
 1 

 
Targeted RNA-seq improves efficiency, resolution, and accuracy of allele specific 

expression for human term placentas 
 
Weisheng Wu,1 Jennie L. Lovett,2 Kerby Shedden,3 Beverly I. Strassmann2,4, Claudius Vincenz,4 

 

AFFILIATIONS 
1BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI  48109, USA 
2Department of Anthropology, University of Michigan, Ann Arbor, MI  48109, USA 
3Department of Statistics, University of Michigan, Ann Arbor, MI  48109, USA 
4Research Center for Group Dynamics, Institute for Social Research, University of Michigan, 
Ann Arbor, MI  48106, USA 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428155
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 
 
 
 
 
Running Title 
Targeted RNA-seq of human term placentas 
 
Keywords   
Targeted RNA-seq, quantification of ASE, allele specific expression, human placenta, genomic 
imprinting. 
 
Corresponding author 
Claudius Vincenz 
5255 ISR 
University of Michigan, 
426 Thompson Street 
Ann Arbor, MI 48106 
(734) 545 0280 
vincenz@umich.edu 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428155
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Abstract 
 
Genomic imprinting is an epigenetic mechanism that results in allele specific expression (ASE) 
based on parent of origin. It is known to play a role in the prenatal and postnatal allocation of 
maternal resources in mammals. ASE detected by whole transcriptome RNA-seq (wht-RNAseq) 
has been widely used to analyze imprinted genes using reciprocal crosses in mice to generate 
large numbers of informative SNPs. Studies in humans are more challenging due to the paucity 
of SNPs and the poor preservation of RNA in term placentas and other tissues. Targeted RNA-
seq (tar-RNAseq) can potentially mitigate these challenges by focusing sequencing resources on 
the regions of interest in the transcriptome. Here we compared tar-RNAseq and wht-RNAseq in 
a study of ASE in known imprinted genes in placental tissue collected from a healthy human 
cohort in Mali, West Africa. As expected, tar-RNAseq substantially improved the coverage of 
SNPs. Compared to wht-RNAseq, tar-RNAseq produced on average four times more SNPs in 
twice as many genes per sample and read depth at the SNPs increased 4-fold. In previous 
research on humans, discordant ASE values for SNPs of the same gene have limited the ability to 
accurately quantify ASE. We show that tar-RNAseq reduces this limitation as it unexpectedly 
increased the concordance of ASE between SNPs of the same gene, even in cases of degraded 
RNA. Studies aimed at discovering associations between individual variation in ASE and 
phenotypes in mammals and flowering plants will benefit from the improved power and 
accuracy of tar-RNAseq. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428155
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Introduction 
 
Genomic imprinting is an epigenetic phenomenon that results in allele specific expression (ASE) 
based on parent of origin. Many imprinted genes are found in the nutritive tissue of placental and 
marsupial mammals as well as flowering plants1,2. Under the kinship hypothesis, genomic 
imprinting evolved due to a conflict of interest between the genes an offspring inherited from its 
mother versus its father over the amount of resources to be allocated to the current offspring3. 
One consequence of imprinting is that, for specific genomic regions, the paternal and maternal 
genomes are not equivalent. Evidence that both are required for normal development derives 
from a series of mouse studies in the 1980s that generated gynogenotes or androgenotes. In 
uniparental disomies (UPD), non-equivalency was limited to certain genomic regions that later 
were identified as clusters of imprinted genes1. In humans, about 100 imprinted genes have been 
identified4,5. The highest proportion of imprinted genes were expressed in embryonic, extra-
embryonic and brain tissues5, and impacted neurological development, placentation and fetal 
growth6. Regulation of imprinting is governed by imprinting control regions (ICRs) through 
epigenetic mechanisms involving DNA methylation, lncRNAs, histone modifications, and high-
order chromatin organization7,8.   
 
