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Abstract 
Genome-wide profiling of transcription factor binding and chromatin states is a widely-

used approach for mechanistic understanding of gene regulation. Recent technology 

development has enabled such profiling at single-cell resolution. However, an end-to-end 

computational pipeline for analyzing such data is still lacking. To fill this gap, we have 

developed a flexible pipeline for analysis and visualization of single-cell CUT&RUN and 

CUT&Tag data, which provides functions for sequence alignment, quality control, 

dimensionality reduction, cell clustering, data aggregation, and visualization. Furthermore, 

it is also seamlessly integrated with the functions in original CUT&RUNTools for 

population-level analyses. As such, this provides a valuable toolbox for the community.  
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Introduction 
Genome-wide analysis of transcription factor binding sites and chromatin states is 

essential for understanding cell-type specific transcriptional regulatory mechanisms. For 

over a decade, ChIP-seq has served as the main workhorse [1,2], but recently, a new 

generation of technologies has emerged with enhanced sensitivity and efficiency [3–8].  

As a result, it has become possible to profile genome-wide occupancy analysis in a limited 

number of or even single cells. In the meantime, existing software packages do not have 

the capacity to analyze such data. New tools are needed to fill this important gap. 

 

Among these technologies, CUT&RUN [3] and CUT&Tag [4] are the most popular. In 

previous work, we developed CUT&RUNTools for analyzing CUT&RUN data, providing 

an end-to-end CUT&RUN data analysis pipeline that includes sequence alignment and 

pre-processing, peak calling, cut matrix estimation, motif and footprinting analyses, and 

additional analyses [9]. Here we have further extended this software by implementing a 

flexible pipeline for single-cell data quality assessment, analysis and visualization, thus 

enabling users to rapidly utilize new technologies to systematically dissect the 

heterogeneity of the epigenomic landscape and gene regulatory networks among 

individual cells. In addition, we have also implemented a number of new features, 

including data normalization, peak calling, and downstream functional analysis that 

improve the performance for bulk data analysis. Together, this new tool is referred to as 

CUT&RUNTools 2.0, and is publicly available at https://github.com/fl-yu/CUT-RUNTools-

2.0. 

 
Results 

Overview of CUT&RUNTools 2.0 
CUT&RUNTools 2.0 provides a new module to facilitate the analysis and visualization of 

single-cell resolution data. The module implements a flexible, end-to-end pipeline that 

takes raw data as input, followed by a number of steps including data preprocessing and 

quality assessment, feature extraction, dimensionality reduction, cell clustering, data 

aggregation, and visualization. An overview of the single-cell pipeline is shown in Fig. 1.    
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First, the input FASTQ files are processed by read trimming, mapping, and filtering. All 

the paired FASTQ files for individual cells are trimmed using a two-step strategy to 

improve the quality of the reads consistent with bulk data processing [9]. Then the 

trimmed reads are aligned to human/mouse reference genome using software Bowtie2 

[10]. For each cell, only high mapping quality (MAPQ score > 30), uniquely aligned and 

properly mapped reads are retained for further analysis. CUT&RUNTools 2.0 uses GNU 

parallel technique [11] to improve computational efficiency in the main steps of data 

processing including reads trimming, mapping and filtering. 

 

CUT&RUNTools 2.0 reports a set of common quality control (QC) metrics as a summary 

report and diagnostic plots, which can be conveniently used for the data quality evaluation. 

In addition, single-cell level QC measures are saved and can be used to filter out low 

quality cells based on user-customized criteria. Furthermore, a signal-to-noise ratio metric 

is calculated based on the fraction of reads that fall into informative regions. To this end, 

all data of individual cells are pooled together into a single file followed by peak calling. 

The proportion of reads that fall into the detected peaks is defined as the signal-to-noise 

ratio in each cell.  

 

Due to the sparsity of single-cell data, sequence reads falling into a set of pre-selected 

features are aggregated. CUT&RUNTools 2.0 provides three options for feature selection: 

peaks from cell aggregation, genome-wide bins, and user-defined functional elements. In 

each case, a feature-by-cell matrix is derived by counting the sequence reads that fall 

into a pre-identified feature across individual single cells in parallel. Furthermore, the 

count matrix is binarized to reduce noise associated with low-number counts. To 

efficiently reveal the latency variation across different cells, CUT&RUNTools 2.0 

implements the term frequency-inverse document frequency (TF-IDF) transformation 

method to the binarized feature-by-cell matrix [12,13]. 

