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Abstract 
A set of distributed cognitive control networks are known to contribute to diverse cognitive 
demands, yet it is unclear how these networks gain this domain-general capacity. We 
hypothesized that this capacity is largely due to the particular organization of the human brain’s 
intrinsic network architecture. Specifically, we tested the possibility that each brain region’s 
domain generality is reflected in its level of global (hub-like) intrinsic connectivity, as well as its 
particular global connectivity topography. Consistent with prior work, we found that cognitive 
control networks exhibited domain generality, as they represented diverse task context 
information covering sensory, motor response, and logic rule domains. Supporting our 
hypothesis, we found that the level of global intrinsic connectivity (as estimated with task-free 
fMRI) was correlated with domain generality during tasks. Further, using a novel information 
fingerprint mapping approach, we found that each brain region’s unique cognitive rule response 
profile could be predicted based on its unique intrinsic connectivity pattern. Together these 
results suggest that the human brain’s intrinsic network architecture supports its ability to 
represent diverse cognitive task information, largely via the placement of cognitive control 
networks within the brain’s global network organization. 
 
Keywords: Cognitive control, domain general, fMRI, information fingerprint, rule representation  
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Introduction 
Cognitive control processes allow individuals to intentionally select thoughts and 

behaviors according to current goals. These processes are particularly important in situations 
when previously learned rules need to be applied in novel situations. This ability to transfer rules 
from one context and apply them in a new situation greatly increases cognitive flexibility. Rapid 
instructed task learning (RITL) is a cognitive ability that has been successfully used to study 
cognitive control that requires especially flexible cognitive processes (Cole, Laurent, et al., 
2013; Liefooghe et al., 2013; Pereg & Meiran, 2019; Ruge et al., 2019). These cognitive control 
processes are supported by specialized large-scale brain networks (Cole & Schneider, 2007; 
Niendam et al., 2012), which are thought to contribute to the ability to direct cognition in a 
goal-directed manner by flexibly reconfiguring domain-specific (e.g., sensory and motor) neural 
systems (Cole et al., 2017; Cole, Reynolds, et al., 2013; Desimone & Duncan, 1995; Miller & 
Cohen, 2001; Schneider, 2003). 

Historically, there has been a debate between theories emphasizing the localization of 
brain function and those that emphasize a highly distributed organization in the brain. At the 
spatial scale of fMRI, evidence for cognitive control networks suggests many cognitive 
processes are neither fully distributed nor fully localized to a single brain region, since it appears 
cognitive control processes are distributed across regions within brain networks. Supporting this 
balanced localized-distributed perspective, it has been proposed that a multiple demand 
network exists that overlaps with the recently identified cognitive control networks. The proposal 
for a multiple demand network followed the observation of common patterns of activation during 
a variety of cognitive tasks including: auditory discrimination, visual divided attention, self-paced 
response production, task switching, spatial problem solving, and semantic processing of words 
(Duncan, 2010; Duncan & Owen, 2000). These findings suggest that regions belonging to the 
multiple demand network are recruited under a large variety of cognitive processes, regardless 
of the modality of the stimuli or specific cognitive demand. Despite the common patterns of 
co-activation observed in the multiple demand network, subsequent research has suggested 
that this network is not homogenous (Camilleri et al., 2018). The multiple demand network can 
be split into several smaller cognitive control networks characterized by different cognitive 
specialization (Assem et al., 2020; Cole & Schneider, 2007; Yeo et al., 2015). This suggests 
that task rule representations show different patterns of localization, and that they aren’t 
homogeneously distributed across regions composing the multiple demand network. 