High throughput sequencing technologies including RNA-seq and DNA methylation sequencing 
have been widely used to study genomic imprinting9. Transcriptome wide ASE is determined by 
combining quantification of whole transcriptome RNA-seq (wht-RNAseq) reads with 
identification of heterozygous SNPs in DNA10. Animal studies gain additional power from 
reciprocal cross breeding of closely related strains, which produces higher SNP densities and 
phased reference genomes that pinpoint the parent of origin of each allele at every SNP. These 
crosses permit imprinting to be distinguished from sequence dependent allelic expression 
bias5,11–13. In humans, fewer SNPs are present than in crossbred animal models due to lower 
genetic diversity; nonetheless RNA-seq has been successfully employed in many human 
tissues14–19. Frequently, the parent’s genotype is not available in human studies and ASE is 
determined without the parent of origin of the bias4,5,20.  
   
To quantify ASE from RNA-seq, best practice protocols have been proposed to accommodate 
several technical factors21. For example, appropriate alignment methods should be used to reduce 
the tendency for mapping bias to favor the reference alleles22,23. A few studies showed that the 
accuracy of ASE quantified from RNA-seq was especially limited when the read depth on the 
measured SNPs was insufficient24–26, which could lead to low power to predict imprinting and 
poor agreement of ASE between the SNPs from the same genes27 and even from the same 
exons28.  
 
The consensus is that most imprinted genes in humans and mice have been identified with these 
genome wide approaches4,5,14.  However, the well documented population variability in 
imprinting and potential phenotypic effects are poorly understood14,29. Thus, there is a need to 
quantify ASE with high precision in a population setting in a cost-efficient manner. In a previous 
study we used wht-RNAseq to measure ASE in 91 known imprinted genes in human term 
placentas collected from a cohort in Mali. We showed that departures from mono-allelic RNA 
expression were prevalent in many imprinted genes in this cohort. The number of reads we 
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obtained from imprinted genes was limited because many highly expressed genes in placenta are 
not imprinted and constituted a large fraction of the total reads29.  
 
To overcome this limitation, we employed a tar-RNAseq approach to focus sequencing resources 
on the genes of interest. We enriched RNA against a targeting panel designed to cover exonic 
regions of 520 genes and quantified ASE on the informative SNPs in this panel. We 
hypothesized that this tar-RNAseq dataset could substantially increase the coverage of SNPs and 
genes of interest and improve the accuracy of ASE determination, compared to our previously 
published wht-RNAseq dataset. In order to test this hypothesis, we performed the same ASE 
analysis and compared the results for genes common to both datasets. For 75 genes, reported in 
the literature to be imprinted, we had at least one well covered heterozygous SNP in both our tar-
RNAseq and wht-RNAseq datasets. In support of our hypothesis, we show that tar-RNAseq 
covered many more informative SNPs and greatly improved the SNP read depth, which allowed 
us to measure ASE at more sites in more genes. We also obtained two results that were not 
expected by the deeper sequencing of a targeted approach. First, tar-RNAseq produced much 
higher concordance of ASE between the SNPs from the same genes resulting in improved 
quantification of the gene-level expression bias. Second, tar-RNAseq in combination with rRNA 
depletion permitted efficient ASE determination from degraded RNA whereas higher RNA 
integrity was required for wht-RNAseq. These improvements have enabled us to quantify the 
inter-individual variability of ASE in our cohort with high resolution and accuracy, which will be 
critical for querying associations between genomic imprinting and growth phenotypes. Our 
results provide performance metrics for this approach on samples collected in the field, which 
can be applied to design ASE studies in other populations or species.  
 
Methods 
 
IRB 
Informed consent or assent was obtained from participants depending on whether they were 
adults or children. IRB approval was obtained from the University of Michigan IRBMED 
(HUM00043670) and from La Faculté de Médecine de Pharmacie et d'Odontostomatologie 
(FMPOS) de Bamako in Mali (No2016/68/CD/FMPOS). 

