2 216 

strains. 217 

 218 

Long-term persistence of IgG NAbs after SARS-CoV-2 infection 219 

In order to study antibody kinetics, we first investigated the development of SARS-CoV-2-220 

directed antibodies in the first 4 weeks after disease onset. To this end, we evaluated 259 221 

samples obtained from an additional 110 individuals. In this subgroup, 44.5% and 54,5% 222 

were male and female, respectively, and 41.8% had been hospitalized (Extended Data Fig. 223 
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6a). Anti-spike IgG and IgA could be detected in some people within the first week after 224 

disease onset, with IgA levels starting to decline by week 4 (Extended Data Fig. 6b). Out of 225 

the 24 individuals that were closely monitored, most individuals sero-converted between 2-3 226 

weeks post disease onset (Extended Data Fig. 6b).  227 

In order to assess longevity of humoral immunity following SARS-CoV-2 infection, we applied 228 

a linear regression mixed effects model to antibody measurements obtained between 3.1 to 229 

41.9 weeks post infection. The half-life of anti-spike IgG was estimated to be 34.9 weeks 230 

(Fig. 5a). For systematic tracking of the antibody response within individuals, we analyzed 231 

anti-spike antibodies in 131 individuals at 4 study visits (range 3.1 to 38.7 weeks post 232 

disease onset; Fig. 5b, c). The data show that IgG levels decrease between 1st to 2nd study 233 

visit (Geo. Mean S/C0=4.6 vs. Geo. Mean S/C0=3.7) followed by a relatively constant IgG 234 

levels for 10 months after infection (Geo. Mean S/C0=3.0) (Fig. 5b, Supplementary Table 235 

1). While the detection of S1-reactivity stays equal at first and second visit (86%), the fraction 236 

of individuals that are reactive for S1-reactive antibodies decays to 79% (7% drop from visit 237 

1) at the third visit and to 73% (13% drop from visit 1) at visit 4 (9-10 months post disease 238 

onset). 239 

NAb activity was longitudinally monitored for 342 individuals from visit 1 (median 6.4 weeks 240 

post infection) to visit 2 (median 17.3 weeks post infection) (Fig. 5d-g). Regression modeling 241 

showed that serum NAb titers had a short half-life of 6.7 weeks compared to a much longer 242 

30.8-week half-life for IgG NAb titers (Fig. 5d, e). Out of 342 individuals, 87.1% had serum 243 

NAb activity at visit 1 whereas only 70.5% had NAb activity remaining at visit 2 (Fig. 5f). The 244 

overall fraction of IgG neutralizers changed from 82% to 75% between visit 1 and 2. The 245 

most dramatic drop from Geo Mean IC50 of 16.23 µg/ml to 45.54 µg/ml was detected in elite 246 

neutralizers, 88% of whom lost their ‘elite’ status. 23.9% of average/low neutralizers at visit 1 247 

became negative at visit 2 (Fig. 5g). Approximately 11% of individuals did not develop any 248 

NAbs and remained serum and IgG-negative at both visits. Overall, only 2.4% of the cohort 249 
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lost detectable antibody responses against SARS-CoV-2 between 1.5 and 4.5 months post 250 

infection (Extended data figure 7a-e). 251 

In summary, these results show that in most individuals anti-spike IgG antibody levels are 252 

maintained for 10 months with a half-life estimate of 8.7 months. Moreover, even though 253 

there is a rapid decline in serum NAb activity, IgG NAb function remains relatively constant 254 

with an estimated half-life of 7.7 months. We conclude that although there is a decay of 255 

antibody titers in serum, the humoral IgG response persists for as long as 10 months after 256 

SARS-CoV-2 infection. 257 

 258 

Discussion 259 

In order to end the COVID-19 pandemic, widespread SARS-CoV-2 protective immunity will 260 

be required. Antibodies are critical for effective clearance of pathogens and for prevention of 261 

viral infections41. In this study, we examined the neutralizing antibody response in 963 262 

individuals who had recently recovered from SARS-CoV-2 infection. The cohort consists 263 

primarily (91.69%) of patients with mild COVID-19 therefore representing the predominant 264 

clinical course of this disease6. Since higher disease severity was shown to correlate with 265 

higher antibody responses14,42, cohorts mainly composed of hospitalized individuals have 266 

limited applicability on the majority of COVID-19 cases20,35,43,44. Moreover, to our knowledge 267 

this is the most comprehensive study (n=963), in which neutralizing antibody activity has 268 

been reported to date with the next largest study having analyzed 4-5 fold less individuals at 269 

a single time point45.  270 

Upon recovery from COVID-19, we detected the development of a broad spectrum of IgG 271 

neutralizing activity ranging from no neutralization (threshold IC50 < 750 µg/ml, 21%) to low 272 

