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ABSTRACT 43 
Concerns have arisen that pre-existing immunity to dengue virus (DENV) could enhance 44 
Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and the 45 
observation of antibody-dependent enhancement (ADE) among DENV serotypes. To date, 46 
no study has examined the impact of pre-existing DENV immunity on ZIKV pathogenesis 47 
during pregnancy in a translational non-human primate model. Here we show that prior 48 
DENV-2 exposure enhanced ZIKV infection of maternal-fetal interface tissues in macaques. 49 
However, pre-existing DENV immunity had no detectable impact on ZIKV replication kinetics 50 
in maternal plasma, and all pregnancies progressed to term without adverse outcomes or 51 
gross fetal abnormalities detectable at delivery. Understanding the risks of ADE to pregnant 52 
women worldwide is critical as vaccines against DENV and ZIKV are developed and 53 
licensed and as DENV and ZIKV continue to circulate.  54 
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INTRODUCTION 55 
Pre-existing immunity to one DENV serotype can enhance the severity of a secondary 56 
heterologous DENV infection, a phenomenon known as antibody-dependent enhancement 57 
(ADE) (1–3). ZIKV is genetically and antigenically closely related to DENV, raising the 58 
possibility that pre-existing DENV-specific antibodies might also modulate the severity of 59 
ZIKV infection. ADE is thought to occur when antibodies from a prior DENV infection bind to 60 
DENV virions and enhance uptake into Fcɣ-receptor bearing cells rather than neutralizing 61 
viral infectivity. This can lead to increased viral replication, a more robust inflammatory 62 
response, and more severe disease (1, 4, 5).  63 
 64 
Since the ZIKV outbreak in the Americas in 2015-2016, the potential role of DENV 65 
antibodies in ZIKV infection has been examined in a variety in vitro, in vivo, and 66 
epidemiological studies. Studies in cell culture (6–13, 13–16) and immunocompromised 67 
mice (6, 7, 13, 17–19) have found a range of outcomes from enhancement of, to protection 68 
against, ZIKV infection. Data from non-human primates (NHP) and human cohorts support 69 
the growing consensus that prior DENV infection does not enhance ZIKV infection in non-70 
pregnant individuals (20–29). However, DENV seroprevalence has been high in regions such 71 
as French Polynesia (>80%), Yap, and New Caledonia that subsequently experienced large-72 
scale ZIKV outbreaks, suggesting that high DENV seroprevalence does not protect against 73 
ZIKV outbreaks in a population (30–33). 74 
 75 
The impact of prior DENV immunity on ZIKV pathogenesis during pregnancy remains 76 
unclear. Studies in placental macrophages (34), human placental explants (34–36), and both 77 
immunocompetent and immunocompromised pregnant mice (36, 37) have all demonstrated 78 
enhancement of ZIKV infection in the presence of DENV antibodies. Retrospective studies 79 
of pregnant women in South America did not identify an association between DENV 80 
antibodies and adverse fetal outcomes (38–40); however, a majority of women in these 81 
studies (>80%) had a prior DENV exposure, and outcomes could not be stratified by pre-82 
existing anti-DENV titer. A retrospective study of microcephaly cases in Brazil indicated that 83 
there was reduced risk of microcephaly in areas with a DENV epidemic in the 6 years prior, 84 
but an increased risk of microcephaly in areas with a DENV epidemic >7 years prior, 85 
suggesting that the role of DENV-specific antibodies in modulating risk of congenital Zika 86 
syndrome (CZS) might change as antibody titers wane with time (41). Understanding the 87 
potential impact of DENV immunity on ZIKV outcomes in pregnant women is critical, as 88 
vaccines against DENV and ZIKV are being developed, licensed, and distributed (42–44). 89 
The rollout of Dengvaxia offers a cautionary tale, as vaccine-induced immunity led to more 90 
severe disease outcomes in seronegative individuals (45). If ZIKV acts functionally as a fifth 91 
serotype of DENV, then one would expect that this vaccine would also enhance Zika 92 
disease by the same mechanism. Therefore, understanding whether the severity of maternal 93 
and fetal ZIKV infection increases in pregnant, DENV-immune individuals should be a public 94 
health priority. 95 
 96 
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NHP development and placentation resemble those of humans more closely than these 97 
processes do in other animal models, making NHPs particularly relevant to understanding 98 
viral infections in pregnancy (46). Here we apply our established NHP model (47) to assess 99 
the impact of DENV immunity on ZIKV pathogenesis in pregnancy. We do not detect a role 100 
for DENV immunity in modulating fetal outcomes in ZIKV-infected pregnant macaques. 101 
However, previous exposure to DENV did appear to increase ZIKV infection in tissues of the 102 
maternal-fetal interface, a result that warrants further examination. 103 

 104 
Fig. 1. Experimental Overview. A cohort of eight non-pregnant macaques were challenged with 104 PFU 105 
DENV-2 (orange). Approximately 1-3 months following DENV challenge, the eight DENV exposed macaques 106 
were bred, became pregnant, and were challenged with 104 PFU ZIKV-PRVABC59, an Asian-lineage ZIKV 107 
isolate, on gestational day 45. A cohort of four pregnant, DENV-naïve macaques (blue) were challenged with 108 
ZIKV-PRVABC59 on gestational day 45. A control cohort of four macaques (green) were mock-challenged with 109 
PBS on gestational day 45. All three cohorts underwent the same experimental protocols for blood collection 110 
and sedation for ultrasound. At approximately gestational day 160, infants were delivered via cesarean section, 111 
and a set of maternal-fetal interface tissues with maternal biopsies were collected. Infants were placed with 112 
their mothers for long-term behavioral analysis, data from which is part of a separate study.   113 