 

To reduce dimension, the resulting feature-by-cell matrix is processed by singular value 

decomposition, which generates a Latent Semantic Indexing (LSI) score matrix [12]. Then 

principal component analyses (PCA), t-distributed Stochastic Neighbor Embedding (t-
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SNE)  [14], and/or Uniform Manifold Approximation and Projection (UMAP) [15] are used 

to further reduce dimensionality. Clustering analysis is achieved by applying the graph-

based Leiden algorithm [16].  The cells from the same cluster are merged into a pseudo-

bulk profile and the corresponding genome track files for both individual cells and the 

pooled signal are automatically generated per cell population. These pseudo-bulk 

samples are compared by analysis of distinct peaks, motif discovery, footprints (for 

transcription factors), or functional enrichment. The main processing steps in the data 

processing and feature-by-cell matrix construction can be performed in parallel to make 

full use of the available computational resources and reduce runtime. For each run, only 

a configuration file specifying the options and parameters needs to be provided for the 

analysis. Users can either run the entire workflow or select a specific step by customizing 

the configuration file. 

 

Analysis of a single-cell CUT&Tag dataset 
To demonstrate its utility, we applied the CUT&RUNTools 2.0 pipeline to re-analyze a 

publicly available single-cell CUT&Tag dataset [4]. In this study, the investigators profiled 

genome-wide occupancy of H3K27me3, a repressive histone mark, in individual cells 

from two distinct cell lines: H1 (human embryonic stem cells) and K562 (a human 

erythroleukemia cell line).  

 

A summary report regarding a set of QC metrics and the corresponding diagnostic plots 

for the experiment were produced (Fig. 2). Overall, a total of 1,373 cells were detected 

and approximately 0.14 million reads per cell were sequenced. For most cells, more than 

99% of the reads were successfully mapped to the reference sequence indicating a high 

degree of purification. We also found that a vast majority of cells having a high proportion 

(median percentage, 99.5%) of nuclear reads (reads not aligned to mitochondrial DNA) 

in each single cell library. Less than 1% of duplicated reads were found for the majority 

of cells, suggesting the libraries of individual cells were sequenced near saturation. The 

fragment size was calculated as the length between the cut point of the Tn5 enzyme and 

the average size is 230.3 bp, which is expected for typical histone modification and longer 

than typical transcription factor binding profiles (~120 bp) [4,9,17]. The fragment size 
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distribution of all the reads from individual cells exhibits a clear nucleosomal binding 

pattern. These quality metrics were reported as a summary table (Fig. 2a) as well as a 

number of diagnostic plots (Fig. 2b and c).  The high quality of the data is reflected by a 

number of factors including high alignment ratio, the ideal proportion of properly mapped 

reads, high-quality mapping reads and nuclear reads, and a high level of library 

complexity.  

 

Next, we aggregated sequence reads from individual cells into a pooled sample, and then 

applied MACS2 [18] to detect peaks. In order to preserve the structure of the data, we 

used a permissive cutoff of q-value < 0.01, which detects a total of 379,566 peaks. We 

assessed the signal-to-noise ratio in individual cells based on the fraction of reads that 

fall into the detected peaks. Overall, the signal-to-noise ratio ranges from 28% to 68%, 

with a median level of 45%. Of the 1,373 cells, three did not pass the QC criteria because 

they were associated with either a low signal-to-noise ratio (< 30%) or a small number of 

qualified fragments (< 10,000), therefore these three cells were excluded from further 

analysis (Fig. 2d).   

 

For the remaining 1,370 cells, we created a binarized feature-by-cell matrix indicating the 

presence or absence of a peak of any individual cell. We also removed features that were 

either ubiquitous (detected in > 80% cells) or rare (detected in < 0.1% cells) therefore 

unlikely to be informative. After dimensionality reduction and clustering, two distinct cell 

populations were identified (Fig. 3a), which matched nearly perfectly to the true cell-type 

labels (Fig. 3b): nearly all the cells in cluster 1 were K562 cells, whereas all the cells in 

cluster 2 were H1 cells, indicating the biological information was preserved by our single-

cell CUT&Tag analysis pipeline.  

 

To compare the genome-wide H3K27me3 profiles for different cell clusters, the reads 

obtained from all the cells in each cluster were aggregated to create a pseudo-bulk 

sample. We further downloaded and processed the cell-type matched bulk data and found 

the pseudo-bulk samples are highly correlated with the corresponding bulk data (Fig. 3c). 
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Together, these results suggest our single single-cell analysis is able to extract useful 

information and accurately reveal the cellular heterogeneity.  

