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Abstract 

Bottom-up proteomics provides peptide measurements and has been invaluable for moving 

proteomics into large-scale analyses. In bottom-up proteomics, protein parsimony and protein 

inference derived from these measured peptides are important for determining which protein 

coding genes are present. However, given the complexity of RNA splicing processes, and how 

proteins can be modified post-translationally, it is overly simplistic to assume that all peptides 

that map to a singular protein coding gene will demonstrate the same quantitative response. 

Accordingly, by assuming all peptides from a protein coding sequence are representative of the 

same protein we may be missing out on detecting important biological differences. To better 

account for the complexity of the proteome we need to think of new or better ways of handling 

peptide data. 
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Main 

Mass spectrometry-based proteomics has become a key method for characterizing the protein 

composition of biological samples. The field of proteomics includes a diverse collection of data 

acquisition and analysis methods, but so-called “bottom-up” proteomics based on proteolysis of 

proteins into peptide fragments remains the primary strategy for robust surveys of complex 

protein mixtures. Mass spectra collected from these peptide fragments are then used to infer 

what proteins were present in the original sample. In the early 2000’s as large-scale peptide 

identification took off, parsimony was used to assert the set of proteins that could give rise to the 

peptide data that was observed directly (1,2).  As data increased in scale, controlling for false 

discovery rate (FDR) at the protein level was determined to be a more conservative way to 

assert protein presence (3).  

With the rise in quantitative proteomics, it became desirable to summarize or aggregate peptide 

quantities into a single value on the protein level.  Many strategies have been created to 

accomplish this, with most assuming that peptides belonging to the same protein will behave 

similarly. However, based on historical work in protein biochemistry, 2-dimensional gels, and 

top-down proteomics, it is now estimated that there may be up to 100 proteoforms per protein 

on average (4,5). This estimate is based on the possible variations that can occur to a protein’s 

coding sequence or by post-translational modifications (PTMs) to a protein. As most of the 

amino acid sequence is shared among related proteoforms, a given tryptic peptide can be 

derived from multiple different proteoforms (Figure 1). Once digested in a mixture, the direct 

connection between a peptide and its originating proteoform(s) is lost, such that the 

measurements of individual peptides are convolutions of the proteoforms the peptides are 

present. This issue of conflation is conceptually similar to the problem of haplotype phasing in 

genomics (5). 
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In quantitative proteomics, our ability to find differences is affected by three parameters: 1) the 

size of the biological effect, 2) the biological and technical variability, and 3) the number of 

hypothesis tests that are made within the experiment. Thus, it is important to consider how 

summarizing peptide quantities at the gene-level will affect these three parameters. The hope is 

that exploring the conceptual and theoretical effects of summarization to protein-levels will drive 

improvements in the ability to detect biological effects in a proteomics experiment. 

 

Rationale for combining peptide measurements to a single protein quantity 

The idea of aggregating peptide measurements to the protein level is appealing for 

interpretation and integration of proteomics data with other data types. Since the beginning of 

quantitative proteomics, scientists have compared the quantification and coverage of 

proteomics to the latest gene expression data (6). Intuitively this practice makes sense based 

on the central-dogma of molecular biology. However, this comparison assumes that for each 

mRNA transcript there is a single protein quantity for comparison. Despite knowing that there 

may not be a single “protein” derived from the expressed gene, this analysis is standard 

practice in the field. Such comparisons have demonstrated that the correlation between gene 

expression and an individual protein measurement is relatively poor (7). While several 

explanations have been proposed, it is important to note that all experiments were performed 

with bottom-up proteomics data that has been summarized to a single measurement per 

protein, even though it is likely that multiple proteoforms exist. 

Beyond the proposed ease of biological interpretation, there are technical reasons that make 

aggregating peptides to a protein level measure attractive. Aggregating peptides mapping to a 

protein coding sequence into a single measure reduces the number of hypotheses tested, 

therefore making the analysis theoretically more sensitive to finding protein alterations.  
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Figure 1. Effect of proteoforms on possible peptide detection. A single protein coding gene 

can be modified to give rise to dozens or many thousands of proteoforms, including those 

harboring multiple modifications. After proteolysis, proteoforms yield peptides that may be 

missed in bottom-up proteomics database searching and data processing. 
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Additionally, by aggregating to a single protein level, whether by averaging or by summing 

peptide measurements, contributions from outliers or noisy signals are suppressed. This results 

in the measures having less variation among sets of technical and biological replicates. For 

example, we can see that in technical replicate runs of cerebrospinal fluid (CSF) digests there is 

more variability in the peptide level data compared to the protein level values (Figure 2). In the 

case of replicate measures, the reduction in variability is viewed as a positive outcome. 