 114 
RESULTS 115 

Prior DENV immunity does not modulate ZIKV replication kinetics in plasma 116 
To characterize the range of pathogenic outcomes of congenital ZIKV infection in DENV-117 
immune animals, we subcutaneously (s.c.) inoculated a cohort of eight non-pregnant, 118 
Indian-origin rhesus macaques with 104 PFU of DENV-2/US/BID-V594/2006, a low-passage 119 
human isolate from Puerto Rico (Fig. 1). All eight macaques were productively infected with 120 
DENV-2, with peak plasma viral loads ranging from 105-107 vRNA copies/mL occurring on 121 
days 2-3 post-infection (Fig. 2). Following a biphasic decline in viral loads, all macaques 122 
cleared infection by day 11 post-infection.  123 
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 124 
Fig. 2. Replication of DENV-2. Eight non-pregnant macaques were challenged with 104 PFU DENV-2/US/BID-125 
V594/2006, a 2006 human isolate from Puerto Rico. QRT-PCR was performed on plasma samples from 0-10, 126 
14, 21, and 28 days post-infection. All values above the limit of quantification for the QRT-PCR assay (100 127 
copies vRNA/mL plasma) are shown.   128 
 129 
Macaques were bred 1-3 months following DENV inoculation. Once they became pregnant, 130 
the animals were challenged with 104 PFU of ZIKV-PRVABC59 (ZIKV-PR), a human isolate 131 
from Puerto Rico, on gestational day 45 (late first trimester). ZIKV challenge was 84-119 132 
days following DENV inoculation in each case. This cohort of eight DENV-immune 133 
macaques was compared to a cohort of four pregnant, DENV-naïve macaques that were 134 
inoculated with ZIKV-PR at gestational day 45 and a cohort of four pregnant, DENV-naïve 135 
macaques mock-challenged with phosphate-buffered saline (PBS) at gestational day 45. 136 
Following challenge, all three cohorts (DENV-immune, DENV-naïve, and mock) underwent 137 
the same blood sampling and fetal monitoring protocols (Fig. 1). All macaques inoculated 138 
with ZIKV were productively infected. Peak plasma viremia occurred on days 2-4 post-139 
infection, with titers ranging from 104-105 vRNA copies/mL in DENV-immune animals and 140 
103-105 vRNA copies/mL in DENV-naïve animals (Fig. 3A, 3B). An unpaired t-test did not 141 
reveal significant differences between cohorts in the peak, area under the curve, or duration 142 
of viremia (Fig. 3C). Since prolonged ZIKV viremia >21 days is only observed in pregnancy, 143 
we assessed differences in duration both as a continuous variable and as a binary with 144 
viremia greater than or less than 21 days. This suggests that prior DENV-2 immunity did not 145 
alter ZIKV replication kinetics during gestation.  146 
  147 
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 148 
Fig. 3. ZIKV replication kinetics. Eight DENV-immune (A, orange) and four DENV-naïve (B, blue) macaques 149 
were challenged with 104 PFU of ZIKV-PRVABC59 at gestation day 45, which is late in the first trimester. Viral 150 
loads were assessed from plasma samples with ZIKV-specific QRT-PCR. All values above the limit of 151 
quantification (100 copies vRNA, mL plasma) are shown above. C. Graphs of the values for the peak, duration, 152 
and area under the curve of viremia for both DENV-immune and DENV-naïve macaques. An unpaired t-test 153 
was used for statistical comparison; ns = not significant (p > 0.05). Only values above the limit of quantification 154 
were used in statistical analyses. 155 
 156 
DENV-immune macaques have low levels of ZIKV cross-reactive antibodies present at 157 

the time of challenge 158 
For DENV-1-4, specific antibody titer ranges have been shown to enhance viral replication. 159 
As measured by a DENV inhibition ELISA (iELISA) assay, an intermediate antibody titer 160 
range of 1:21-1:80 was associated with a greater risk of developing severe dengue disease 161 
upon secondary exposure in a human cohort study (2). In a separate human cohort study, a 162 
plaque reduction neutralization test (PRNT50) titer of <1:100 was associated with an 163 
increased risk of severe DENV disease upon secondary exposure (48). In order to assess 164 
how cross-reactive DENV antibodies impact ZIKV outcomes during pregnancy, we 165 
characterized DENV and ZIKV antibody dynamics throughout the experimental time course.  166 
 167 
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We collected serum samples from macaques at 28 days post-DENV challenge, the day of 168 
ZIKV challenge, 28-35 days post-ZIKV challenge, and the day of c-section for measuring 169 
antibody responses to DENV and ZIKV. We used PRNT and iELISA to measure neutralizing 170 
antibodies or binding antibodies, respectively. In the PRNT, serial dilutions of serum 171 
antibodies are incubated with DENV or ZIKV, plated on a confluent monolayer of cells, and 172 
assessed for the dilution of antibodies required to reduce plaques by 50 or 90 percent 173 
(Supplementary Fig. 1). In iELISA, serum is serially diluted with peroxidase-conjugated 174 
DENV- or ZIKV-specific antibodies, which compete for binding to either an equal mixture of 175 
DENV1-4 antigens or ZIKV antigen (2, 49). Due to the impact of COVID-19, only 4 of 8 176 
DENV-immune macaques were assayed via iELISA.  177 
 178 
At 28 days post-DENV challenge, all eight macaques seroconverted and developed a robust 179 
antibody response to DENV-2 as measured by both DENV PRNT and DENV iELISA (Fig. 4A, 180 
4C, 4D). At this time point, all macaques also showed a cross-reactive antibody response to 181 
ZIKV in one or both assays (3 of 4 macaques by iELISA and 7 of 8 macaques by PRNT), 182 
although generally below levels considered to be protective against subsequent ZIKV 183 
challenge (Fig. 4B, 4E, 4F)(50).  184 
 185 
At the time of the ZIKV challenge, which fell 84-119 days after primary DENV infection, the 186 
DENV iELISA titers had increased four-fold in 6 of the 8 DENV-exposed macaques by PRNT 187 
and 4 of 4 macaques by iELISA (Fig. 4G, 4I, 4J). The cross-reactive ZIKV antibody titers 188 
remained stable or increased only modestly via ZIKV iELISA assay and PRNT (Fig. 4H, 4K, 189 
4L) in the majority of macaques. However, cross-reactive ZIKV antibodies became 190 
undetectable by PRNT in 3 of 4 macaques that previously showed cross-reactivity at 28 191 
days post-DENV challenge (Fig. 4K, 4L). By using both assays, we detected low levels of 192 
cross-reactive antibodies to ZIKV at the time of ZIKV challenge in all DENV-immune 193 
macaques; 2 of 4 macaques had ZIKV iELISA titers that fell within the range 1:21-1:80, 194 
which has previously been shown to increase risk of more severe DENV disease in humans. 195 
At the time of ZIKV challenge, no antibody responses to either ZIKV or DENV were detected 196 
using either assay in the DENV-naïve macaques (Fig. 4G, 4H, 4K, 4L). 197 
 198 
Between 28-35 days post-ZIKV challenge, DENV antibody titers increased approximately 199 
four-fold following ZIKV challenge in DENV-immune macaques, as assessed by both DENV 200 
iELISA and PRNT (Fig. 4M, 4O, 4P). DENV titers in DENV-naïve macaques were only 201 
assessed via DENV iELISA, which revealed essentially no evidence of cross-reactive DENV 202 
antibodies, with a low-level antibody titer (1:11) to DENV in only 1 of 4 macaques (Fig. 4M). 203 
By 28-35 days post-ZIKV challenge, both DENV-immune and DENV-naïve macaques 204 
developed robust ZIKV-specific responses as measured by both ZIKV iELISA and PRNT 205 
(Fig. 4N, 4Q, 4R). Macaques in both cohorts that had viremia for a duration of >21 days 206 
(042-101, 042-103, 042-104, 044-101) developed antibody titers more than four-fold higher 207 
than those animals that had viremia for a duration of <21 days (042-102, 044-102, 044-103, 208 
044-104) as determined by ZIKV iELISA. PRNT50 titers were significantly higher (p=0.0095) 209 
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in DENV-immune macaques than DENV-naïve animals 28-35 days after ZIKV challenge, but 210 
no significant differences were noted in PRNT90 titers between groups. Together, these 211 
data provide evidence that antibodies capable of cross-reacting with ZIKV were present at 212 
the time of ZIKV challenge in DENV immune animals and show that all animals, regardless of 213 
DENV exposure history, develop a robust antibody response to ZIKV. 214 
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Fig. 4. DENV and ZIKV antibody dynamics. iELISA titers against DENV and ZIKV 28 days post-DENV 217 
challenge (A-F), the day of ZIKV challenge (G-L), 28-35 days post ZIKV challenge (M-Q), and the day of 218 
delivery (S-T). iELISA titers from DENV-immune animals shown in orange and from DENV-naïve animals shown 219 
in blue. Samples labeled “ND” were not detected. Using an unpaired t-test, PRNT50, but not PRNT90, titers 220 
from the DENV-immune group were significantly higher than the PRNT50 titer of DENV-naïve animals at 28 221 
days post-ZIKV-challenge (**p<0.01). Neutralization curves can be found in Supplementary Fig. 1. 222 
 223 