Capture design 
Sample collection, nucleic acid purification, and wht-RNAseq were described previously29. The 
capture region for tar-RNAseq included exonic regions for all genes with reports in the literature 
indicating imprinted expression or allelic methylation. The criteria for inclusion were non 
stringent to avoid the exclusion of imprinted genes at the cost of including some non-imprinted 
genes.  Furthermore, the targeted genes included genes relevant to diseases that are of interest in 
this cohort (n=67), and genes with consistent high placental expression in the wht-RNAseq 
dataset (n=71, Supplementary Table 1). ERCC spike-in controls were also targeted except for 
nine transcripts that spanned the expression range. Genetic variation identified in the cohort was 
taken into account by including 100 bp capturing oligonucleotides containing the Alt allele for 
all SNPs spaced more than 50 bp apart (n=4634). The targeting regions were evaluated by the 
NimbleDesign Software and oligonucleotides covering 2,797,406 bases were synthesized using 
the Roche SeqCap RNA Developer platform (Supplementary .bed file).  
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Genotyping 
Genotyping of F2 umbilical cord tissues (n = 227) and F1 saliva samples (n = 189) was 
performed with targeted DNA sequencing (Roche: SeqCap EZ Choice). The region genotyped 
for the tar-RNAseq samples overlapped the region of the wht-RNAseq samples (1.4 Mb) and 
included more genes for a total of 3.9 Mb. The analysis presented here is limited to the 75 genes 
that had RNAseq data in both datasets. This subset of genes mapped to 0.58 Mb and 0.48 Mb of 
the regions genotyped in the tar-RNAseq and the wht-RNAseq samples, respectively. Library 
preparation and hybridization captures were performed at the University of Michigan Advanced 
Genomics Core following manufacturer’s protocols.  

Tar-RNAseq Library preparation and sequencing 
The University of Michigan Advanced Genomics Core prepared KAPA RNA HyperPrep Kit 
(Roche KK8540) libraries or KAPA RNA HyperPrep with RiboErase Kit (Roche KK8560) 
libraries from 1000 ng, DNaseI digested, placental total RNA using conditions adapted to each 
sample’s RNA quality. Initially, only samples with poorly defined rRNA bands on Agilent traces 
(RIN <2.5) were depleted of rRNA with RiboErase prior to fragmentation. Later, samples with 
intermediate RNA (RIN <6.0) were also processed with RiboErase as the cost was not 
prohibitive. Fragmentation conditions were established based on each sample’s Agilent 
Bioanalyzer DV200 quality metric which reflects the percentage of RNA fragments above 200 
nucleotides: DV200 < 55 at 65 oC for 1 min; 55 > DV200 <70 at 65 oC for 4 min; DV200 > 70 and 
RIN < 3.8 at 85 oC for 4 min; DV200 > 70 and RIN >3.8 94 oC for 4 min. ERCC exogenous RNA 
controls (ThermoFisher Scientific 4456739) were included in all library preparations according 
to manufacturer’s guidelines. Six indexed cDNA libraries were pooled for each capture reaction 
totaling 1 µg of cDNA. In cases where Kapa RNA HyperPrep plus RiboErase libraries were 
multiplexed with Kapa RNA HyperPrep (non-rRNA-depleted) libraries, the amount of the 
rRNA-depleted library was adjusted to10-fold less than non-depleted RNA libraries in these 
mixtures. Libraries were sequenced on an Illumina NovaSeq (S4). RNAs with RIN < 3.8 and 
DV200 < 70 were generally selected for KAPA RNA Prep Plus RiboErase library preparations. In 
total, 236 RNA samples from 227 F2 individuals were sequenced. 

DNA sequencing analysis 
Illumina adapter contamination and read ends with base quality < 20 were removed using 
Trimmomatic30. Reads shorter than 36 nt after trimming were discarded. Trimmed reads were 
aligned to hg38 reference genome using BWA31. Read deduping and base quality scale 
recalibration were performed using MarkDuplicates and BaseRecalibrator, respectively, from 
GATK32,33. SNPs and short INDELs were called using HaplotypeCaller, GenomicsDBImport 
and GenotypeGVCFs from GATK. Resulting variants underwent GATK-recommended hard-
filtering for SNPs and INDELs separately. Furthermore, we applied a series of filters in order to 
remove less-confident genotypes that included the following: 1) variants with genotyping quality 
< 20 or total read depth < 20; 2) variants falling in the regions with 100mer-alignability score < 1 
using the Umap multi-read mappability track34; 3) variants falling in the ENCODE Blacklist 
regions35 or the genomic SuperDups regions36; 4) variants with known alternate allele mapping 
bias identified in a previous study21,37; 5) variants that had more than one alternate allele; 6) 
heterozygous SNPs whose reference allele frequency was < 0.2 or > 0.8; 7) homozygous SNPs 
whose reference allele frequency was >0.05; 8) homozygous reference sites whose reference 
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allele frequency was < 0.95; 9) SNPs where > 5% of reads supported an allele that was neither 
reference nor alternate; 10) SNPs exhibiting excess heterozygosity (GATK-calculated metrics 
ExcessHet > 54.69); and 11) SNPs having a nearby INDEL within 150bp. PhaseByTransmission 
in GATK was used to phase the variants in a subset of the samples (45%) where both parents 
were genotyped. The phased variants were filtered by requiring the transmission probability 
score to be no lower than 20, and then combined with the variants phased by HaplotypeCaller. 
Eight F2 samples were excluded from the final phasing results due to excessive Mendelian 
violations indicative of nonpaternity or tube error. 
 