Another reason to aggregate to a protein level has been to reduce the amount of missing data. 

With data-dependent acquisition the sampling is stochastic, leading to more missing data at a 

peptide level if the same precursor is not selected in all the experimental runs. This missing data 

can have serious implications for the quality of quantitative data. One method to combat this 

problem is sample multiplexing by isobaric labeling, such as tandem mass tagging peptides. 

Evaluating large, multiplexed experiments in comparison to label-free approaches, the pattern of 

the missing data appears to be very distinct, but the macrostructure overall is similar in regard to 

the relationship between abundance and missing data (8). These multiplexing methods are still 

limited in the number of samples that can be uniquely tagged, combined, and analyzed at once, 

and while multiple batches of samples can be acquired, the same peptides are less frequently 

sampled in different batches compared to proteins (9).  

Interestingly, protein groups with greater numbers of peptides observed tend to be statistically 

different less often than protein groups with fewer peptides (Figure 3). Despite the different 

types of proteomics data, the difference in scale of the data, and using either a sum-based or 

reference-based quantification, the fold-change consistently trends towards zero.  The loss in 

quantitative significance in proteins with greater coverage is initially counterintuitive.  However, 

because peptide-level quantities are convolutions of proteoform concentrations, a protein with 

greater peptide coverage will likely span more proteoforms.  Unless all those proteoforms 

change similarly among conditions, aggregating more peptides to a single protein quantity will 
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Figure 2. Technical variability is reduced when peptide measurements are combined to a 

protein measurement. A human cerebrospinal fluid sample digest was analyzed by DIA-MS 

with 8 m/z staggered windows (4 m/z after demultiplexing). The relationship between a) peptide 

quantities, or b) summed protein quantities across two replicate instrument runs are plotted, with 

each peptide colored according to calculated percent coefficient of variation. The distribution of 

% coefficient of variation for c) peptides and d) summed protein quantities between replicate 

instrument runs, with the median % coefficient of variation for each indicated by the dashed 

line.   
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Figure 3. Fold-change estimates for proteins based on the total number of peptides either 

summed or averaged after reference-based scaling; truncated to 50 for visualization 

purposes. An isobaric-labeled dataset associated with the Clinical Proteomics Tumor Analysis 

Consortium (CPTAC) (10), consists of 181,389 peptides mapped to 10,495 unique protein 

identifiers; proteins ranged from having 1 to 563 peptides associated with them. The log2 fold-

change is based on a comparison of tumor residual disease. The second dataset is label free 

and smaller, based on a Calu-3 cell culture experiment, also publicly available (MSV000079152) 

(11). This dataset has 15,953 unique protein identifiers, with proteins represented by 1 to 311 

peptides. In this dataset the log2 fold-change is based on a Middle East Respiratory Syndrome 

(MERS) infection to a sham control. 
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average away the biological effect. Conversely, if coverage is low, differences in a specific 

proteoform abundance may not always be reflected with peptide measurements. 

 

Limitations of assuming a single quantity per protein coding gene 

A consequence of aggregating peptide measures to the protein level is that many key clinical 

biomarkers of disease do not adhere to the assumption that all peptides mapping to a gene 

behave similarly. To the extent this is true, statistical power will be reduced in connecting 

phenotype to proteomic data. For example, amyloid-beta is a peptide derived from the amyloid 

precursor protein gene. In Alzheimer’s disease a series of cleavage events lead to several 

shorter soluble forms of amyloid precursor protein (sAPPα, sAPPꞵ), C-terminal fragments 

(AICD50, CTF 83, CTF 89, CTF 99, p3) and amyloid-beta peptides, which contribute to forming 

the characteristic plaques observed in the brains of diseased individuals (12). The amyloid-beta 

peptides can be variable lengths depending on specific cleavage site, but commonly occur as a 

peptide of either 40 or 42 amino acids (13). In addition to the widely known amyloid-beta 40 and 

amyloid-beta 42 peptides, over 20 additional amyloid-beta proteoforms have been detected in 

samples of Alzheimer’s brain samples arising from endogenous cleavage and post-translational 

modifications (14,15). Knowing that the amyloid precursor protein is heavily processed, it is 

difficult to determine the origin of many of its tryptic peptides - whether they are derived from an 

unprocessed amyloid precursor protein, or from one of many processed forms. 