No evidence of fetal growth restriction during gestation 224 
To further characterize pathogenic outcomes during pregnancy, we define fetal health and 225 
growth parameters throughout gestation. No gross abnormalities, such as microcephaly, 226 
missing limbs, or hydrops fetalis were noted in any animals during gestation. Head 227 
circumference and biparietal diameter measurements were used to assess head size; femur 228 
length and abdominal circumference were used to assess overall fetal growth. Fetal 229 
measurements were compared to previously collected normative data on fetal growth 230 
trajectories in 55 pregnant rhesus macaques (51, 52). A z-score (number of standard 231 
deviations from the normative data) was calculated for each measurement at each 232 
timepoint. To account for animal-specific differences, z-scores were plotted as the change 233 
from the baseline measurement (open circles, Fig. 5). Overall group growth trajectories were 234 
calculated (solid line, Fig. 5) and used for statistical comparisons. Only the biparietal 235 
diameter of the mock-infected cohort was significantly lower than the normative data 236 
(p=0.01713). There were no significant differences noted in pairwise comparisons of growth 237 
trajectories between groups. Taken together, these extensive fetal growth measurements 238 
suggest that there was no significant reduction in fetal growth in ZIKV-exposed macaques, 239 
regardless of their DENV immune history.  240 
 241 
No evidence of vertical transmission in either DENV-immune or DENV-naïve macaques  242 

At approximately gestational day 160 (term = gestational day 165), infants were delivered via 243 
cesarean section. During the surgery, a biopsy of the maternal mesenteric lymph node was 244 
taken to look for ZIKV vRNA in the dam. None of the mesenteric lymph node biopsies were 245 
positive in the DENV-immune cohort and only one of four mesenteric lymph node biopsies 246 
was positive in the DENV-naïve cohort, a difference which was not significant 247 
(Supplementary Table 1). Fetal tissues are not available for virological analysis because 248 
infants were placed with their mothers for long-term behavioral analysis, data from which 249 
will be part of a forthcoming study. We collected fetal plasma, umbilical cord plasma, and 250 
amniotic fluid; none of the fluid samples from infants in either cohort tested positive for ZIKV 251 
vRNA (Supplementary Table 1). There was no robust evidence to support direct infection of 252 
the fetus in either cohort, although the possibility of vertical transmission with viral clearance 253 
by the time of delivery cannot be ruled out.  254 
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 255 
Fig. 5. Fetal Growth. Comprehensive ultrasounds were performed weekly throughout gestation to monitor 256 
fetal health and perform four measurements of fetal growth: biparietal diameter and head circumference to 257 
evaluate head size; abdominal circumference and femur length to evaluate overall fetal growth. Using 258 
normative data from the California National Primate Research Center, a z-score was calculated for each 259 
measurement and the change in z-score from baseline is plotted for each measurement with an open circle. 260 
The overall growth trajectory for each group was quantified by calculating the regression slope parameters 261 
from baseline (solid line). When compared to the normative data, mock-infected animals had significantly 262 
reduced biparietal diameter growth (p=0.01713). No other significant differences were detected in 263 
comparisons to the normative data or in comparisons between the experimental groups. 264 
 265 