(IC50 = 50-750 µg/ml, 10%), average (IC50 = 100-500 µg/ml, 44.8%), high (IC50 = 20-100 273 

µg/ml, 20.9%), and elite SARS-CoV-2 neutralization (IC50 < 20 µg/ml, 3.3%). 94.4% of 274 

individuals were found to possess S- or N-reactive antibodies or neutralizing activity at serum 275 
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or IgG level. Thus, while most individuals develop a detectable antibody response upon 276 

natural infection, the extent of SARS-CoV-2 neutralizing activity is highly variable with the 277 

fraction of non-responders being highest for asymptomatic individuals (23%).  278 

The broad spectrum of neutralizing activity developed in COVID-19 recovered individuals 279 

may impact the level of protective immunity. For instance, asymptomatic infection is 280 

estimated to account for up to 40% of all infections46. In these individuals and in other 281 

patients with weak antibody responses, lower IgG titers may contribute to a higher 282 

susceptibility to re-infection. Recently, mutated virus strains were reported47,48, some of 283 

which possess mutations causing partial resistance to convalescent plasma48 or SARS-CoV-284 

2 monoclonal antibodies49. A weak antibody response may help propagate escape variants 285 

and may therefore complicate effective measures to combat the COVID-19 pandemic. 286 

To guide vaccine strategies based on population demographics, it is critical to understand 287 

which clinical features affect the development of antibody responses. NAb response 288 

presented here is comparable to recent spike-based mRNA vaccine studies in age group 18-289 

55, where geometric mean neutralizing titers were in the range of 100-300 ID50 (depending 290 

on dose) 1.5 months post vaccination17,50 versus 111.3 ID50 in this study. Recent studies 291 

have reported that age, gender and disease severity14,36,44 can impact SARS-CoV-2 NAb 292 

titers14,36,42,43,45. However, a comprehensive analysis on a large representative cohort was 293 

missing. Using multivariate statistical analysis on the antibody measurements and clinical 294 

data, we found that higher anti-spike antibody levels, older age, symptomatic infection and a 295 

severe course of COVID-19 were highly predictive of NAb titers. Notably, based on previous 296 

vaccine studies51, it was frequently speculated that older individuals might generate a less 297 

efficient immune responses to SARS-CoV-2 infection or vaccination. However, based on our 298 

data, the >60 age group had the highest level of neutralizing IgG antibodies (mean IC50 = 299 

84.8 µg/ml, mean ID50 serum titer = 276.6).  300 

In some individuals we detected very high levels of SARS-CoV-2 neutralizing activity (IC50 < 301 

20 µg/ml, ID50 serum titer > 2,500) ranking them as ‘elite neutralizers’. While cross-reactivity 302 
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against SARS-CoV-1 and other Beta-CoVs has been shown for some SARS-CoV-2 303 

recovered individuals52-54, we revealed that all elite neutralizers have cross-reactive IgG 304 

NAbs against SARS-CoV-1. Moreover, IgG from elite neutralizers could efficiently block 305 

infection of 6 SARS-CoV-2 strains. Two of them (BavP1 and DRC94) contain the D614G 306 

mutation in the S protein55 associated with higher infectivity56. Given the eminent risk of novel 307 

emerging CoVs and monoclonal antibody-resistant SARS-CoV-2 variants, developing 308 

antibodies with broader neutralization breadth would be critical. Further evaluation of the 309 

antibody response in such elite neutralizers at the single B cell level will be required to 310 

understand the details of such potent NAb responses and can yield the identification of new 311 

highly potent cross-reactive monoclonal antibodies.  312 

Effective neutralization and clearance of pathogens is mainly mediated by IgG antibodies, 313 

which are typically formed within 1-3 weeks post infection and often provide long-term 314 

immunity that can last decades57. Protective immunity to seasonal coronaviruses like NL63, 315 

229E, OC43 and HKU1 is known to be short lived and re-infection is common58. In addition, 316 

the antibody response to SARS-CoV-1 and Middle East Respiratory Syndrome (MERS)-CoV 317 

was shown to wane over time59. Upon SARS-CoV-1 infection, serum IgG and NAbs were 318 

shown to decline 3 years after infection60. This suggests that immunity to CoVs is rather short 319 

lived compared to some other viruses such as measles virus, for which life-long antibody 320 

immunity is observed57. In our study we not only measured serum neutralization, but also 321 

quantified SARS-CoV-2 IgG neutralizing activity. While serum neutralization waned quickly 322 