 

To aid visualization, we created genomic tracks files of not only the pooled signals, but 

also binding profiles at the single-cell resolution for different cell clusters (Fig. 3d).  This 

visualization clearly shows the differences between the H1 and K562 cells. Of note, 

H3K27me3 occupies across the entire HOXB cluster in H1 cells, but only partially 

occupies a broad domain around the HOXB13 locus in K562 cells (Fig. 3d). By comparing 

with ENCODE RNAseq data, we found this change of H3K27me3 profiles is consistent 

with transcriptional activity differences between these two cell types, where HOXB1-9 

genes are expressed in K562 cells but the entire HOXB cluster genes are repressed in 

H1 cells (Fig. 3d). 

 

The pseudo-bulk data were used to further characterize and compare the H3K27me3 

landscape between different cell subpopulations. We first identified 75,812 peaks in 

cluster 1 (corresponding to K562 cells) and 25,064 peaks in cluster 2 (corresponding to 

H1 cells) by using a stringent cutoff of q-value < 0.01 and fold change > 5 (Fig. 4a). We 

found only a small proportion of peaks (1,525) overlapping between these two clusters. 

More peaks were associated with non-coding regions comparing to coding regions in both 

cell clusters (Fig. 4b). Of note, a much larger proportion of peaks of cluster 2 (17%) were 

proximal to transcriptional start sites (TSSs) compared to cluster 1 (5%), suggesting that 

more embryonic associated genes may be more directly regulated by repressive 

H3K27me3 domain. We identified potential regulators closely related to the repression of 

cell-type-specific genes and cis-elements, such as the tumor suppressor Transcription 

Factor AP-2 Beta (TFAP2B) and Early B cell factor 1 (EBF1) in cell cluster 1 [19,20] (Fig. 

4c) and the development associated TF Early growth response protein 2 (EGR2) in cell 

cluster 2 [21,22] (Fig. 4d). Gene Ontology analysis showed that many different cell and 

system development associated functions including embryo development, system 

development, cell differentiation, and multi-cellular organism development were markedly 

enriched in cluster 2, which also supports that the establishment and removal of 
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H3K27me3 at specific genes in the embryonic stem cells is critically important for normal 

development. 

 

 

Discussion 
We have extended CUT&RUNTools in response to the recent development of single-cell 

technologies and demonstrated that this new single-cell module is useful for extracting 

biological insights.  While we have only focused on single-cell CUT&Tag here, our 

pipeline can be adapted to various emerging promising technologies that could profile 

transcription factor and chromatin regulators at the single-cell resolution [5–8,23]. As 

more data with a large sample size become available, we plan to incorporate further 

adaptations to this approach in the future.  

 

In addition, CUT&RUNTools 2.0 also contains a number of updates in bulk-level analyses, 

such as spike-in sequence alignment and data normalization (see the website for details). 

The main strength of CUT&RUNTRools 2.0 is that it seamlessly integrates single-cell and 

bulk-level analyses in one package, providing the convenience to study a number of 

datasets in a standardized manner. As single-cell multi-modal data become increasingly 

available, CUT&RUNTools 2.0 provides as a convenient toolkit facilitating integration 

which in turn will provide a better understanding of epigenomic heterogeneity and 

regulatory logic in both healthy and diseased tissues. 

 

Methods 
Adaptor trimming and reads mapping 

For each cell, the adaptor sequence and primer oligo sequence from the 3’ ends 

of reads is trimmed off using a two-step trimming strategy consistent with bulk data 

processing. All the reads are aligned to the corresponding reference genome hg38  using 

Bowtie2 software [10] with the default parameter. The SAMtools [24] is used to sort and 

index the resulting BAM files.  

 

Quality control metrics 
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CUT&RUNTools 2.0 provides a set of quality assessment metrics for the overall 

experiment as well as each barcode cells. The metrics include overall alignment ratio, the 

number of total reads, properly paired reads, duplicated reads, high-quality reads (MAPQ 

score >30), and nuclear reads, fragment size, signal-to-noise ratio (the fraction of reads 

in peaks). The Picard (https://broadinstitute.github.io/picard) MarkDuplicates function is 

used to locate and tag duplicate reads. The unmapped, low quality (MAPQ score <30), 

unproperly paired and duplicated fragments are discarded, and the remaining data are 

defined as the qualified fragments. Then, the filtered and sorted BAM file for each cell are 

generated for further analysis. The fraction of reads in peaks are calculated using 

BEDTools genomecov function [25]. 