Enhanced infection of the maternal-fetal interface in DENV-immune macaques 266 
We performed an extensive dissection of both discs of the placenta in order to understand 267 
the distribution of ZIKV in placental tissues. Positive tissue samples were detected above 268 
the theoretical limit of detection of our QRT-PCR assay in 5 of 8 DENV-immune macaques 269 
and only 1 of 4 DENV-naïve macaques (Fig. 6A). Using a Mann-Whitney U test, there was a 270 
significantly higher burden of ZIKV RNA in the chorionic plate in the DENV-immune group as 271 
compared to the DENV-naïve group (p<0.01). Although there was a trend toward a greater 272 
burden of ZIKV in the fetal membranes in DENV-immune macaques, there were no 273 
statistically significant differences between cohorts in vRNA burden in the other MFI tissues 274 
(decidua, chorionic villi, umbilical cord, fetal membranes, and uterine placental bed). The 275 
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highest ZIKV RNA burden detected in a fetal membrane sample was from DENV-immune 276 
animal 042-104, which had a viral load of 1.03x105 vRNA copies/ml. We could not recover 277 
infectious virus from this specimen; we did not attempt virus isolation from other specimens, 278 
which had much lower viral loads (<103 copies/mg).   279 
 280 
To determine whether the presence of vRNA in the MFI was associated with duration, peak, 281 
or area under the curve of viremia, we performed a Pearson correlation analysis. When 282 
prolonged viremia was defined as >21 days and non-prolonged viremia as <21 days (Fig. 283 
6B) there was a significant positive correlation between prolonged viremia and presence of 284 
vRNA in the MFI for both the DENV-immune and DENV-naïve cohorts. When viremia is 285 
assessed as a continuous variable, the correlation is no longer significant for the DENV-286 
immune cohort (Fig. 6C). There was a significant correlation between area under the curve 287 
and presence of vRNA in the MFI in both cohorts (Fig. 6D, 6E). There was a significant 288 
correlation between peak viremia and presence of vRNA in the MFI only in DENV-naïve 289 
animals (Fig. 6E).  290 

 291 
Fig. 6. Maternal-Fetal Interface Viral Loads. All tissue samples were tested for the presence of viral RNA 292 
using ZIKV-specific QRT-PCR. A. All tissues >0.1 copy vRNA/mg tissue are shown above; only tissues with 293 
viral loads greater than the theoretical limit of quantification (3 copies vRNA/mg) were used for statistical 294 
analysis. A Mann-Whitney U test was used to assess statistically significant differences between the 295 
experimental groups (**p<0.01). B-E. Pearson correlation analysis was performed to assess correlation 296 
between the percent of tissues collected that were vRNA positive and the duration (B and C), peak (D), and 297 
area under the curve (E) of viremia. 298 

 299 
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More-severe histopathological changes inconsistently detected in DENV-immune 300 

macaques 301 
Placental insufficiency due to virus-mediated damage could lead to poor fetal outcomes 302 
(53). In order to assess the impact of ZIKV infection on MFI health, we quantified 303 
inflammation and infarctions within the MFI. Qualitative pathological findings included 304 
transmural infarctions and neutrophilic deciduitis in the central cross-section of both 305 
placental discs examined, but these findings were observed in animals of all groups, 306 
including mock-infected animals, with no consistent patterns distinguishing groups. In order 307 
to quantitatively analyze placental pathology and identify any trends within and between 308 
cohorts, the center section of each placental disc was scored for 22 pathologic changes 309 
associated with fetal vascular malperfusion, maternal vascular malperfusion, and 310 
generalized placental disease (Supplementary Table 2). DENV-immune macaques had 311 
significantly higher scores in four pathologic changes in disc 1 (% transmural infarction, 312 
chronic villitis, avascular villi, and chronic retroplacental hemorrhage) and one pathologic 313 
change in disc 2 (chronic villitis) as compared to the mock-infected cohort (Supplemental 314 
Fig. 2) There were no significant differences between DENV-naïve animals and mock-315 
infected animals. 316 
 317 

Table 1. Placental cotyledon pathology 318 

Group Dam % CHIV+ 
cotyledons 

Infarcted 
cotyledons/total 
cotyledons (%) 

Villous stromal 
calcifications 

(present/absent) 

Vasculopathy 
(present/absent) 

Placental 
weight (g) 