(half-life of 1.5 months), levels of purified IgG rather persisted with a longer half-life of 7.7 323 

months. The sharp drop in serum neutralization could be a consequence of a decline in anti-324 

spike IgA and IgM titers34, which along with IgG, cumulatively contribute to serum NAb 325 

activity61. Finally, SARS-CoV-2 spike-based mRNA vaccines17 were shown to induce NAb 326 

titers in different age groups for a time span up to 4.25 months18. In this study, we found that 327 

although SARS-CoV-2-reactive IgG levels decline by 17% within the first 4 months after 328 

infection, anti-spike IgG can be persistently detected in the majority of COVID-19 cases for 329 

up to 10 months post infection.  330 
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In summary, the data presented in this study provides new insight into the features that 331 

shape the SARS-CoV-2 NAb response in COVID-19 recovered individuals. Longitudinal 332 

mapping of antibody responses reveals a relatively long-lived IgG antibody response lasting 333 

up to 10 months. Since many SARS-CoV-2 vaccines are spike protein-based62, studying 334 

antibody dynamics informs us on longevity of natural immunity as well as may help to inform 335 

on vaccination strategies and outcomes in the population.  336 

 337 

Methods  338 

Enrollment of participants and study design 339 

Blood samples were collected from donors who gave their written consent under the 340 

protocols 20-1187 and 16-054, approved by the Institutional Review Board (IRB) of the 341 

University Hospital Cologne. All samples were handled according to the safety guidelines of 342 

the University Hospital Cologne. Individuals that met the inclusion criteria of i.) ≥18 years old 343 

and ii.) history of SARS-CoV-2 positive polymerase chain reaction (PCR) from 344 

nasopharyngeal swab or collected sputum, and/or iii.) an onset of COVID-19 specific 345 

symptoms longer than 3 weeks ago, were enrolled in this study. Demographical data, 346 

COVID-19-related pre-existing conditions, and information on the clinical course were 347 

collected at study visit 1. Blood samples were collected starting from study visit 1, for up to 4 348 

follow up visits between the 6th of April and 17th of December 2020.  349 

Processing of serum, plasma and whole blood samples 350 

Blood samples were collected in Heparin syringes or EDTA monovette tubes (Becton 351 

Dickinson) and fractionated into plasma and peripheral blood mononuclear cell (PBMC) by 352 

density gradient centrifugation using Histopaque-1077 (Sigma). Plasma aliquots were stored 353 

at -80°C till use. Serum was collected from Serum-gel tubes (Sarstedt) by centrifugation and 354 

stored at -80°C till use. 355 
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Isolation of IgGs from serum and plasma samples 356 

For the isolation of total IgG, 0.5-1 mL plasma or serum was heat inactivated at 56°C for 45 357 

minutes and incubated overnight with Protein G Sepharose 4 Fast Flow beads (GE 358 

Healthcare) at 4°C. Next day, beads were washed on chromatography columns (BioRad) 359 

and Protein G bound IgG was eluted using 0.1M Glycine pH=3 and instantly buffered in 1M 360 

Tris pH=8. Buffer exchange to PBS (Gibco) was performed using 30 kDa Amicon Ultra-15 361 

columns (Millipore) and the purified IgG was stored at 4°C. 362 

Cloning of SARS-CoV-2 spike variants 363 

The codon optimized SARS-CoV-2 Wu01 spike (EPI_ISL_40671) was cloned into 364 

pCDNATM3.1/V5-HisTOPO vector (Invitrogen). SARS-2-S global strains (BavP1 365 

EPI_ISL_406862; ARA36 EPI_ISL_418432; DRC94 EPI_ISL_417947; CA5 366 

EPI_ISL_408010; NRW8 EPI_ISL_414508) were generated by introducing the 367 

corresponding amino acid mutations (Extended Data Fig. 5) using the Q5® Site-Directed 368 

Mutagenesis Kit (NEB) and per manufacturer’s protocol.  369 

Production of SARS-CoV pseudovirus particles 370 

Pseudovirus particles were generated by co-transfection of individual plasmids encoding 371 

HIV-1 Tat, HIV-1 Gag/Pol, HIV-1 Rev, luciferase followed by an IRES and ZsGreen, and the 372 

SARS-CoV-2 spike protein as previously described63. In brief, HEK 293T cells were 373 

transfected with the pseudovirus encoding plasmids using FuGENE 6 Transfection Reagent 374 

(Promega). The virus culture supernatant was harvested at 48h and 72h post transfection 375 

and stored at -80°C until use. Each virus batch was titrated by infecting 293T-ACE2 and after 376 

a 48-hour incubation period at 37°C and 5% CO2, luciferase activity was determined after 377 

addition of luciferin/lysis buffer (10 mM MgCl2, 0.3 mM ATP, 0.5 mM Coenzyme A, 17 mM 378 

IGEPAL (all Sigma-Aldrich), and 1 mM D-Luciferin (GoldBio) in Tris-HCL) using a microplate 379 

reader (Berthold). An RLU of approximately 1000-fold in infected cells versus non-infected 380 

cells was used for neutralization assays. 381 
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Pseudovirus assay to determine IgG/plasma/serum SARS-CoV-2 neutralizing activity 382 