RNA sequencing analysis 
Previously published wht-RNAseq data29 was used with the allelic read counts recalculated using 
deduped alignments, and the same workflow was also used for the analysis of the tar-RNAseq 
data. Illumina adapter contamination and read ends with base quality < 20 were removed using 
Trimmomatic. Reads shorter than 36 nt after trimming were discarded. HISAT238 was used to 
first build a new reference for each individual to incorporate the genomic variants identified from 
the corresponding DNA sample, and second to align the paired trimmed reads onto this reference 
with splice sites from GENCODE GTF (release 27)39. Alignments were filtered and deduped 
using WASP40 to reduce biases. Properly paired alignments with the highest mapping quality 
were selected as confident alignments and used for downstream analyses.  
 
StringTie41 was used to quantify the relative expression at the transcript level. Alignments were 
split into sense-strand and antisense-strand alignments. ASEReadCounter from GATK was used 
to calculate allele-specific RNA read depth in both strands at each heterozygous SNP of the 
paired DNA sample. SNPs were annotated with the coordinates of the exons to which they 
mapped and overlapping exons in the same gene were merged into one interval. SNPs covered 
by at least 10 reads and mapped to unique genes and transcripts expressed at > 0.1 TPM in a 
placental reference RNA-seq data set were retained42. The SNP level imprinting codes were 
generated after considering all genes affected by the SNP using VEP, Variant Effect Predictor43. 
Targeted enrichment was measured as one minus the off-target aligned base ratio computed by 
CollectHsMetrics in GATK. Maternal contamination was assessed and removed as previously 
described29.  
 
For the comparison between tar-RNAseq and wht-RNAseq, we only used the SNPs in the genes 
that carried at least one SNP in at least one sample in both datasets and only paternally expressed 
(PEGs), maternally expressed (MEGs), and complexly expressed (CEGs) genes were considered, 
which limited the comparison to 75 genes (Supplementary Table 1, column D). SNP-level Pat-
Freq was calculated as the ratio of the paternal allele read count to the total read count. For gene-
level Pat-Freq, we summed the paternal allele read counts and total read counts from all the 
SNPs of the gene and calculated their ratio. To determine the ASE correlations between SNPs at 
the gene or exon level, Pearson correlation coefficients were calculated across all pairwise 
combinations of SNPs mapping to the same gene or exon.  
 
RNAseq library preparation cost evaluation 
A comparison between the cost of wht-RNAseq and tar-RNAseq (Supplementary Table 3) on a 
per sample basis was made to weigh increases in sequencing depth and coverage against costs of 
adding a target capture step to the library preparation method. Library preparation service costs 
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reflect pricing as of May 7, 2020 at the University of Michigan Advanced Genomics Core. All 
other reagents reflect pricing at the time of purchase. The custom Roche SeqCap Target 
Enrichment System employed for tar-RNAseq has been discontinued but similar products are 
currently offered by multiple suppliers (e.g. agilent.com, arborbiosci.com, illumina.com, 
idtdna.com, qiagen.com, thermofisher.com, twistbioscience.com) 
 