Mock 044-105 0.0 5.88 Present Absent 111.08 

044-106 0.0 12.5 Present Absent 106.5 

044-107 0.0 0.0 Present Present 144.48 

044-108 0.0 45.5 Present Absent 122.92 

DENV-
naïve 

044-101 0.0 25.0 Present Absent 172.59 

044-102 0.0 33.3 Present Absent 123.87 

044-103 0.0 0.0 Absent Absent 134.49 

044-104 0.0 18.2 Absent Absent 120.48 

DENV-
immune 

042-101 0.0 21.43 Present Absent 104.4 

042-102 7.69 7.69 Present Absent 111.9 

042-103 0.0 0.00 Present Absent 120.06 

042-104 0.0 26.67 Present Absent 95.33 

042-105 0.0 25.00 Absent Absent 119.97 

042-106 0.0 53.33 Present Present 120.14 

042-107 0.0 28.57 Present Absent 139.74 

042-108 0.0 33.33 Present Absent 129.54 
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 319 
We also assessed a cross-section of each of the individual placental cotyledons, including 320 
the decidua basalis, for the presence of chronic histiocytic intervillositis (CHIV), infarctions, 321 
villous stromal calcifications, and vasculopathy (Table 1). Although infarctions and villous 322 
stromal calcifications were present in DENV-immune and DENV-naïve macaques, they were 323 
also present in mock-infected animals. There were no statistically significant differences 324 
between any of the groups for any of these pathologic features or placental weight. This 325 
suggests that the presence of some changes, such as multifocal areas of villous 326 
mineralization, may be a result of normal placental aging or a result of stress from 327 
experimental procedures, rather than from viral infection. These data underscore the 328 
necessity of mock-infected controls when assessing pathology.  329 
 330 
DISCUSSION 331 
This study provides the first comprehensive assessment of the impact of pre-existing DENV 332 
immunity on ZIKV pathogenesis during pregnancy in a translational NHP model. Macaques 333 
with previous DENV-2 infection supported robust replication of ZIKV and developed a 334 
robust neutralizing antibody response to ZIKV, suggesting that primary DENV-2 infection 335 
had no protective effect. We did not observe evidence of enhanced ZIKV replication in 336 
DENV-immune macaques as compared to DENV-naïve macaques. Neither intrauterine 337 
growth restriction nor adverse fetal outcomes were observed in either cohort. However, we 338 
did observe ZIKV RNA in the MFI in a greater number of DENV-immune macaques and a 339 
significantly greater burden of ZIKV RNA in the chorionic plate in DENV-immune macaques 340 
as compared to DENV-naïve macaques. Although we do not have any evidence of direct 341 
fetal infection, the increased presence of ZIKV in the chorionic plate in DENV-immune 342 
macaques suggests that the virus is capable of crossing the placental barrier and reaching 343 
the chorionic plate, which is on the fetal side of the placenta (54). This enhanced infection is 344 
consistent with prior studies that have shown increased replication of ZIKV in the placenta 345 
of mice and placental cells in the presence of DENV antibodies (34, 36, 37). The implications 346 
of increased infection of the placenta on fetal outcomes is unclear, since we observed no 347 
fetal demise nor any of the other clinical sequelae associated with CZS in offspring. This 348 
also suggests that the presence of ZIKV in the maternal-fetal interface is not a robust 349 
indicator of significant fetal harm in this model. Future studies will define the effects of 350 
DENV and ZIKV on infant outcomes, as developmental deficits are the most common 351 
adverse outcome of prenatal ZIKV exposure in humans (55). 352 
 353 
We did observe an association between prolonged viremia, defined as lasting >21 days, and 354 
the presence of ZIKV vRNA in the maternal-fetal interface. Since 5 of 8 DENV-immune 355 
macaques had viremia greater than 21 days, while only 1 of 4 DENV-naïve animals did, it is 356 
tempting to speculate that prior DENV immunity may lead to longer viral replication and 357 
therefore greater ZIKV burden in the placenta. However, since we did not observe any 358 
statistically significant differences in the duration of viremia between the two groups, 359 
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perhaps due to a small sample size, we cannot make any definitive conclusions about the 360 
impact of prior DENV immunity on the duration of ZIKV viremia.  361 
 362 
A significant strength of this study was our ability to assess ZIKV pathogenesis in a 363 
translational model in macaques with known infection histories. This allowed us to report 364 
detailed antibody dynamics throughout the course of infection, historical data that can be 365 
challenging to obtain in human cohort studies particularly during pregnancy. We confirmed 366 
the presence of low levels of cross-reactive antibodies present at the time of ZIKV challenge 367 
in our DENV-immune cohort. Twenty-eight days after ZIKV-challenge, we determined that 368 
PRNT50, but not PRNT90, titers were significantly higher in our DENV-immune cohort. We 369 
were particularly interested in this finding, since a higher ZIKV neutralization titer at the time 370 
of delivery has been associated with CZS in human cohort studies (39). However, at the 371 
time of delivery there were no significant differences in iELISA titers between cohorts.   372 
 373 
As is common to non-human primate studies, ethical and financial constraints limited the 374 
number of variables that we were able to test in this study. A significant limitation of this 375 
study is the small group sizes used. Since the most severe effects of ZIKV only occur in a 376 
minority of cases, it is difficult to model the full spectrum of disease that women experience 377 
when infected with ZIKV during pregnancy. Small group sizes further limited our statistical 378 
power to detect significant differences between groups. In this study, we only tested a 379 
single DENV serotype; there is considerable evidence that the sequence of infecting DENV 380 
serotypes has an effect on subsequent enhancement or protection (for review see (20)). 381 
There is also considerable evidence that the pre-existing antibody titer at the time of 382 
secondary infection is associated with the risk of developing severe disease (2, 48). In this 383 
study, we had a relatively short window (1-3 months) between DENV and ZIKV infection, 384 
and a different interval between infection may have affected the titer of cross-reactive 385 
antibodies present at the time of ZIKV challenge. We tested a single ZIKV isolate, dose, and 386 
inoculation time point in gestation; changes to any of these parameters could have elicited 387 
more significant differences in maternal or fetal outcomes. 388 
 389 
The relationship between flavivirus antibodies and disease outcomes is complex, depending 390 
on factors including antibody titer, specificity, and degree of sequence conservation among 391 
viruses. It is therefore difficult to comprehensively disentangle all these factors in a single 392 
experiment. More work is needed to understand the relationship between DENV immunity, 393 
viral infection of the placenta, and prolonged viremia. While there is a growing consensus 394 
that DENV may not enhance ZIKV in non-pregnant individuals, this study provides evidence 395 
that more research is needed to understand the risks associated with prior DENV immunity 396 
on ZIKV pathogenesis in pregnancy.  397 
 398 
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METHODS 399 

Experimental design  400 
This study was designed to assess the impact of pre-existing DENV immunity on ZIKV 401 
pathogenesis during pregnancy in a non-human primate model. Eight female non-pregnant 402 
Indian origin rhesus macaques (Macaca mulatta) were inoculated subcutaneously with 1x104 403 
PFU of DENV-2/US/BID-V594/2006. Approximately 1-3 months following DENV challenge, 404 
macaques were bred and became pregnant. All eight macaques were then inoculated 405 
subcutaneously with 1x104 PFU of ZIKV-PRVABC59 (ZIKV-PR) between 44-50 days of 406 
gestation (term is 165 ± 10 days). Macaques were monitored throughout the remainder of 407 
gestation. At approximately gestation day 160, infants were delivered via cesarean section 408 
and monitored for long-term development. A comprehensive set of maternal biopsies and 409 
maternal-fetal interface were collected for analysis. For the DENV-naïve group, four 410 
pregnant Indian origin rhesus macaques (Macaca mulatta) were inoculated subcutaneously 411 
with 1x104 PFU of ZIKV-PR between 44-50 days of gestation (term is 165 ± 10 days). 412 
Macaques were monitored throughout the remainder of gestation. At approximately 413 
gestation day 160, infants were delivered via cesarean section and monitored for long-term 414 
development. A comprehensive set of maternal biopsies and maternal-fetal interface were 415 
collected for analysis. A cohort of four pregnant PBS-inoculated animals served as a control 416 
group and underwent the same experimental regimen, including the sedation for all blood 417 
draws and ultrasounds, as the ZIKV-infected cohort. In order to minimize the number of 418 
animals used in studies of ZIKV pathogenesis, the DENV-naïve and mock-infected cohort 419 
have served as a control group for other studies (56). 420 