For testing SARS-CoV-2 neutralizing activity of IgG or serum/plasma samples, serial 383 

dilutions of IgG or serum/plasma (heat inactivated at 56°C for 45 min) were co-incubated with 384 

pseudovirus supernatants for 1 h at 37°C prior to addition of 293T cells engineered to 385 

express ACE263. Following a 48-hour incubation at 37°C and 5% CO2, luciferase activity was 386 

determined using the reagents described above. After subtracting background relative 387 

luminescence units (RLUs) of non-infected cells, 50% inhibitory concentrations (IC50s) were 388 

determined as the IgG concentrations resulting in a 50% RLU reduction compared to 389 

untreated virus control wells. 50% Inhibitory dose (ID50) was determined as the serum 390 

dilution resulting in a 50% reduction in RLU compared to the untreated virus control wells. 391 

Each IgG and serum sample were measured in two independent experiments on different 392 

days and the average IC50 or ID50 values have been reported. For each run, a SARS-CoV-2 393 

neutralizing monoclonal antibody was used as control to ensure consistent reproducibility in 394 

experiments carried out on different days. Assay specificity calculated using pre-COVID-19 395 

samples was found to be 100%.  IC50 and ID50 values were calculated in GraphPad Prism 7.0 396 

by plotting a dose response curve.  397 

SARS-CoV-2 live virus isolation from nasopharyngeal swabs 398 

For outgrowth cultures of authentic SARS-CoV-2 from nasopharyngeal swabs, 1x106 VeroE6 399 

cells were seeded onto a T25 flask (Sarstedt) on the previous day DMEM (Gibco) containing 400 

10% FBS, 1% PS, 1mM L-Glutamine and 1mM Sodium pyruvate. 0.2 mL swab in VNT 401 

medium was diluted with 0.8 mL DMEM (Gibco) containing 2% FBS, 1% PS, 1mM L-402 

Glutamine and 1mM Sodium pyruvate. The swab dilution was added to VeroE6 cells and left 403 

for 1 hour at 37°C, 5%CO2 after which an additional 3 mL medium was added. The cultures 404 

were examined for the next days for CPE and samples were sent for viral load analysis to 405 

track growth of virus by E-gene qPCR. Cell culture supernatant was harvested from positive 406 

cultures and stored at -150°C until use. Virus was titrated by adding serial dilutions of virus 407 

supernatant (8 replicates) on VeroE6 cells in DMEM (Gibco) containing 2% FBS, 1% PS, 408 
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1mM L-Glutamine and 1mM Sodium pyruvate. After 4 days of incubation at 37°C, 5% CO2, 409 

the presence or absence of cytopathic effects (CPE) was noted in using a brightfield 410 

microscope. TCID50 was calculated using the Spearman and Kaerber algorithm64,65. 411 

SARS-CoV-2 live virus neutralization assay  412 

Live SARS-CoV-2 (termed CoV2-P3) was grown out from a swab from Cologne using 413 

VeroE6 cells as described above and then expanded in culture by superinfection of VeroE6 414 

from the initial outgrowth culture. Whole genome sequencing of the isolated virus was done 415 

isolating viral RNA using the QIAamp MinElute Virus Spine kit (Qiagen) and performing 416 

Illumina sequencing. The virus spike amino acid sequence (Extended Data Fig. 5) is similar 417 

to the Wu01 spike (EPI_ISL_40671) with the exception that it contains the D641G mutation. 418 

For the neutralization assay, dilutions of IgG were co-incubated with the virus (1000-2000 419 

TCID50) for 1 h at 37°C prior to addition of VeroE6 cells in DMEM (Gibco) containing 2% 420 

FBS, 1% PS, 1mM L-Glutamine and 1mM Sodium pyruvate. After 4 days of incubation at 421 

37°C, 5% CO2, neutralization was analyzed by observing cytopathic effects (CPE) using a 422 

brightfield microscope and the highest dilution well with no CPE was noted to be the IC100 for 423 

the antibody. Assay specificity calculated using pre-COVID-19 samples was found to be 424 

100%. All samples were measured in two independent experiments on separate days and 425 

the average IC100 from all measurements has been reported. 426 

Detection of anti-SARS-CoV-2 spike IgG and IgA by ELISA  427 

For assessing IgA and IgG antibody titers, the Euroimmun anti-SARS-CoV-2 ELISA using 428 

the S1 domain of the spike protein as antigen was used (Euroimmun Diagnostik, Lübeck, 429 

Germany). Serum or plasma samples were tested on the automated system Euroimmun 430 

Analyzer I according to manufacturer´s recommendations. Signal-to-cut-off (S/CO) ratio was 431 

calculated as extinction value of patient sample/extinction value of calibrator. IgA and IgG 432 