Results 
 
Congruent ASE values from Targeted RNA-seq and whole transcriptome RNA-seq  
We compared allelic count distributions in tar-RNAseq and wht-RNAseq datasets for a set of 75 
genes that have been reported to be imprinted in the literature and that contained at least one 
SNP in both datasets. The SNPs in these datasets were derived from 227 and 40 term placentas in 
tar-RNAseq and wht-RNAseq, respectively. For both datasets, exonic SNPs were identified by 
DNA-seq of umbilical cord tissue. The total size of the regions genotyped for the tar-RNAseq 
samples was 3.9 Mb yielding 3,647 exonic SNPs, and for the wht-RNAseq samples was 1.4 Mb 
yielding 2,517 exonic SNPs that mapped to the 75 genes of interest (Methods). SNPs were 
annotated as in our earlier study29 as PEGs or MEGs based on the parental bias reported in the 
literature, and as CEGs, for genes with complex imprinting patterns or conflicting literature data.  
 
To verify the parent of origin for the expression bias, we phased the SNPs in the subset of 
samples for which parental genotypes were known and calculated paternal allele frequency (Pat-
Freq) (Figure 1A). By combining transmission-based and read-based phasing, we were able to 
phase on average 265 and 68 SNPs per sample in 110 and 28 samples from tar-RNAseq and wht-
RNAseq, respectively. In both datasets, the distributions of Pat-Freq in all three categories 
agreed with the previously reported imprinting directions (Figure 1A). The interquartile range of 
Pat-Freq in CEGs was smaller for tar-RNAseq than for wht-RNAseq. To determine allelic bias 
for all data, phased and unphased, we calculated ASE as |0.5 – (Reference reads/Total reads)| 
(Figure 1B) 21. Both tar-RNAseq and wht-RNAseq data showed the strongest allelic bias for 
PEGs, reduced allelic bias for MEGs, and close to biallelic expression for many CEGs. The ASE 
distribution in the tar-RNAseq data exhibited more biallelic expression in all groups (Figure 1B).  
 
The agreement between datasets is further illustrated by the correlation of gene-level Pat-Freq 
between tar-RNAseq and wht-RNAseq data for the placenta that was assayed both ways (Figure 
2). The mean Pearson correlation coefficient was 0.95 overall, 0.90 for PEGs, 1.00 for MEGs, 
and 0.58 for CEGs. Thus, the correlation between the two data sets for gene-level Pat-Freq was 
strong.   

Targeted RNA-seq improved SNP coverage 
Even though ASE measurements between the two datasets were congruent, we obtained 
substantial improvement in SNP coverage from tar-RNAseq compared to wht-RNAseq. After 
removing the SNPs that had fewer than 10 total read counts, wht-RNAseq was able to cover only 
79 (or 20%) of the SNPs, on average, across the samples, while tar-RNAseq covered up to 337 
(or 80%) of the SNPs (Figure 3A) in the 75 genes that were common between the two datasets. 
We observed the same pattern when analyzing all SNPs in each dataset (Supplementary Figure 
1). The improvement in coverage was achieved for the tar-RNAseq with only 80 ´ 106 + 52 ´ 
106 reads per sample--far less than the 269 ´ 106 + 110 ´ 106 reads per sample obtained for wht-
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RNAseq. Stated in terms of number of total SNPs covered per billion bases sequenced, tar-
RNAseq produced 54 SNPs/109 bases while wht-RNAseq delivered only 2 SNPs/109 bases. This 
improved use of sequencing resources was expected from the enrichment of the RNA fragments 
of interest. In our tar-RNAseq dataset, the percentage of bases that aligned to the targeted region 
was 85%, on average, indicative of successful enrichment (Methods). In principle, increasing 
sequencing depth could overcome the coverage deficits of wht-RNAseq. We calculate that the 
per sample cost would increase 35-fold, which for most projects is prohibitive especially in the 
context of a population study.  
 
While both datasets had at least one SNP in the 75 genes analyzed here, each gene had 
informative SNPs in more samples in tar-RNAseq than in wht-RNAseq. Specifically, after 
quality filtration, 24 genes per sample had at least one SNP in wht-RNAseq with each gene 
carrying, on average, 3 SNPs; these values increased to 55 genes with 6 SNPs per gene in tar-
RNAseq (Figure 3B, C). In addition, the average total read count for the final SNPs in tar-
RNAseq was four times higher than in wht-RNAseq (Figure 3D). In sum, more informative 
SNPs were obtained by tar-RNAseq than wht-RNAseq, which allowed us to measure the inter-
individual variability of ASE in more genes.  
  