 421 

Ethical approval 422 
This study was approved by the University of Wisconsin College of Letters and Sciences 423 
and Vice Chancellor for Research and Graduate Education Centers Institutional Animal Care 424 
and Use Committee (Protocol numbers: G005401 and G006139).  425 
 426 

Care and use of macaques 427 

All macaque monkeys used in this study were cared for by the staff at the WNPRC in 428 
accordance with the regulations and guidelines outlined in the Animal Welfare Act and the 429 
Guide for the Care and Use of Laboratory Animals and the recommendations of the 430 
Weatherall report (https://royalsociety.org/topics-policy/publications/2006/weatherall-431 
report/). All macaques used in the study were free of Macacine herpesvirus 1, simian 432 
retrovirus type D (SRV), simian T-lymphotropic virus type 1 (STLV), and simian 433 
immunodeficiency virus (SIV). For all procedures (including physical examinations, virus 434 
inoculations, ultrasound examinations, and blood collection), animals were anaesthetized 435 
with an intramuscular dose of ketamine (10 mg/kg). Blood samples were obtained using a 436 
vacutainer system or needle and syringe from the femoral or saphenous vein. 437 
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 438 

Cells and viruses 439 
DENV-2/US/BID-V594/2006 was originally isolated from a human in Puerto Rico with one 440 
round of amplification on C6/36 cells. This DENV-2 isolate was obtained from BEI resources 441 
(NR-43280, Manassas, VA). Zika-virus/H.sapiens-tc/PUR/2015/PRVABC59_v3c2 (ZIKV-PR) 442 
was originally isolated from a human in Puerto Rico in 2015, with three rounds of 443 
amplification on Vero cells, was obtained from Brandy Russell (CDC, Fort Collins, CO, USA). 444 
African Green Monkey kidney cells (Vero; ATCC #CCL-81) were maintained in Dulbecco’s 445 
modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Hyclone, 446 
Logan, UT), 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 100 U/ml penicillin, 100 μg/ml 447 
of streptomycin, and incubated at 37˚C in 5% CO2. Aedes albopictus mosquito cells (C6/36; 448 
ATCC #CRL-1660) were maintained in DMEM supplemented with 10% fetal bovine serum 449 
(FBS; Hyclone, Logan, UT), 2mM L-glutamine, 1.5 g/L sodium bicarbonate, 100 U/ml 450 
penicillin, 100 μg/ml of streptomycin, and incubated at 28˚C in 5% CO2. The cell lines were 451 
obtained from the American Type Culture Collection, were not further authenticated, and 452 
were not specifically tested for mycoplasma. Virus stocks were prepared by inoculation onto 453 
a confluent monolayer of C6/36 cells; a single, clarified stock was harvested for each virus, 454 
with a titer of 1.55 x 105 PFU/ml for DENV-2 and 1.58 x 107 PFU/ml for ZIKV-PR. Deep 455 
sequencing with limited PCR cycles confirmed that the DENV-2 virus stock was identical to 456 
the reported sequence in GenBank (EU482725) at the consensus level. Twelve nucleotide 457 
variants were detected at 5.3-16.1% frequency. Amplicon deep sequencing of ZIKV-PR 458 
virus stock using the methods described in Quick, et al. (57) revealed two consensus-level 459 
nucleotide substitutions in the stock as compared to the reported sequence in GenBank 460 
(KU501215), as well as seven other minor nucleotide variants detected at 5.3-30.6% 461 
frequency. Details on accessing sequence data can be found in the Data Accessibility 462 
section. 463 
 464 

Plaque Assay 465 

All titrations for virus quantification from virus stocks and screens for infectious ZIKV from 466 
macaque tissue were completed by plaque assay on Vero cell cultures as previously 467 
described (58). Briefly, duplicate wells were infected with 0.1 ml aliquots from serial 10-fold 468 
dilutions in growth media and virus was adsorbed for one hour. Following incubation, the 469 
inoculum was removed, and monolayers were overlaid with 3ml containing a 1:1 mixture of 470 
1.2% oxoid agar and 2X DMEM (Gibco, Carlsbad, CA) with 10% (vol/vol) FBS and 2% 471 
(vol/vol) penicillin/streptomycin (100 U/ml penicillin, 100 μg/ml of streptomycin). Cells were 472 
incubated at 37˚C in 5% CO2 for four days for plaque development. Cell monolayers were 473 
then stained with 3 ml of overlay containing a 1:1 mixture of 1.2% oxoid agar and 2X DMEM 474 
with 2% (vol/vol) FBS, 2% (vol/vol) penicillin/streptomycin, and 0.33% neutral red (Gibco). 475 
Cells were incubated overnight at 37 ˚C and plaques were counted. 476 
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 477 

Inoculations 478 
Inocula were prepared from a viral stock propagated on a confluent monolayer of C6/36 479 
cells. The stocks were thawed, diluted in PBS to 104 PFU/ml and loaded into a 1 mL syringe 480 
that was kept on ice until challenge. Animals were anesthetized as described above and 1 481 
ml of inocula was delivered subcutaneously over the cranial dorsum. Animals were 482 
monitored closely following inoculation for any signs of an adverse reaction.  483 
 484 