S/CO values were interpreted as positive S/CO ≥1.1, equivocal S/CO ≥0.8 - <1.1, and 433 

negative S/CO <0.8. Additional commercial kits used for antibody measurements were also 434 

used as per manufacturer’s recommendations; Anti-S1/S2 IgG was measured using 435 
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DiaSorin’s LIAISON® SARS-CoV-2 ELISA kit with the following cut-off values: negative 436 

<12.0 AU/ml, equivocal ≥12.0- < 15.0 AU/ml and positive ≥15.0 AU/ml. Anti-N Pan-Igs were 437 

measured using Roche’s Elecsys®-Assay with cut-off values: non-reactive < 1,0 COI and 438 

reactive ≥ 1,0 COI. Anti-N IgG were measured with Abbott’s Alinity i system with cut-off 439 

values: positive S/CO ≥1.4 and negative S/CO <1.4. Assay specificities calculated using pre-440 

COVID-19 samples: Euroimmun IgG 100%; Euroimmun IgA 96%; Roche 98%; Diasorin 441 

98%; Abbott 98%. 442 

Measurement of SARS-CoV-2 RNA levels from nasopharyngeal swabs 443 

Cycle threshold values for quantifying viral load in naso/oro-pharyngeal swabs was done by 444 

qPCR using LightMix® SarbecoV E-gene66 plus EAV control (TIB Molbiol, Berlin, Germany) 445 

in combination with the N-gene (inhouse primer sets in multiplex PCR) on LightCycler® 480 446 

(Roche Diagnostics). 447 

Statistical modeling 448 

To select features that are predictive for the log10 response in a multivariate analysis (Fig. 449 

3b), forward stepwise regression was applied, using the p-value from a likelihood ratio test (R 450 

function lmtest::lrtest) as selection criterion in each step. The final multiple linear regression 451 

model (Fig. 3c) includes only features that show a significant model improvement 452 

(alpha=0.05) in the feature selection phase. To study the interplay of the different features 453 

regarding their relationship with the response (Fig. 3d), a Bayesian network was learned by 454 

maximizing the BIC score for hybrid networks via hill-climbing (R function bnlearn::hc)67. To 455 

enforce it to be a sink in the network, all outgoing edges from the response variable were 456 

blacklisted prior to learning. For the longitudinal analyses (Fig. 5e-h), linear mixed effect 457 

models (R-function nlme:lme) were applied to all data points from both visits, where each 458 

patient has its own intercept. Since a binary transformation of the response was used, half-459 

life estimates were computed as negative inverse of the common slope regression 460 

coefficient. Prediction intervals were computed using R-function ggeffects::ggpredict68.  461 
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Figure legends 462 

Figure 1: SARS-CoV-2 recovered cohort and study design 463 

a, Illustration depicting study timeline and number of individuals analyzed at each study visit. 464 

Graph represents sample collection time for participants in weeks since disease onset 465 

(symptom onset date or positive PCR date). b, age distribution of the cohort c, gender 466 

distribution, presence of pre-conditions and disease severity.  467 

 468 

Figure 2: Neutralizing antibody response after recovery from SARS-CoV-2 infection 469 

a, pie chart illustrating fraction of serum neutralizers against Wu01 pseudovirus at study visit 470 

1. Violin plot depicts serum ID50 values for the neutralizers (n=793), categorized based on 471 

serum ID50 titers. Dotted line represents the LOD (10-fold dilution) of the assay. b, pie chart 472 

depicting the fraction of IgG neutralization against Wu01 pseudovirus at study visit 1. Violin 473 

plot depicts IgG IC50 values for the neutralizers (n=760), categorized based on IgG IC50. 474 

Dotted line represents the LOD (750 µg/ml) of the assay. c, pie chart comparing fraction of 475 

samples with neutralization at serum and/or IgG level. Spearman correlation plot between 476 

serum ID50 and IgG IC50 values at study visit 1. d, violin plot of Euroimmun ELISA signal over 477 

cut-off (S/CO) ratios for anti-spike IgG. Dotted line represents LOD (S/CO=1.1) of the assay. 478 

e, pie charts illustrating fraction of anti-spike IgG reactive individuals in the Euroimmun 479 