Multivariate activation patterns within cognitive control networks during task performance 
also provide results regarding the degree of distribution for task rule representations. A number 
of studies have found that rule identity can be decoded based on multivariate activation 
patterns, and that the most accurate decoding of these patterns tends to occur in cognitive 
control network regions (Cole et al., 2011; Pischedda et al., 2017; Reverberi, Görgen, et al., 
2012; Reverberi, Gorgen, et al., 2012; Woolgar et al., 2011; Yeo et al., 2015). 
Electrophysiological studies in monkeys have also identified neurons that code for specific task 
rules, largely in prefrontal cortical regions (Asaad et al., 2000; Brincat et al., 2018; Wallis & 
Miller, 2003; White & Wise, 1999). These context-dependent neural representations may 
contribute to how cognitive control networks increase cognitive flexibility with flexible 
representations of information.  
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Previous studies have shown that multivariate patterns of activation contain information, 
or can be used to decode rules, across three different domains in the concrete permuted rule 
operations (C-PRO) paradigm. The C-PRO paradigm consists of a large set of systematically 
related flexible control tasks (Cocuzza et al., 2020; Ito et al., 2017). We sought to replicate these 
results and expand on them by exploring how the brain’s intrinsic network architecture 
contributes to diverse task rule representation. Previous studies have found support for both 
distributed and localized task rule representations in the human brain. This may reflect the 
possibility that task rule representation occurs on a continuum, from highly distributed to largely 
localized. We predicted that cognitive control brain regions would contain task rule 
representations, or task information, across a wide variety of rule domains, consistent with 
previous research supporting distributed rule representations across the multiple demand 
network. We also expected to observe a degree of localization in task rule representations. For 
example, we predicted task rule information largely localized to the motor cortex would be 
specific to motor rules.  

While there is evidence for both localized and distributed rule representations in the 
brain, this study was designed to evaluate the degree of specialization of task rule 
representations. We also developed the novel hypothesis that patterns of information content in 
cognitive control regions could be used to predict patterns of information content in other brain 
regions by weighting patterns of information content by their unique whole-brain connectivity 
patterns. If task rule representations across the brain could be predicted based on intrinsic 
functional connectivity patterns, it would further support the hypothesis that global connectivity 
plays an important role in task rule representation. Together, these results would provide 
additional support for the hypothesis that cognitive control networks use their unique intrinsic 
functional connectivity patterns to integrate domain-specific representations so they can be 
coordinated for task performance when different combinations of rules are encountered, likely 
increasing the cognitive flexibility of the human brain. 
 
Methods 
Participants 

Data were collected at the Rutgers University Brain Imaging Center (RUBIC). The 
participants were recruited from the Rutgers University-Newark campus and surrounding 
community. All procedures were approved by the Rutgers University-Newark Institutional 
Review Board and all participants provided informed consent. The sample consisted of data 
from 106 participants. Technical error or equipment malfunction during the scanning session 
resulted in removing six participants from the study. Out of the remaining 100 participants, 56 
were female and 44 were male. Participants were between the ages of 18 and 38 (M = 22.24, 
SD = 4.07). Participants were all right-handed, had not been diagnosed with any psychiatric 
disorders, and met standard MRI safety criteria.  
 
Behavioral Task 

We used the C-PRO paradigm (Ito et al., 2017), which is a variant of the original 
permuted rule operations task (Cole, Bagic, et al., 2010). The C-PRO task combines specific 
task rules from three different rule domains (logical, sensory, and motor) to create sixty-four 
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unique task sets (Figure 1). Each of the three different rule domains includes four specific rules 
(Logic: Both, Not Both, Either, Neither; Sensory: Red, Vertical, Constant, High Pitch; Motor: Left 
Index, Left Middle, Right Index, Right Middle). This task design allowed us to compare task rule 
information content across three different modalities while controlling for attention, arousal, 
sensory input, and motor output across tasks. Visual and auditory stimuli were presented 
simultaneously on each trial with the visual stimuli consisting of red or blue bars that were 
oriented either horizontal or vertical. The auditory stimuli were either high (3000 Hz) or low (300 
Hz) tones that were presented continuously or non-continuously (beeping). Trials were 
structured as miniblocks. Each miniblock started by presenting instructions for 3925 ms. After 
the instructions there was a jittered delay that lasted between 1570 and 6280 ms. Three trials 
were presented. The duration of each trial was 2355 ms. The intertrial interval was 1570 ms. 
Following the last trial there was another jittered delay between 7850 and 12560 ms. The mean 
miniblock duration was 28,260 ms. Each of the sixty-four task set miniblocks were presented 
twice during the experiment, and the same task set was never presented consecutively.  