Ultrasound measurements 485 
Ultrasound measurements were taken according to the procedures described previously 486 
(47). Briefly, dams were sedated with ketamine hydrochloride (10mg/kg) for weekly 487 
sonographic assessment to monitor the health of the fetus (heart rate) and to take fetal 488 
growth measurements, including the fetal femur length (FL), biparietal diameter (BPD), head 489 
circumference (HC), and abdominal circumference (AC). Weekly fetal measurements were 490 
plotted against mean measurement values and standard deviations for fetal macaques 491 
developed at the California National Primate Research Center (51, 52). Additional Doppler 492 
ultrasounds were taken as requested by veterinary staff.  493 
 494 
Gestational age standardized growth parameters for fetal HC, BPD, AC, and FL were 495 
evaluated by calculating gestational age specific z-values from normative fetal growth 496 
parameters. Linear mixed effects modeling with animal-specific random effects was used to 497 
analyze the fetal growth trajectories with advancing gestational age. In order to account for 498 
differences in fetal growth parameters at the date of inoculation, changes in fetal growth 499 
parameters from date of inoculation (~day 50) were analyzed. That is, changes in fetal 500 
growth parameters from date of inoculation were regressed on gestational age (in weeks). 501 
An autoregressive correlation structure was used to account for correlations between 502 
repeated measurements of growth parameters over time. The growth trajectories were 503 
quantified by calculating the regression slope parameters which were reported along with 504 
the corresponding 95% confidence intervals (CI). Fetal growth was evaluated both within 505 
and between groups. All reported P-values are two-sided and P<0.05 was used to define 506 
statistical significance. Statistical analyses were conducted using SAS software (SAS 507 
Institute, Cary NC), version 9.4. 508 

 509 

Viral RNA isolation from blood 510 
Viral RNA was isolated from macaque blood samples as previously described (58, 59). 511 
Briefly, plasma was isolated from EDTA-anticoagulated whole blood on the day of collection 512 
either using Ficoll density centrifugation for 30 minutes at 1860 x g if the blood was being 513 
processed for PBMC, or it was centrifuged in the blood tube at 1400 x g for 15 minutes. The 514 
plasma layer was removed and transferred to a sterile 15 ml conical and spun at 670 x g for 515 
an additional 8 minutes to remove any remaining cells. Viral RNA was extracted from a 300 516 
μL plasma aliquot using the Viral Total Nucleic Acid Kit (Promega, Madison, WI) on a 517 
Maxwell 16 MDx or Maxwell RSC 48 instrument (Promega, Madison, WI).  518 
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 519 

Viral RNA isolation from tissues 520 
Tissue samples, cut to 0.5 cm thickness on at least one side, were stored in RNAlater at 4˚C 521 
for 2-7 days. RNA was recovered from tissue samples using a modification of the method 522 
described by Hansen et al., 2013 (60). Briefly, up to 200 mg of tissue was disrupted in 523 
TRIzol (Lifetechnologies) with 2 x 5 mm stainless steel beads using the TissueLyser (Qiagen) 524 
for 3 minutes at 25 r/s twice. Following homogenization, samples in TRIzol were separated 525 
using Bromo-chloro-propane (Sigma). The aqueous phase was collected, and glycogen was 526 
added as a carrier. The samples were washed in isopropanol and ethanol precipitated. RNA 527 
was fully re-suspended in 5 mM tris pH 8.0. 528 
 529 

Quantitative reverse transcription PCR (QRT-PCR) 530 

vRNA isolated from both fluid and tissue samples was quantified by QRT-PCR as previously 531 
described (61). The RT-PCR was performed using either the SuperScript III Platinum One-532 
Step Quantitative RT-PCR system (Invitrogen, Carlsbad, CA) or Taqman Fast Virus 1-step 533 
master mix (Applied Biosystems, Foster City, CA) on a LightCycler 96 or LightCycler 480 534 
instrument (Roche Diagnostics, Indianapolis, IN). Viral RNA concentration was determined 535 
by interpolation onto an internal standard curve composed of seven 10-fold serial dilutions 536 
of a synthetic ZIKV RNA fragment based on a ZIKV strain derived from French Polynesia 537 
that shares >99% similarity at the nucleotide level to the Puerto Rican strain used in the 538 
infections described in this manuscript. 539 
 540 

Statistical analysis of viral loads 541 
Plasma viral load curves were generated using GraphPad Prism software. The area under 542 
the curve of 0-10 d.p.i. was calculated using GraphPad software and a two-sample t-test 543 
was performed to assess differences in the peak, duration, and area under the curve of ZIKV 544 
viremia between DENV-immune and DENV-naïve macaques. Duration was calculated both 545 
as a raw number of days and as a binary, with >21 days of viremia considered “prolonged” 546 
and <21 days considered “non-prolonged.” To compare differences in the viral burden in 547 
the maternal-fetal interface, a non-parametric Mann-Whitney U test was used to assess 548 
differences in each of the maternal-fetal interface tissues. GraphPad Prism 8 software was 549 
used for these analyses. 550 
 551 

Plaque reduction neutralization test (PRNT) 552 

Macaque serum was isolated from whole blood on the same day it was collected using a 553 
serum separator tube (SST) or clot activator (CA) tube. The SST or CA tube was centrifuged 554 
for at least 20 minutes at 1400 x g, the serum layer was removed and placed in a 15 ml 555 
conical and centrifuged for 8 minutes at 670 x g to remove any additional cells. Serum was 556 
screened for ZIKV neutralizing antibody utilizing a plaque reduction neutralization test 557 
(PRNT) on Vero cells as described in (62) against DENV-2 and ZIKV-PR. Neutralization 558 
curves were generated using GraphPad Prism 8 software. The resulting data were analyzed 559 
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by non-linear regression to estimate the dilution of serum required to inhibit 50% and 90% 560 
of infection. 561 
 562 

Inhibition ELISA (iELISA assay) The DENV iELISA was performed on serum samples as 563 
previously described (2, 63, 64). Briefly, ELISA plates were coated with anti-DENV 564 
polyclonal IgG to capture a mixture of DENV 1-4 antigen (DENV prototype strains, GenBank 565 
Accession #s: KM204119, KM204118, KU050695, KR011349) diluted in Phosphate Buffer 566 
Saline + 0.05% Tween 20 at pH 7.4 (PBS-T)(65). After blocking and additional washes, 567 
macaque serum was added in 10-fold serial dilutions (1:10, 1:100, 1:1000, 1:10,000) and 568 
incubated for two hours at 37°C. Thereafter, a set concentration of horseradish peroxidase 569 
(HRP)-conjugated polyclonal anti-DENV IgG to each well and incubated for 30 minutes at 570 
37°C. Following washes, peroxidase substrate TMB was added to wells and incubated for 571 
30 minutes at room temperature, then stopped with sulfuric acid. Plates were read on an 572 
ELISA reader, and iELISA titers were estimated relative to negative controls (conjugated 573 
antibody only) using the Reed-Muench method (66). The ZIKV iELISA is similar in design to 574 
the DENV iELISA and was performed as described previously (67). ZIKV-specific 575 
monoclonal antibody ZKA64 (68) is used to capture ZIKV antigen prepared as described by 576 
(65), macaque serum was added in serial dilutions and competed with HRP-conjugated 577 
mAb ZKA64, and iELISA titers were also estimated using the Reed-Muench method. 578 
 579 