ELISA. f, spearman correlation between Euroimmun IgG S/CO and IgG IC50 at study visit 1. 480 

g, plot depicting binding against spike, Nucleocapsid (N) and neutralizing response against 481 

authentic virus (AV) and Wu01 pseudovirus (PSV) of the IgG negative fraction (n=166) with 482 

each row representing 1 individual. h, pie charts showing total fraction of individuals with 483 

binding or neutralizing activity in the IgG-fraction from g. i, pie chart representing total 484 

combined binding and NAb response in the cohort (n=963) and bar graph of the Ab-negative 485 

individuals based on disease severity. LOD, limit of detection 486 

 487 
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Figure 3: Correlates of neutralizing activity against SARS-CoV-2 488 

a, violin plots depicting IgG neutralization IC50 values at study visit 1 against Wu01 489 

pseudovirus, subdivided based on age, disease severity, gender and pre-conditions. Dotted 490 

line represents the limit of detection (750 µg/ml) of the assay. Statistical analysis was 491 

performed Kruskal-Wallis and Mann-Whitney tests. b, multiple linear regression model for 492 

predicting IgG IC50 using the features: Euroimmun S/CO, gender, age, disease severity, pre-493 

conditions, weeks since infection and the 9 reported symptoms. Plot below depicts model 494 

coefficients to study the goodness of fit of the final IC50 prediction model. c, Bayesian 495 

network of the features predicting IgG IC50 are plotted using the bnlearn R package. The 496 

graph connects the features which are predictive of each other with IgG IC50 as sink. 497 

 498 

Figure 4: Cross-neutralization by SARS-CoV-2 elite neutralizers 499 

a, heat maps visualizing the neutralizing activity of 15 individuals from each neutralization 500 

category: Elite-, High-, Average-, Low-, and Non-neutralizers (total n=75) against SARS-501 

CoV-2-S pseudovirus, SARS-CoV-2 authentic virus and SARS-CoV (SARS-1) pseudovirus. 502 

b, Spearman correlation of IgG IC50 against SARS-2-S and SARS-1-S pseudovirus. c, details on the 503 

source and type of spike mutations in 6 global strains of SARS-CoV-2 generated and used in 504 

this study. d, heat map visualizing the IC50 values of 15 Elite-neutralizers against the 6 505 

SARS-CoV-2 global spike variants from c.  506 

 507 

Figure 5: Longitudinal maintenance of anti-SARS-CoV-2 IgG antibody titers 508 

a, IgG ELISA ratios (n=1,669) plotted against weeks since infection for half-life estimate of 509 

anti-spike IgG levels using a linear mixed-effects model. b, longitudinal mapping of IgG levels 510 

in 131 individuals from visit 1-4. Dot plots illustrate antibody titer against the weeks since 511 

infection to study visit 1 (red) and study visit 2 (blue). Geometric mean change shown in 512 
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black. Dotted lines represent limit of detection (S/CO=1.1 for IgG ELISA). c, pie charts 513 

illustrate the change in the fraction of IgG ELISA positive (Pos), Negative (Neg) and 514 

Equivocal (Equi) samples (n=131) between the study visits. d, serum ID50 values against 515 

Wu01 pseudovirus (n=1,017) and e, IgG IC50 values against Wu01 pseudovirus (n=996) 516 

plotted against weeks since infection for half-life estimate of the antibody levels using a linear 517 

mixed effects model. Longitudinal mapping of serum neutralization (f) and IgG neutralization 518 

(g) in 342 individuals at study visit 1 and 2. Serum and IgG non-neutralizers were assigned 519 

values of ID50=5 and IC50=900 for plotting. Dotted lines represent limit of detection (ID50 of 10 520 

and IC50 of 750 µg/ml for serum and IgG neutralization assays). Pie charts illustrate the 521 

change in the fraction of serum neutralizers (f) and IgG neutralizers (g) in the samples 522 

(n=342) between the study visits. 523 

 524 

Extended Data Figure 1: Samples used for analysis of SARS-CoV-2 antibody response  525 

a, Illustration depicting processing of blood samples and IgG purification from plasma or 526 

serum samples. b, Plot analyzing the efficiency of IgG purification from plasma or serum as 527 

compared to clinical reference range. Statistical testing performed with Kruskal-Wallis test. 528 

Validation of the pseudovirus neutralization test against SARS-2-S Wu01 pseudovirus using 529 

Pre-COVID-19 plasma (c) and IgG (d) samples with a neutralizing monoclonal antibody as 530 

positive control28. 531 

 532 

Extended Data Figure 2: Correlation between neutralization and serology results 533 

a, violin plot of Euroimmun ELISA signal over cut-off (S/CO) ratios for anti-spike IgA. Dotted 534 

line represents the limit of detection (S/CO=1.1) of the assay. b, Spearman correlation plot 535 

between Euroimmun IgA S/CO and serum ID50 values at study visit 1. Euroimmun IgA S/CO 536 

and serum ID50 values at study visit 1. Pie charts illustrating the fraction of serum neutralizers 537 

and non-neutralizers and their corresponding Euroimmun IgA ELISA result for comparison. c, 538 
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Spearman correlation plot of Euroimmun IgG S/CO ratios vs. IgA S/CO ratios at study visit 1. 539 

d, Spearman correlation plot between Euroimmun IgG S/CO and serum ID50 values at study 540 

visit 1. Pie charts illustrating the fraction of serum neutralizers and non-neutralizers and their 541 

corresponding Euroimmun IgG ELISA result for comparison.  542 

 543 

Extended Data Figure 3: Correlates of anti-SARS-CoV-2 antibody titers 544 

a, violin plots depicting serum neutralization at study visit 1 against Wu01 pseudovirus, 545 

subdivided based on age, disease severity, gender and pre-conditions. Dotted line 546 

represents the limit of detection (1:10 dilution) of the assay. b, violin plots depicting 547 