 
 
Figure 1. The Concrete Permuted Rule Operations cognitive paradigm and functional network assignments.  (A) The 
cognitive paradigm combines specific task rules from three different rule domains (logical, sensory, and motor) to create sixty-four 
unique task sets. (B) Functional network assignment for brain regions based on (Ji et al., 2019). 

 
MRI Parameters 

Multiband whole-brain echo-planar imaging (EPI) data was collected using a 32-channel 
head coil on a 3T Siemens Trio MRI scanner with the following parameters: TR = 785 ms, TE = 
34.8 ms, flip angle = 55°, Bandwidth 1924/Hz/Px, in-plane FoV read = 208 mm, 72 slices, 2.0 
mm isotropic voxels, with a multiband acceleration factor of 8. Whole-brain high-resolution 
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T1-weighted and T2-weighted anatomical scans with 0.8 mm isotropic voxels were also 
collected. Spin echo field maps were collected in both the anterior to posterior direction and the 
posterior to anterior direction consistent with the Human Connectome Project preprocessing 
pipelines (Glasser et al., 2013). Resting state fMRI was collected as described previously 
(Schultz et al., 2018). The resting state scan was 14 minutes in duration (1070 TRs). Eight runs 
of task fMRI data were collected while participants performed the C-PRO task. Each task run 
had a duration of 7 minutes and 36 seconds (581 TRs). Task runs were run sequentially with a 
short break between each run. A resting state scan was also collected prior to the task fMRI 
scans.  
 
fMRI Preprocessing 

We minimally preprocessed the fMRI data using the publicly available Human 
Connectome Project minimal preprocessing pipeline (version 3.5.0). This included anatomical 
reconstruction and segmentation, EPI reconstruction, segmentation, normalization to a standard 
template, intensity normalization, and motion correction (Glasser et al., 2013). Subsequent 
processing was conducted on CIFTI 64k gray ordinate space. A standard general linear model 
(GLM) was fit to the task time series with a convolved canonical hemodynamic response 
function from SPM using the sixty-four task sets as regressors. Task regressors represented the 
entire duration of each miniblock. We also included 12 motion parameters (6 motion estimates 
and their derivatives), mean signal from the ventricles and white matter (and their derivatives) 
which were defined anatomically via Freesurfer (Fischl et al., 2002) as nuisance regressors. 
Motion scrubbing as described by Power and colleagues (2012) was implemented with a 
frame-wise displacement threshold of 0.3 mm. Frame-wise displacement estimates were 
temporally filtered prior to thresholding to reduce the influence of respiration on FD estimates 
(Siegel et al., 2016). Resting state data was processed in the same way as task data with the 
exception of excluding the task based regressors. Functional connectivity was estimated by 
calculating Pearson’s correlation of the mean timeseries for each pair of regions in the brain. 
Brain regions were defined by the Glasser et al. (2016) parcellation which consists of 360 
cortical regions. 
 
fMRI Data Analysis 
Information estimates 

Information estimates were computed for each brain region. The calculation of 
information estimates was conducted within each participant using a cross-validated multivariate 
pattern analysis. Task beta estimates were created for each vertex and for each of the sixty-four 
unique task sets. A representational analysis using a minimum-distance metric (using Pearson 
correlation as the distance measure) was then calculated for each of the 360 cortical regions. 
Information estimates were calculated on multiple levels (Mur et al., 2009). First, we calculated 
information estimates for each domain (Logic, Sensory, Motor). For each of the sixty-four task 
sets we calculated the similarity between the vertex-level pattern of activation with the 
vertex-level pattern of activation in the remaining sixty-three task sets that shared the rule of the 
domain being examined with a Spearman correlation (fifteen other task sets). Next we 
calculated the similarity between the vertex-level pattern of activation with the vertex-level 
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pattern of activation for each of the sixty-three remaining tasks which did not share the rule of 
the domain being examined (we excluded the task sets that shared off-domain rules with the 
held out task set, 45 task sets). We calculated the mean similarity for task sets with shared rules 
and the mean similarity for task sets without a shared rule in the same domain. The mean of 
these values across the sixty-four task sets was calculated. Then we subtracted the non-shared 
rule similarity from the shared rule similarity. Thus, positive information estimates indicate that 
the vertex-wise pattern of activation is more similar to the vertex-wise pattern of activation for 
trials in which shared rules for each domain were present relative to the pattern of activation for 
trials in which non-shared rules for each domain were present. This results in an information 
estimate for each domain (Logic, Sensory, Motor) for each brain region. We used a similar 
procedure to calculate information estimates for each individual task rule. Rather than 
comparing all tasksets that shared any rule in a particular domain, we calculated the information 
estimates for only tasksets that shared a specific rule in each domain. This process results in an 
information estimate for each individual task rule for each brain region (Logic: Both, Not Both, 
Either, Neither; Sensory: Red, Vertical, Constant, High Pitch; Motor: Left Index, Left Middle, 
Right Index, Right Middle). Statistical comparisons were made for each region by using a t-test 
against zero. The p-values from these tests were corrected for multiple comparisons using 
permutation tests (Nichols & Holmes, 2002) and a FWE corrected threshold of p < 0.05 was 
used. 
 