 

For each run, a summary report is generated by using a custom script, which contains a 

summarization of the mapping statistics of the overall experiment. Additionally, several 

diagnostic plots are also produced for intuitive illustration of the quality control metrics 

across all the cells. We provide two parameters, num_reads_threshold (number of unique 

mapped reads, 10,000 as default) and percentage_rip (fraction of reads in peaks, 30% 

as default) as filters to remove low quality cells. Finally, two files, statistics_QCpassed.txt 

and statistics_QCfailed.txt, are generated to record the identity of the filtered cells along 

with their associated statistics.  

 

Parallel processing 

Comparing to bulk data, a single-cell CUT&RUN / CUT&Tag experiment usually 

contains a large number of cells, but the reads in each cell are less abundant. The data 

processing time roughly scales linearly with the cell number, therefore it may take a long 

time if the number of cells is large. To overcome this challenge, we have adopted the 

GNU parallel technique [11] in the main steps of data processing, which results in 

dramatic reduction of runtime.  

 

Peak calling 

For the pseudo-bulk data aggregated from cells from the entire datasets or a 

specific cell cluster, CUT&RUNTools 2.0 enables peak calling by using different methods. 
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By default, we use the MACS 2 narrow peak mode for peak calling [18], which has good 

performance for TFs [26]. In addition, we also implement two alternative strategies: the 

MACS 2 broad peak mode, and the SEACR algorithm [27]. The users can easily make 

selection by modifying the parameters of peak_caller and peak_thresholds. 

 

Construction of feature-by-cell matrix  

CUT&RUNTools 2.0 provides three options to build the feature-by-cell matrix, 

which can be customized by setting matrix_type as peak-by-cell, bin-by-cell, or 

customFeature-by-cell. peak-by-cell refers to using peaks detected from the pooled 

sample as the feature set, which is selected in the present study. bin-by-cell refers to 

segmenting the genome into equal-size bins (5 kb by default). Using the customfeature-

by-cell option, users can also upload their own features of interest, such as a list of 

enhancer regions (input needs to be in the standard BED format). 

 

Once the feature file is designated, CUT&RUNTools 2.0 automatically excludes features 

overlapping with ENCODE blacklist regions [28] or uninterested chromosomes. For 

CUT&RUN experiments, an additional filtering step is carried out by removing the regions 

overlapping with TA repeats regions because these regions usually occur as containment 

abnormally enriched reads [17]. The users can simply set the experiment_type parameter 

as CUT&RUN to turn on this feature. With the preparation of feature files, 

CUT&RUNTools calculates the read coverage profiles for all the qualified cells, and the 

resulting feature-by-cell count matrix is generated and saved. 

 

Count matrix processing 

Owing to the sparsity of count matrix of single-cell epigenomic data, 

CUT&RUNTools 2.0 converts the feature-by-cell matrix into the sparse Matrix format to 

allows more efficiency of memory usage and computation by using the ‘Matrix’ package 

in R [29]. The sparse matrix is binarized and an additional filter is used to remove features 

that are present only in few cells (the maximum of 0.1% of the cells) or in the vast majority 

of cells (80% of the cells) to efficiently capture the informative signals.  
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Dimensionality reduction, cell clustering and visualization 

Dimensionality reduction is performed using the Latent Semantic Indexing (LSI) 

method, a technique commonly used for document indexing process in natural language 

processing [30]. The binarized sparse matrix is first converted into a frequency-inverse 

document frequency (TF-IDF) matrix by weighting the matrix against the total number of 

terms (i.e. features) for each document (i.e. cell) with the following formula: 

 

 
 

where  is the weight for the feature   in cell ,   indicates the term frequency, the 

number of feature   in cell ,   is the document frequency of term  , cell number of 

cells where the feature  appears,  is the total number of cells in the experiment.  

 

The singular value decomposition (SVD) is applied on the TF-IDF matrix  to generate 

an LSI score matrix with a lower k dimensional space as follows: 

 

 
This is the decomposition of  where  and  are orthogonal matrices and   is a 

diagonal matrix.  represents the number of rows and  represents the number of 

columns for .   and  with length , which is called the left singular vector.  

 and  with length  , which is called the right singular vector. 

  and  are singular values of .   

 

Based on the resulting LSI matrix, the graph-based Leiden algorithm is used as the 

unsupervised clustering method which is implemented with the leidenalg and igraph 

library [16,31]. Using the top 30 principal components (different numbers can be tuned by 

changing parameter cluster_pc), we build a shared neighbor network (SNN) graph by 

considering each cell as a node and further finding its k-nearest neighbors according to 

the Euclidian distance. Another parameter of cluster_resolution is also provided, which is 
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important to control the number of resulting clusters, where the larger of this parameter 

usually lead to the larger number of resulting cell clusters. The predicted cell type labels 

are then generated. CUT&RUNTools 2.0 visualizes the results by employing three 

commonly used methods for dimensionality reduction including PCA, UMAP and t-SNE. 