Arguably, the comparison could be confounded by the fact that different samples were analyzed 
between our tar-RNAseq and wht-RNAseq datasets as only one individual was sequenced by 
both technologies. However, it is unlikely that the difference in the samples between the two 
datasets was responsible for the large difference in the SNP coverage described above. Three 
sample-level QC metrics that could contribute to SNP coverage are number of genotyped SNPs, 
RIN, and maternal contamination. We show that RIN and maternal contamination did not differ 
significantly between the two datasets (Supplementary Table 2). We show that the choice of 
sequencing approach is more important than the number of genotyped SNPs through linear 
regressions in which the dependent variables were five different measures relevant to SNP 
coverage and the independent variables were tar-RNAseq (versus wht-RNAseq) and counts of 
genotyped exonic hetSNPs per sample (Supplementary Figure 3). Tar-RNAseq yielded a huge 
improvement in SNP coverage relative to wht-RNAseq at all observed numbers of genotyped 
SNPs. Moreover, even in the samples that had about 500 hetSNPs using wht-RNAseq, the SNP 
coverage was lower than in the samples that had about 300 hetSNPs using tar-RNAseq 
(Supplementary Figure 3). The mean number of genotyped SNPs was 418 for tar-RNAseq and 
386 for wht-RNAseq, but evidently this difference could not underlie the improvement in SNP 
coverage using tar-RNAseq. In sum, our findings are not sensitive to the difference in the 
samples used in the two sequencing approaches.  
 
Targeted RNA-seq improved concordance of ASE from the same genes 
Low SNP read coverage can limit the concordance of ASE between the SNPs from the same 
gene27. To determine the relationship between read coverage and concordance of ASE in our 
data, we calculated Pearson correlation coefficients for the pairwise combinations of SNPs 
mapping to the same gene in each sample. The mean correlation coefficient was 0.54 for wht-
RNAseq and 0.90 for tar-RNAseq. At every read depth threshold, including the highest, the 
concordance was always much stronger in tar-RNAseq than in wht-RNAseq data (Figure 4). The 
concordance of the SNPs from the same exon showed the same pattern (Supplementary Figure 
2). In wht-RNAseq, deduping improved SNP concordance but not to the level observed with 
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deduped tar-RNAseq. Thus, hybridization capture improved this variable well beyond what 
would be expected from the increase in sequencing depth alone. 

Targeted RNA-seq in combination with rRNA depletion permitted assessment of ASE even 
in degraded samples  
RNA degradation contributed to the reduced SNP coverage in the wht-RNAseq samples and 
inefficient rRNA removal is a factor known to interfere with the complexity of sequencing 
libraries45. In tar-RNAseq, ribosomal RNA should, in principle, have been removed by the 
hybridization reaction. However, we were able to rescue samples having low RIN by using 
rRNA depletion to improve SNP coverage in tar-RNAseq. Thus, we observed a strong positive 
correlation between RIN and SNP coverage fraction in the wht-RNAseq but not in the tar-
RNAseq data (Figure 5). The combination of tar-RNAseq and rRNA depletion routinely 
produced high SNP coverage in samples with substantial RNA degradation (DV200 ~50%). 
 
Discussion 
 
ASE analysis has been performed on a variety of wht-RNAseq datasets including simulated 
sequences46, RNA from cells cultured in vitro47,48, and RNA from inbred mice49. In humans, 
ASE analysis of RNA from many tissues was performed as part of the GTEx project4,5 
(https://gtexportal.org/home/). Placentas were not included in GTEx, but human placental tissue 
has been analyzed by other groups using wht-RNAseq and analyzed for ASE18,19,50. The goal of 
these studies in regard to ASE was to identify imprinted genes through a transcriptome wide 
approach and to categorize them by imprinting status. The ENCODE study aimed to go beyond 
categorization and pursued a more quantitative approach that entailed calculation of the 
significance values for the parent of origin effect for individual SNPs14. In contrast with the 
foregoing studies, our goal was to generate quantitative gene-level ASE estimates with high 
precision and accuracy. Such estimates are required for investigation of the functional 
significance of inter-individual variation in ASE29.  
 