Information fingerprint mapping 

Information fingerprints were defined for each brain region as the pattern of the 
information estimates for each of the 12 task rules. We used a modified version of activity flow 
mapping (Cole et al., 2016) to predict information fingerprints. For each participant we predicted 
the information estimate for each task rule by weighting the information estimate for every other 
region in the brain by the strength of the functional connectivity between the two regions. 
Importantly, the functional connectivity estimates were based on an independent resting state 
scan. After calculating the predicted information estimates, we combined the 12 individual task 
rule information estimates into information fingerprints and correlated the predicted information 
fingerprints with the actual information fingerprints. The resulting Pearson’s r values were 
Fisher’s Z transformed, and group statistical comparisons were made using a t-test against 
zero. The p-values from these tests were corrected for multiple comparisons using permutation 
tests and a FWE corrected threshold of p < 0.05 was used. 
 
Results 
Participants learned the C-PRO paradigm 

Cross-subject average accuracy on the C-PRO task was 84.86%. Participants performed 
well above chance level performance (25%) on all 12 rules: Both (M(SD), 91.2%(0.07%)); Either 
(89.1(0.09)); Neither (81.4(0.11)); Not Both (72.6(0.14)); Constant (78.2(0.15)); High Pitch 
(83.8(0.10)); Red (86.7(0.08)); Vertical (85.7(0.09)); Left Index (83.2(0.10)); Left Middle 
(84.0(0.10)); Right Index (83.5(0.10)); Right Middle (83.6(0.10)). No participants performed at 
less than chance level on any of the rules. 
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Task domain information is present in numerous brain regions 
We tested whether the activation pattern within any brain region contained information 

about each of the three task domains (Logic, Sensory, Motor). This allowed us to map task rule 
information and determine the degree of distribution for each rule. We calculated the information 
estimate for each region on each of the task domains.  

The information estimate measure has previously been validated using a computational 
model and a portion of the same data analyzed here (Ito et al., 2017). Briefly, the information 
estimate compares the similarity in activation pattern (Pearson correlation) for a given task (e.g., 
Both, Red, Left Index) with the activation pattern from other tasks with a matching rule. That 
value is compared to the similarity in activation pattern between the same starting task (Both, 
Red, Left Index) and the activation pattern from the other tasks that do not share the same rule 
for each participant. An information estimate value greater than zero suggests that the pattern of 
activity for a particular rule is more similar to tasks that share a rule than it is for tasks that do 
not share a rule. If the information estimate value is significantly greater than zero we conclude 
that the activation pattern in that particular brain region contains information related to the rule. 

First we tested whether brain regions contained general information about the three 
different modalities (Logic, Sensory, Motor). For example, a region contained information 
regarding the Logic rule domain if the pattern of activity was more similar on tasks that shared 
any Logic rule. We found that widespread regions of the brain contained information regarding 
the Logic and Sensory rules. We found that the brain regions containing information about the 
Motor rules were largely located in the somatomotor network, with several adjacent regions from 
other networks containing information (Figure 2). 
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Figure 2. Brain regions contain information across content domains.  Vertex activity within each brain region can be used to 
decode rules. (A) Widespread cortical regions from many networks contain information for the logic rules. (B) Significant sensory 
rule information is also evident in a large number of regions and many networks. (C) Sensorimotor network brain regions contain the 
most information for the motor rules. The degree of information content in the sensorimotor network is also greater than that 
observed in either the logic or sensory rules. (D) Conjunction between panels A, B, and C showing how many domains each brain 
region represents. (E) Summarizing the mean number of domains that are represented in each functional network. Cognitive control 
networks (marked by black boxes) contain information about the highest number of domains. Error bars indicate standard error. 