If we aggregate all the tryptic peptide measures, we are assuming they are all derived from the 

unprocessed state, which may not be the most accurate assumption for peptides mapping to 

amyloid precursor protein. If we look at data from tryptic peptides, we see that some biologically 

relevant differences would not be accurately represented if our peptide measures are combined 

to a singular protein level (Figure 4). Specifically, in tryptic peptides mapping to the region of the 
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amyloid beta sequence we observe a different abundance profile compared to tryptic peptides 

mapping to other regions of the protein. In addition to amyloid beta, phosphorylated tau 

proteoforms in the cerebrospinal fluid of patients have also gained acceptance as diagnostic 

biomarkers of disease (16). Additional studies indicate that specific tau phosphosites may be 

better indicators of disease progression, emphasizing the importance of distinguishing between 

different pTau isoforms and proteoforms (17). 

Ambiguities due to modified or processed protein biomarkers is not a problem unique to 

Alzheimer’s disease, but rather is general to human biology and therefore human disease. The 

products of processing a precursor protein into polypeptides are important markers in diabetes. 

C-peptide and insulin are both derived from proinsulin, with C-peptide being a valuable measure 

of insulin secretion and therefore pancreatic beta cell function (18). Proglucagon is processed to 

form up to nine different polypeptide products, including the better-known glucagon and GLP1. 

Both polypeptides have distinct roles in metabolism, and both are drug targets for diabetes and 

obesity (19). Additional examples of this type of processing can be found in the kallikrein-kinin 

system and coagulation pathways (20). While these examples are well studied, we should not 

assume that these types of modifications leading to unique biologically relevant proteoforms are 

uncommon among other less studied proteins. 

Along these same lines, a study of cerebrospinal fluid in Parkinson’s disease found that 

quantification of specific tryptic peptides was differential in affected individuals compared to 

healthy, age-matched controls. Specifically, peptides in the C-terminal or N-terminal regions of 

granin family proteins were found to be decreased in Parkinson’s (21). Importantly, the granin 

family of proteins is known to play a role in regulating secretion and delivery of peptides and 

neurotransmitters and are known to be processed into a number of derived bioactive peptides 

(Figure 5). As demonstrated in figure 5, if we sum all peptide measures that map to the protein 

coding sequence of secretogranin 2, then we miss the differences between experimental groups 
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Figure 4. Differential abundance profiles of tryptic peptides mapping to amyloid 

precursor protein. Three experimental groups of patients were analyzed by DIA-MS; 

Control/No Neuropath with normal cognitive function and no neuropathologic changes of 

Alzheimer’s disease including no amyloid accumulation, Control/Neuropath with normal 

cognitive function and intermediate or severe level of neuropathologic changes of Alzheimer’s 

disease, Sporadic AD with dementia and intermediate or severe level of neuropathologic 

changes of Alzheimer’s disease, and Autosomal dominant AD with dementia and intermediate 

or severe level of neuropathologic changes and an autosomal dominant mutation. For all unique 

peptides mapping to the amyloid precursor protein sequence, peptide measures are normalized 

to the mean and the mean & standard error are plotted by group. Based on known protein 

processing we see that the two peptides with large differences map to the amyloidogenic Aꞵ 

polypeptide. 
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for several of the individual peptides. Instead, aggregating peptides to a single measure per 

protein coding sequence only accurately reflects the peptide level measurements if all peptides 

are in agreement (Figure 5). In contrast, if we look at peptides detected and quantified from 

GAPDH protein in the same CSF experiment we observe the same trend across peptides. 

Interestingly, GAPDH has been observed not to have many proteoforms by top-down analysis 

(22). Although there are known proteoforms, from the peptides we detect we cannot conclude 

that only one proteoform of GAPDH is present in our samples. Instead, we can only conclude 

that all the peptides we detect share the same abundance trend.   

While bottom-up proteomics is arguably the most common method for characterizing protein 

mixtures, alternative methods are gaining interest. These include methods that use antibodies 

and aptamer affinity to recognize a specific protein or protein domain (23–25). Although these 

methods will usually not have to deal with multiple measures resulting from a protein coding 

gene, they instead rely on single measurement. It should be noted that any method that 

constrains complex proteoforms into a single quantitative value per protein coding gene may 

miss many of the underlying differences.   