Toward that end, we compared allelic count distributions in tar-RNAseq and wht-RNAseq 
datasets for a set of 75 genes that had been reported in the literature to be imprinted and that had 
at least one SNP in both datasets. We found that the two methods produced similar allelic 
expression biases. However, wht-RNAseq was able to cover only 20% of the SNPs, on average, 
across the samples, whereas tar-RNAseq covered 80% of the SNPs, with improvements in SNP 
coverage of 27-fold per billion bases sequenced. In humans, the paucity of SNPs makes it 
imperative to cover all the SNPs in the genes of interest. Using tar-RNAseq, we were able to 
obtain sufficient coverage at four times as many SNPs in twice as many genes in a sample, on 
average. Moreover, the mean number of SNPs per gene doubled, and the mean read depth per 
SNP increased four-fold, without increasing library preparation costs, making tar-RNAseq more 
cost effective (Supplementary Table 3). A complete data set would have sufficient reads at every 
SNP in every person, which is a goal that was more closely achieved by tar-RNA seq than by 
wht-RNAseq. Having a richer dataset will enable us to determine the interindividual variation in 
ASE for more genes across more individuals, so that we can better query the association between 
genomic imprinting and growth phenotypes in our cohort study. 
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Maternal contamination is a potential confounder unique to placental tissue and is a limiting 
factor in molecular analyses51. The degree of contamination can be directly determined from the 
RNAseq data by quantitating non-fetal alleles19. The greater SNP sequencing coverage and depth 
of SNPs in tar-RNAseq enabled us to quantify maternal contamination for each gene in each 
placenta with greater sensitivity. 

Importantly, targeted RNA-seq had some additional non-anticipated benefits. Gene-level ASE 
estimates are imprecise due to poor concordance of SNP-level ASE over a gene. Some 
discordance between the SNPs can be due to differing imprinting status between the transcript 
variants from the same gene49, but poorly identified technical variables also contribute4,5. It is 
known that selecting SNPs with higher sequencing coverage leads to improved concordance27, 
which we also saw in wht-RNAseq. Removing PCR duplicates further improved concordance 
but not nearly to the levels achieved by tar-RNAseq. In contrast with relative expression 
analyses, ASE is only based on the read count ratio between the alleles and removing read 
duplicates reduces the technical noise. The greatly improved concordance of SNPs strongly 
argues in favor of using tar-RNAseq for applications that require accurate gene-level ASE 
estimates. In future efforts, it might be possible to gain additional power for SNPs with low read 
depth by using unique molecular indices (UMI)52 in conjunction with tar-RNAseq as there are 
reports that PCR duplicates can affect ASE quantification in such circumstances21. 
 
Degraded RNA is found in many human samples, including term placentas, post-mortem 
samples of stomach and kidney, and formalin-fixed paraffin-embedded (FFPE) samples51,53,54  
(https://gtexportal.org/home/). We were successful in combining random primed library 
preparation with rRNA depletion to generate libraries from degraded RNA for tar-RNAseq. 
Little to no loss of coverage was observed with degraded RNA from most samples, and we 
salvaged samples with DV200 as low as 50%. The critical role for efficient rRNA depletion in 
preparing libraries from degraded RNA is well known45 and is in part due to the inability to 
target the poly(A) tail in degraded samples. The hybridization reaction with the capturing oligos 
should, in principle, be sufficient to remove rRNA. However, our results show that in degraded 
samples, removal of rRNA prior to library preparation improved SNP coverage. Improved data 
quality has previously been reported for gene expression analysis in FFPE samples with RNA-
seq and rRNA depletion55 or when capturing the whole exome56. However, to our knowledge, 
our study is the first to report the unexpected synergy between rRNA depletion and tar-RNAseq. 
It was also more efficient and cost effective to focus on a targeted region of only 3 Mb instead of 
the human exome of 64 Mb (the total length of Roche SeqCap EZ Exome Probes). Importantly, 
we document that cost savings is only one of the advantages of tar-RNAseq and other synergies 
may become the predominant motive to use this technology as sequencing costs continue to fall. 
 