Euroimmun IgG ELISA S/CO at study visit 1, subdivided based on age, disease severity, 548 

gender and pre-conditions. Dotted line represents the limit of detection (S/CO=1.1) of the 549 

assay. c, violin plots depicting Euroimmun IgA ELISA S/CO at study visit 1, subdivided based 550 

on age, disease severity, gender and pre-conditions. Dotted line represents the limit of 551 

detection (S/CO=1.1) of the assay. a, b and c Statistical analysis was performed using 552 

Kruskal-Wallis and Mann-Whitney tests. 553 

 554 

Extended Data Figure 4: Statistical predication of SARS-CoV-2 antibody responses  555 

a, multiple linear regression model and model coefficients for predicting serum neutralization 556 

using the features: Euroimmun S/CO, gender, age, disease severity, pre-conditions, weeks 557 

since infection and the 9 reported symptoms. b, Bayesian network of the features predicting 558 

serum ID50 are plotted using the bnlearn R package. The graph connects the features which 559 

are predictive of each other with serum ID50 as sink. c and d, Multiple linear regression 560 

model for predicting IgG and IgA ratios using the features: gender, age, disease severity, 561 

pre-conditions, weeks since infection and the 9 reported symptoms. Plots on the right depicts 562 

model coefficients to study the goodness of fit of the corresponding final models. Spearman 563 
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correlation plot for diagnostic naso-/oro-pharyngeal swab Ct values for E-gene (e) or N-gene 564 

(f) vs. IgG IC50, serum ID50, anti-spike IgG and anti-spike IgA values at study visit 1.   565 

 566 

Extended Data Figure 5: Neutralization of different strains by SARS-CoV-2 elite-567 

neutralizers  568 

a, plots for the distribution of gender, age and time since infection for the 15 individuals 569 

selected randomly from the five IgG neutralization categories: elite-, high-, average-, low-, 570 

and non-neutralizers (n=75 total). Statistical testing performed with Kruskal-Wallis test using 571 

Dunn’s multiple comparisons. b, Spearman correlation of IgG IC50 against SARS-2-S 572 

pseudovirus and SARS-2 authentic virus. c, Relative infectivity of SARS-CoV-2 global strain 573 

pseudovirus in 293T-ACE2 cells. d, Sequence alignment of the spike amino acid sequence 574 

of the 6 global SARS-CoV-2 strains and SARS-1 used for pseudovirus neutralization assays 575 

in this study. 576 

 577 

Extended Data Figure 6: Antibody kinetics in the early phase of SARS-CoV-2 infection  578 

a, Pie charts indicating distribution of gender and disease severity in individuals who were 579 

longitudinally monitored starting from the early phase of infection. b, Plots depicting IgG and 580 

IgA ratios over time in individuals (n=107). Dotted line represents the limit of detection 581 

(S/CO=1.1) of the Euroimmun ELISA. Statistical analysis was performed using a second 582 

order polynomial quadratic equation (R2=0.128 for IgG and R2=0.140 for IgA) with 95% 583 

confidence interval shading (IgG in blue and IgA in red) of the best line. c, Individual plots 584 

depicting IgG (blue) and IgA (red) levels over time. Gender and disease severity are 585 

indicated within each plot. Dotted line represents the limit of detection (S/CO=1.1) of the 586 

Euroimmun ELISA. 587 

 588 
 589 
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Extended Data Figure 7: Changes in Ab response against SARS-CoV-2 over time  590 

a, plot depicting SARS-CoV-2 S1 binding and Wu01 pseudovirus neutralization of 339 591 

individuals at visit 1 and visit 2 with each row representing 1 individual. Bar graphs showing 592 

change in fraction of individuals negative for anti-spike Abs (b), anti-spike NAbs (c) or any Ab 593 

response (d). e, pie chart evaluating the total presence if Ab response between visit 1 and 2 594 