 

Outlook and Future directions 

Over the years, this challenge that not all peptides from the same gene or protein group have 

the same differential abundance has been an important area of research. The approach of 

several proposed methods focuses on the exclusion of peptide measurements from inclusion in 

the aggregate protein quantity if they are outliers from other peptide measurements mapping to 

the same protein coding gene (26–31). While these all demonstrate improved protein 

concentration estimates, they still only report a single protein quantity and ignore peptides that 

do not agree with that single value. If those outlier peptide measurements are discarded, then 
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Figure 5. Abundance profiles of tryptic peptides mapping to a) GAPDH and b) SCG2 

proteins in cerebrospinal fluid.  Three groups of human cerebrospinal fluid samples were 

analyzed by DIA-MS: Alzheimer’s disease, Parkinson’s disease, and healthy age and sex-

matched controls. Unique peptides mapping to the proteins a) GAPDH and c) SCG2 report 

quantitatively on their relative expression ratios. The protein-level display integrates the mean 

values from all peptide-level results (box-and-whisker plot at left), with the expression ratio for 

each individual peptide and the group shown in the bar graphs at right. b) GAPDH has been 

observed as three proteoforms which form homo-tetramers from human cell lines including 

HEK-tsa. Intact mass spectra of the monomeric form reveal a canonical form, a persulfide-

modified form, and a glutathione-modified form. Reported masses represent average masses 

and ppm mass error from the calculated theoretical average mass. d) SCG2 is proteolytically 

processed to produce several peptides, has a sulfotyrosine, and can be phosphorylated at 

several serine residues. 
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true biological signals may be lost. Another approach taken in previous methods is to try and 

identify the specific proteoforms present based on peptide quantification across conditions (32–

34). While more tolerant to the possibility of having multiple proteoforms present in a sample 

that lead to altered peptide abundance, the ability to confidently assign peptides to specific 

proteoforms is all but impossible in bottom-up proteomics. 

While the challenge of aggregating peptide measurements may not be solved yet, one thing that 

is apparent is that we should no longer blindly merge all peptides into a single gene level 

quantity. A solution to the presence of discordant peptides could be to keep all peptides as 

independent measurements because it is impossible to accurately merge peptides without 

detailed knowledge of all proteoforms in the sample. While remaining as true to the acquired 

data as possible, this strategy may prove to be difficult for interpretation of experiments because 

the role of individual tryptic peptides in biology may be difficult to infer, especially in less studied 

systems. Additionally, reduced statistical power for differential abundance testing on tens of 

thousands of peptides compared to thousands of protein groups will also likely result in fewer 

significant differences. However, there has been recent work towards integrating top-down 

proteomics with bottom-up proteomic measurements (35). This strategy could provide higher 

resolution information about the protein quantity resulting from specific proteoforms present in a 

sample, which then can be used to determine how peptides could be combined to more 

accurately reflect those proteoforms present.  

An alternative approach could be to combine peptides that both map to the same gene and co-

vary across a diverse set of biological groups or conditions, without designating them as specific 

proteoforms. We need the ability to generate multiple “peptide groups” for each protein group -- 

resulting in 1 to N quantities for each protein where N is the number of peptides.  This grouping 

would require a method that minimized variance and multiple testing while maximizing the 

biological effect.  This approach would not require knowing which proteoforms were present but 
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would still capture quantitative differences observed at the peptide level that would otherwise be 

eliminated by combining those differences with non-changing peptides within the same gene 

product. However, this approach could be heavily dependent on having multiple conditions with 

enough biological replicates and high reproducibility. Additionally, the approach may not be 

suitable for proteins with low peptide coverage (32). 

While bottom-up proteomics is still the preferred method for characterizing proteomes due to its 

coverage, robustness across diverse protein physiochemical properties, sensitivity, and 

quantitative capabilities -- there remain challenges. Moving forward we will need new or 

repurposed methods, tools, and datasets to better interpret peptide level measurements. 

Datasets with known differences in peptide measurements will be crucial for validating any new 

approaches that are proposed to deal with peptide level differences. Additionally, improved data 

visualization tools are necessary to better distinguish changes inclusive of conserved domains, 

known PTMs, and structural features within a protein coding gene in the context of a global 

proteome. Finally, a compiled reference or “atlas'' of experimentally-observed proteoforms 

presents a major opportunity for future algorithm development, which the Human Proteoform 

Atlas recently framed (36). As the technology has advanced, so too has our ability to obtain 

robust measurements across many samples without lots of missing data. We now need to move 

towards understanding why these peptide measurements may be different instead of simply 

forcing our data into a format in which it may not be best served and instead into a format in 

which it fits. 
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