 
Next, we used the same process to evaluate whether any brain regions contained 

information for each of the twelve individual rules (Both, Not Both, Either, Neither, High, 
Constant, Red, Vertical, Left Index, Left Middle, Right Index, Right Middle). For example, the 
similarity in the pattern of activation between a particular task (Both, Red, Left Index) and other 
tasks containing the Both rule relative to tasks containing other Logic rules. This resulted in 
twelve FWE-corrected maps, one for each individual rule (Figure 3). 
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Figure 3. Information estimates for each of the individual rules are largely consistent within each modality. Significant 
information estimates (FWE corrected p < 0.05) are shown for each of the twelve rules. Each column represents a rule domain and 
rows are the four rule variants within each domain. The information estimates for each individual rule are also consistent with the 
more general information estimates calculated at the domain level. The percentage of cortical regions (out of 360) showing 
significant information estimates is provided for each rule. 
 

Cognitive control networks contain domain general information 
Next, we assessed whether any brain regions contained domain general information. 

The brain maps for each individual rule (Figure 3) were binarized, and if a brain region 
contained a significant degree of information (FWE-corrected) it was coded as a 1. If a brain 
region did not contain a significant degree of information it was coded as a 0. Then we 
determined the mean number of rules that were coded for each domain in each brain region. 
The mean across the three domains was calculated for each region providing an estimate of the 
degree of domain generality. A truly domain general brain region would contain information for 
all rules across all domains. Based on our metric this brain region would get a score of 4. A 
brain region that contained information about all four rules in one domain, but no rules in the 
other two domains would get a score of 1.33. We found that cognitive control networks (DAN, 
FPN, CON) had the largest values suggesting that they contained information from a wide 

10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2021. ; https://doi.org/10.1101/2021.01.25.428141doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428141
http://creativecommons.org/licenses/by-nc-nd/4.0/


variety of rules and domains (Figure 4). The cognitive control networks coded for a larger 
number of rules per domain than other brain regions, t(358) = 3.61, p = 0.00035. 

 
Figure 4. Cognitive control networks show domain general properties.  (A) The mean number of rules coded across domains 
for each brain region. Brain regions colored in red contain information for all four rules in each domain. Brain regions depicted in 
white may only code for one specific rule in one particular domain. (B) Summarizing the mean number of rules coded per domain 
across the functional networks reveals that cognitive control networks (marked by black boxes) are domain general meaning they 
contain information for a larger number of rules than other brain networks. Error bars indicate standard error. 
 
Mapping domain specific information 

We next sought to contrast with domain generality, identifying brain regions that 
preferentially contained information for a specific rule modality. For each rule modality we 
identified brain regions that contained information for a larger number of rules than the 
remaining modalities. Within these regions we calculated the difference between the number of 
rules coded for the modality of interest and subtracted the mean number of rules coded of the 
remaining modalities. A larger number would indicate a greater imbalance in task rule 
information suggesting that the region preferentially contained task rule information pertaining to 
the modality of interest (Figure 5). Qualitatively, we found that the DMN contained domain 
specific information related to the Logic rules. We also observed that the visual and auditory 
networks contained domain specific information related to the Sensory rules. Additionally, the 
somatomotor network appeared to contain domain specific information related to the Motor 
rules. 
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Figure 5. Some regions contain domain specific information.  Panels reflect the difference of rules coded for each domain from 
the mean number of rules coded for the other two domains. (A) Some regions contain more information for the logic domain than the 
sensory and motor domains. Many of the regions containing logic domain specific information are in the DMN. (B) Some regions 
contain more information for the sensory rules than the logic and motor rules. The stimuli presented were visual and auditory. 
Domain specific information for the sensory rules is primarily located in the visual and auditory networks. (C) Some regions contain 
more information for the motor rules than the logic and sensory rules. Domain specificity for the motor rules is primarily observed in 
the somatomotor network. 