A strength of our study is that the placenta samples were collected from healthy women who 
were of similar ages and belonged to the same cohort and ethnicity, using a standardized 
protocol. Moreover, we compared the same 75 genes using both wht-RNAseq and tar-RNAseq. 
A limitation of our study is that only one sample was sequenced using both methods. However, 
we examined three parameters that could potentially differ between samples and influence data 
yield (RIN, maternal contamination, number of genotyped SNPs) and showed that our 
conclusion about the superiority of tar-RNAseq was not sensitive to any of these parameters. We 
also note that library preparation reagents for wht-RNAseq libraries and tar-RNAseq libraries 
were from different manufacturers. Although we did not try to estimate ASE in relation to the 
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cellular composition of the fetal compartment of the placenta, a recent single cell study showed 
that placental samples collected using a protocol similar to ours were mostly comprised of 
trophoblast and syncytiotrophoblast cells of the fetus57. 
 
In conclusion, we compared tar-RNAseq and wht-RNAseq in a study of ASE in 75 known 
imprinted genes in placental tissue collected from a healthy human cohort. Tar-RNAseq covered 
more SNPs of interest and at greater depth. In previous research on humans, discordant ASE 
values for SNPs of the same gene have limited the ability to accurately quantify ASE. We show 
that Tar-RNAseq improved the reliability of ASE detection by greatly increasing the 
concordance of ASE measurement between the SNPs from the same gene. In combination with 
rRNA depletion, tar-RNAseq performed well even in cases of degraded RNA. The advantages of 
tar-RNAseq go beyond the savings on sequencing costs alone and include higher accuracy in 
ASE estimates in samples with varying RNA quality, as is typical for field collections. Targeted 
sequencing will benefit the study of associations between individual variation in ASE and 
phenotypes in humans or in other species where growth phenotypes are of interest, such as 
domesticated animals. The data we presented here originated from field samples and provide 
metrics to inform the design of such projects. 
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Figures: 
 
 

  
Figure 1. Distribution of parent of origin expression and ASE in PEGs, MEGs and CEGs. The 
box plots show the distributions of (a) Pat-Freq and (b) ASE at the SNPs in paternally expressed 
genes (PEGs), maternally expressed genes (MEGs) or complex expressed genes (CEGs). The 
mean of each distribution is indicated by a diamond. Orange and green colors denote wht-
RNAseq and tar-RNAseq, respectively. 
 

  
Figure 2. Correlation of gene-level average Pat-Freq between wht-RNAseq and tar-RNAseq. 
The scatter plot shows the Pat-Freq in each gene that had data in a sample sequenced with both 
wht-RNAseq and tar-RNAseq. PEGs, MEGs and CEGs are denoted by blue, pink and gray 
colors, respectively. The linear regression is shown by a dashed line. 
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Figure 3. Comparison of SNP coverage between wht-RNAseq and tar-RNAseq. The violin plots 
show the distributions of (a) the counts of SNPs per sample, (b) the counts of SNPs per gene, (c) 
the counts of genes with at least one SNP, and (d) the read counts at SNPs. Orange and green 
colors denote wht-RNAseq and tar-RNAseq, respectively. 
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Figure 4. Concordance of ASE for SNPs in the same gene. The Pearson correlation coefficients 
were calculated from pairwise combinations of the SNPs from the same genes and their 
distributions are shown in box plots, stratified by escalated depth filtering thresholds. The mean 
of each distribution is indicated by a diamond. Data from tar-RNAseq (with deduping), wht-
RNAseq (with deduping), and wht-RNAseq (without deduping) are denoted by green, orange 
and gray colors, respectively. 
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Figure 5. Combination of tar-RNAseq and RiboErase rescued most low RIN samples. The 
scatter plots show the fraction of SNPs covered by no fewer than 10 reads versus RIN. The 
ribodepleted tar-RNAseq, non-ribodepleted tar-RNAseq, and ribodepleted wht-RNAseq samples 
are denoted by green circles, green triangles, and orange circles, respectively. The linear 
regression for tar-RNAseq and wht-RNAseq data points is shown by a green and an orange 
dashed line, respectively. 
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