for all individuals. 595 

 596 
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Figure 1: SARS-CoV-2 recovered cohort and study design
a, Illustration depicting study timeline and number of individuals analyzed at each study visit. Graph represents sample collection 
time for participants in weeks since disease onset (symptom onset date or positive PCR date). b, age distribution of the cohort c, 
gender distribution, presence of pre-conditions and disease severity. 
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Figure 2: Neutralizing antibody response after recovery from SARS-CoV-2 infection
a, pie chart illustrating fraction of serum neutralizers against Wu01 pseudovirus at study visit 1. Violin plot depicts serum ID50 values for the 
neutralizers (n=793), categorized based on serum ID50 titers. Dotted line represents the LOD (10-fold dilution) of the assay. b, pie chart 
depicting the fraction of IgG neutralization against Wu01 pseudovirus at study visit 1. Violin plot depicts IgG IC50 values for the neutralizers 
(n=760), categorized based on IgG IC50. Dotted line represents the LOD (750 μg/ml) of the assay. c, pie chart comparing fraction of samples 
with neutralization at serum and/or IgG level. Spearman correlation plot between serum ID50 and IgG IC50 values at study visit 1. d, violin plot 
of Euroimmun ELISA signal over cut-off (S/CO) ratios for anti-spike IgG. Dotted line represents LOD (S/CO=1.1) of the assay. e, pie charts 
illustrating fraction of anti-spike IgG reactive individuals in the Euroimmun ELISA. f, spearman correlation between Euroimmun IgG S/CO and 
IgG IC50 at study visit 1. g, plot depicting binding against spike, Nucleocapsid (N) and neutralizing response against authentic virus (AV) and 
Wu01 pseudovirus (PSV) of the IgG negative fraction (n=166) with each row representing 1 individual. h, pie charts showing total fraction of 
individuals with binding or neutralizing activity in the IgG-fraction from g. i, pie chart representing total combined binding and NAb response in 
the cohort (n=963) and bar graph of the Ab-negative individuals based on disease severity. LOD, limit of detection
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Figure 3: Correlates of neutralizing activity against SARS-CoV-2
a, violin plots depicting IgG neutralization IC50 values at study visit 1 against Wu01 pseudovirus, subdivided based on age, disease 
severity, gender and pre-conditions. Dotted line represents the limit of detection (750 μg/ml) of the assay. Statistical analysis was 
performed Kruskal-Wallis and Mann-Whitney tests. b, multiple linear regression model for predicting IgG IC50 using the features: 
Euroimmun S/CO, gender, age, disease severity, pre-conditions, weeks since infection and the 9 reported symptoms. Plot below 
depicts model coefficients to study the goodness of fit of the final IC50 prediction model. c, Bayesian network of the features 
predicting IgG IC50 are plotted using the bnlearn R package. The graph connects the features which are predictive of each other 
with IgG IC50 as sink.
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Figure 4: Cross-neutralization by SARS-CoV-2 elite neutralizers
a, heat maps visualizing the neutralizing activity of 15 individuals from each neutralization category: Elite-, High-, Average-, Low-, and Non-neutralizers (total n=75) 

against SARS-CoV-2-S pseudovirus, SARS-CoV-2 authentic virus and SARS-CoV (SARS-1) pseudovirus. b, Spearman correlation of IgG IC50 against SARS-2-S and 

SARS-1-S pseudovirus. c, details on the source and type of spike mutations in 6 global strains of SARS-CoV-2 generated and used in this study. d, heat map 

visualizing the IC50 values of 15 Elite-neutralizers against the 6 SARS-CoV-2 global spike variants from c. 
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Figure 5: Longitudinal maintenance of anti-SARS-CoV-2 IgG antibody titers
a, IgG ELISA ratios (n=1,669) plotted against weeks since infection for half-life estimate of anti-spike IgG levels using a linear mixed-effects 
model. b, longitudinal mapping of IgG levels in 131 individuals from visit 1-4. Dot plots illustrate antibody titer against the weeks since infection to 
study visit 1 (red) and study visit 2 (blue). Geometric mean change shown in black. Dotted lines represent limit of detection (S/CO=1.1 for IgG 
ELISA). c, pie charts illustrate the change in the fraction of IgG ELISA positive (Pos), Negative (Neg) and Equivocal (Equi) samples (n=131) 
between the study visits. d, serum ID50 values against Wu01 pseudovirus (n=1,017) and e, IgG IC50 values against Wu01 pseudovirus (n=996) 
plotted against weeks since infection for half-life estimate of the antibody levels using a linear mixed effects model. Longitudinal mapping of serum 
neutralization (f) and IgG neutralization (g) in 342 individuals at study visit 1 and 2. Serum and IgG non-neutralizers were assigned values of 
ID50=5 and IC50=900 for plotting. Dotted lines represent limit of detection (ID50 of 10 and IC50 of 750 μg/ml for serum and IgG neutralization 
assays). Pie charts illustrate the change in the fraction of serum neutralizers (f) and IgG neutralizers (g) in the samples (n=342) between the study 
visits.
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