 
Domain general regions are active during many task contexts and are more hub-like 

We ran a standard GLM using 64 task regressors (one for each possible rule 
combination) and tested which brain regions showed a significant (FWE-corrected) level of 
activation for each of the 64 unique rule combinations. Then we calculated a summary statistic 
for each region reflecting what percentage of the 64 tasks showed significant positive activation 
(Figure 6A). Finally, we compared the percentage of activation for the unique rule combinations 
in domain general brain regions (mean rules coded per domain > 3) and the rest of the brain. 
The probability of a brain area showing significant activity during the task was not normally 
distributed so we used the Wilcoxon signed rank test to evaluate the difference in the probability 
of activation during the task for domain general regions and the rest of the brain. Domain 
general regions are more likely to be active during different task rule combinations than the rest 
of the brain, Z = 4.73, p = 0.0000021 (Figure 6B). The mean number of rules coded per domain 
was positively correlated with the percentage of activation, Spearman’s rho = 0.3754, p = 
0.0000000000001719. 

Domain general brain regions were more likely to be activated during the performance of 
the task. One possible explanation for this result is that cognitive control network regions are 
well connected to the rest of the brain and different types of information regarding the task may 
converge in these areas allowing them to represent more complex aspects of the task. Using 
resting state data that was collected independent of task performance, we evaluated how well 
each brain region was connected to across-network brain regions. We used the between 
network global connectivity measure, which computes the average functional connectivity 
(weighted) of a region excluding within network connections (Ito et al., 2017; Schultz et al., 
2018). We found that between network global connectivity values were significantly higher in 
domain general brain regions, t(99) = 18.99 (Figure 6C). This suggests that domain general 
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brain regions are more likely to serve as between network hubs in the brain. Between network 
global connectivity was positively correlated with the mean number of rules coded per domain, 
Spearman’s rho = 0.3908, p = 0.00000000000001399 (Figure 6D).  

 
Figure 6. Domain general brain regions are active during the task and serve as hubs.  (A) The proportion of task sets showing 
significant activation during the task. (B) Domain general regions, those brain areas containing information for > 3 rules per domain, 
have a higher probability of activation across task contexts. The lines on the violin plots represent quartiles. Asterisks indicate p < 
0.05. (C) Domain general regions also have significantly greater between-network global connectivity during resting state. The lines 
on the violin plots represent quartiles. (D) Between-network global connectivity shows a significant positive rank correlation with their 
degree of domain generality.  

 
Region specific information fingerprints are predicted by connectivity fingerprints 

We hypothesized that the pattern of task rule coding in a particular region would be 
related to the pattern of task rule coding in the brain and the degree to which those regions 
share information. To evaluate this hypothesis we used the concept of activity flow mapping 
(Cole et al., 2016) which found that activation in a held out region of the brain could be predicted 
by the activity in the rest of the regions of the brain weighted by the strength of the functional 
connections between these regions. We used a similar concept to predict information 
fingerprints in brain regions using the information fingerprints from other brain regions and the 
functional connectivity between them (Figure 7A). Here we refer to information fingerprints as 
the pattern of information content across all twelve of the task rules for each region of the brain. 
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This can be visualized with a radar plot where each arm of the plot represents one of the task 
rules and the farther the point is from the center of the plot the more information for that rule is 
contained in the brain region. We also calculated the mean information fingerprint for each 
functional network. The somatomotor network contains the most information about the Motor 
rules, the visual 2 network contains the most information about the Sensory rules, and the FPN 
and language networks contain the most information about the Logic rules. A similar radar plot 
was created for predicted information fingerprints. There was a significant correlation between 
the network level actual information fingerprints and the predicted information fingerprints, rho = 
0.319, p = 0.0001. We found that we could predict information fingerprints significantly better 
than chance for every region in the brain (mean correlation between predicted and actual 
information fingerprints of r = 0.42, Figure 7C). 