The corresponding plots of the first two dimensions are generated and saved, respectively.  

 

Generation of genome browser tracks 

The tracks of pseudo-bulk data are normalized by the counts per million method 

and generated with bigwig format using the program bamCoverage in the deepTools 

package [32] with 50 bp resolution. The peak files called from pseudo-bulk data are also 

generated with BED format. For each single cell, the genome-wide read coverage is 

calculated using BEDTools [25] in parallel with available computational cores. The 

regions covered by any reads are extracted and a read coverage file is created with BED 

format.  For each cell cluster, the read coverage files of individual cells are combined into 

a single track with qBED format for convenient visualization [33], with the cells sorted by 

the number of covered regions in each cell. All the resulting track files could be directly 

uploaded and visualized using browser apps such as the WashU Epigenome Browser 

[34]. 

 

Downstream analysis function specific to cell populations  

Analysis of peaks called from pseudo-bulk data of cell clusters is important to 

uncover the cell-specific gene regulatory elements. The script peakOverlap is used to 

summarize the peak overlap between different cell clusters, the number of common and 

specific peaks will be identified and visualized as a Venn diagram. The script eleAnno is 

used to annotate the distribution of peaks over different types of genomic features 

including 5’ UTR, promoter, exon, intron, 3’ UTR, intragenic and intergenic regions. 

haystack_motifs is used for the motif enrichment analysis of peaks to identify cell-type-

specific cis-regulatory elements and associated transcription factors [35]. PeakFun is 

used for Gene Ontology (GO) analysis of the top 1,000 interested peaks with the search 

of genes associated with GO ‘biological process’ categories [36] (see the manual on the 

website for details). 
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Figure Legend 
Figure 1. Overview of the workflow of CUT&RUNTools 2.0. The raw data of individual 

cells are trimmed and then aligned to the reference genome. Peak calling is performed 

for the aggregated data. A comprehensive QC report and several diagnostic plots are 

generated to help to evaluate experiment quality and filter low-quality cells. Three options 

of input features (peak-by-cell, bin-by-cell and customFeature-by-cell) are available for 

feature-by-cell matrix construction. The feature-by-cell matrix will be binarized and 

normalized, then the dimensionality reduction analysis is performed and the cell 

annotation will be generated from the clustering analysis. The cells from the same cluster 

are merged into a pseudo-bulk profile and the corresponding genome track files for both 

individual cells and the pooled signal are automatically generated for data visualization. 

The bulk-level analysis such as motif enrichment and Gene Ontology analysis provided 

by the CUT&RUNTools 2.0 could be used for functional annotation and interpretation of 

the resulting cell types.  

 

Figure 2. Quality evaluation of single-cell CUT&Tag data. (a) The overall statistics of 

the experiment are shown in the summary report. (b) Violin plots for percentage statistics 

of overall alignment, properly paired reads, duplication reads and nuclear reads. (c) 

Distribution of fragment size of the qualified fragments for all the cells. (d) Scatter plot of 

the fraction of unique fragments in peaks versus the total number of unique fragments for 

each cell. The default thresholds for the two parameters were indicated as dash lines.  

 

Figure 3. Analysis of single-cell CUT&Tag data identifies two cell clusters. (a) A plot 

of two-dimensional projection of the single-cell CUT&Tag data using the t-SNE method. 

(b) Confusion matrix of the ground truth cell labels and cell clusters predicted by 

CUT&RUNTools 2.0. (c) The genome-wide bins with 1 kb resolution were generated and 

the fragment within each bin was counted for the bulk and pseudo-bulk data of H1 and 

K562, respectively. The pair-wise Pearson correlation coefficients were calculated and 

shown in the heatmap. (d) The genome browser tracks for the HOXB gene locus. The 

signals of bulk, pseudo-bulk, and single-cell CUT&Tag data along with the RNA-seq data 
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for H1 (top panel) and K562 (bottom panel) cells are shown. For the bottom panel, each 

row represents a single cell. The cells are ordered by total read counts. 

 

Figure 4. Functional analysis of the pseudo-bulk data. (a) Venn diagram illustrates 

the number of H3K27me3 modification peaks detected in the pseudo-bulk data 

corresponding to the two cell populations. (b) The percentage distribution of top 5000 

peaks overlapping with annotated genomic elements. (c-d) The top enriched TFs 

associated with different genomic elements of cell cluster1 (c) and cell cluster 2 (d). 
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