Cesarean section and tissue collection 580 
Between 159-161 days gestation, infants were delivered via cesarean section and tissues 581 
were collected. The fetus, placenta, fetal membranes, umbilical cord, and amniotic fluid 582 
were collected at surgical uterotomy and maternal tissues were biopsied during laparotomy. 583 
These were survival surgeries for the dams and offspring. Amniotic fluid was removed from 584 
the amniotic sac, then infant was removed from the amniotic sac, the umbilical cord 585 
clamped, and neonatal resuscitation performed as needed. The placenta and fetal 586 
membranes were then collected. Infants were placed with their mothers following the dam’s 587 
recovery from surgery. 588 
 589 
Tissues were dissected as previously described (47) using sterile instruments that were 590 
changed between each organ and tissue type to minimize possible cross contamination. 591 
Each organ/tissue was evaluated grossly, dissected with sterile instruments in a sterile 592 
culture dish, and sampled for histology, viral burden assay, and/or banked for future assays. 593 
A comprehensive listing of all specific tissues collected and analyzed is presented in Fig. 6A 594 
(maternal-fetal interface tissues) and Supplementary Table 2 (maternal biopsies and fetal 595 
fluids). Biopsies of the placental bed (uterine placental attachment site containing deep 596 
decidua basalis and myometrium), maternal liver, spleen, and a mesenteric lymph node 597 
were collected aseptically during surgery into sterile petri dishes, weighed, and further 598 
processed for viral burden and when sufficient sample size was obtained, histology.  599 
 600 
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In order to more accurately capture the distribution of ZIKV in the placenta, each placental 601 
disc was separated, fetal membranes sharply dissected from the margin, weighed, 602 
measured, and placed in a sterile dish on ice. A 1-cm-wide cross section was taken from 603 
the center of each disc, including the umbilical cord insertion on the primary disc, and 604 
placed in 4% paraformaldehyde. Individual cotyledons, or perfusion domains, were 605 
dissected using a scalpel and placed into individual petri dishes. From each cotyledon, a 606 
thin center cut was taken using a razor blade and placed into a cassette in 4% 607 
paraformaldehyde. Once the center cut was collected, the decidua and the chorionic plate 608 
were removed from the remaining placenta. From each cotyledon, pieces of decidua, 609 
chorionic plate, and chorionic villi were collected into two different tubes – one with 610 
RNAlater for vRNA isolation and one with 20% FBS/PBS for other virological assays.  611 
 612 
Histology 613 
Following collection, tissues were handled as described previously (58). All tissues were 614 
fixed in 4% paraformaldehyde for 24 hours and transferred into 70% ethanol until 615 
processed and embedded in paraffin. Paraffin sections (5 μm) were stained with 616 
hematoxylin and eosin (H&E). Pathologists were blinded to vRNA findings when tissue 617 
sections were evaluated microscopically. Photomicrographs were obtained using a bright 618 
light microscope Olympus BX43 and Olympus BX46 (Olympus Inc., Center Valley, PA) with 619 
attached Olympus DP72 digital camera (Olympus Inc.) and Spot Flex 152 64 Mp camera 620 
(Spot Imaging) and captured using commercially available image-analysis software (cellSens 621 
DimensionR, Olympus Inc. and spot software 5.2). 622 
 623 
Placental Histology Scoring 624 

Pathological evaluation of the cross-sections of each of the individual placental cotyledons 625 
were performed by Dr. Terry Morgan who was blinded to experimental condition. Each of 626 
the cross sections were evaluated for the presence of chronic histiocytic intervillositis 627 
(CHIV), infarctions, villous stromal calcifications, and vasculopathy. A three-way ANOVA was 628 
performed to assess statistical significance among groups for each parameter, including 629 
placental weight.  630 
 631 
Two of three boarded veterinary pathologists, blinded to vRNA findings, independently 632 
reviewed the central cross section of each placental disc and quantitatively scored the 633 
placentas on 22 independent criteria. Six of the criteria are general criteria assessing 634 
placental function, two assess villitis, three criteria assess the presence of fetal vascular 635 
malperfusion, and 11 criteria assess the presence of maternal vascular malperfusion. The 636 
scoring system was developed by Dr. Michael Fritsch, Dr. Heather Simmons, and Dr. 637 
Andres Mejia. A summary table of the criteria scored, and the scale used for each criterion 638 
can be found in Supplementary Table 3. Once initial scores were assigned, all pathologists 639 
met to discuss and resolve any significant discrepancies in scoring. Scores were assigned 640 
to each placental disc unless the criteria scored corresponded to the function of the entire 641 
placenta.  642 
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 643 
For criteria measured on a quantitative scale, median scores and interquartile range were 644 
calculated for each experimental group. For criteria measured on a binary “present/not 645 
present” scale, the cumulative incidence in each experimental group was calculated as a 646 
frequency and a percentage. For quantitative criteria, a non-parametric Wilcoxon rank test 647 
was used to calculate statistical significance between each of the groups and between the 648 
mock-infected group and the two ZIKV-infected groups. For binary features, Fisher’s exact 649 
test was used to calculate statistical significance between each of the groups and between 650 
the mock-infected group and the two ZIKV-infected groups. To determine whether chronic 651 
villitis correlated with the criteria assessing fetal malperfusion and whether chronic 652 
deciduitis correlated with the criteria assessing maternal malperfusion, scores were adjusted 653 
to be on the same scale (i.e., converting measures on a 0-1 scale to a 0-2 scale) so that 654 
each parameter carried equal weight in the combined score. A nonparametric Spearman's 655 
correlation was used to determine the correlation.  656 
 657 
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