 
Figure 7. Information fingerprint mapping can predict patterns of task rule information content across the brain.  (A) 
Information fingerprints were computed for each region of the brain. Using a simple computation principle, information fingerprints 
for a held out region can be predicted by weighting the information fingerprints from all other brain regions by the strength of their 
resting state functional connectivity to the held out region. Information fingerprints are variable across brain regions. (B) Group 
average actual and predicted information fingerprints for three representative brain regions. Radar plots depict rank ordered 
information estimates with the highest information estimates at the perimeter and the lowest information estimates near the center. 
(C) Information fingerprints can be predicted for every region in the brain. Correlations between actual and predicted information 
fingerprints for each brain region (FWE corrected p < 0.05). Colored circles indicate the location of the regions depicted in the radar 
plots in Figure 7B.  
 

Information fingerprints could be predicted for every brain region when we used the 
information fingerprints from all other regions to make the prediction. However, cognitive control 
regions tended to show more domain general information coding so we hypothesized that 
information fingerprints from cognitive control regions would be especially important for making 
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information fingerprint predictions. To evaluate this hypothesis we again attempted to predict 
information fingerprints, but rather than using data from the entire brain to make these 
predictions we used the information from regions within each functional network as input. We 
found that first, information fingerprints could be predicted with information from each network, 
and second, information from cognitive control networks generally outperformed information 
from other functional networks (Figure 8A). A t-test for each network was calculated against the 
median as a measure of central tendency because the somatomotor network value skewed the 
distribution. The three cognitive control networks were part of a group of five networks that 
showed significantly better predictions than the median. Because every network contains a 
different number of regions we wanted to control for the amount of information being used to 
make these predictions. We dealt with this issue by permuting network membership for each 
region randomly, while holding the number of regions assigned to each functional network 
constant in the next analysis. We compared the information fingerprint prediction accuracy 
against the prediction accuracy calculated based on random network assignment and extended 
the analysis to compare mean information fingerprint prediction accuracy to each target 
functional network. This provided us with more details regarding where in the brain these 
predictions were more or less accurate. Building on the previous results showing that 
information from cognitive control networks was more predictive of information fingerprints, we 
focused our analyses on the cognitive control networks. We found that information fingerprints 
from each network could accurately predict information fingerprints to other regions in the same 
network (Figure 8B). We found that information fingerprint data from the CON could make 
accurate predictions in the visual, somatomotor, DAN, and auditory networks. Information 
fingerprint data from the DAN could make accurate predictions in the visual, somatomotor, 
CON, and auditory networks, and information fingerprint data from the FPN could make 
accurate predictions in the visual, DAN, language, and DMN networks. 
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Figure 8. Global information fingerprint predictions are more accurate when cognitive control networks serve as the 
source. Information fingerprint predictions were calculated by only using information from regions in one functional network as input. 
(A) Information fingerprints from each functional network could significantly predict information fingerprints in the rest of the brain. 
The dash line represents the median and asterisks indicate a FDR-corrected p < 0.05 difference from the median.  Error bars 
indicate standard error. Information fingerprints from cognitive control network regions provided the most accurate predictions. (B) 
Follow-up analyses focused on these cognitive control networks and suggest that information from the CON and DAN could 
accurately predict information fingerprints in largely sensory networks. Information fingerprints in the FPN could accurately predict 
fingerprints in a mix of sensory and multimodal functional networks.  
 

Discussion 
We found that task rule representations vary in how distributed they are across the 

cortex. While task rule representations were distributed, they tended to be represented in a core 
of domain-general cognitive control networks. This is consistent with these regions being 
classified as hubs and showing a high degree of task activation. Furthermore, we found that the 
pattern of information content, or information fingerprint, for each of the rules in a brain region 
could be predicted using the intrinsic functional connectivity properties of each region in 
conjunction with the information fingerprints derived in the rest of the brain. Finally, we showed 
that the information fingerprints in cognitive control networks could predict the information 
fingerprints in other brain networks. 

Previous research has suggested that task rule representation in the brain occurs 
somewhere on a continuum between localized and highly distributed. Consistent with this 
framework, we found that task rule representations varied in how distributed they were across 
the brain. Logic and sensory rule information was widely distributed across the brain while motor 
rule information was more localized to largely somatomotor network regions. We found that 
regions belonging to the frontoparietal, cingulo-opercular, and dorsal attention network 
contained domain general task rule information. These results support previous work that has 
identified a multiple demand network that is involved in a wide variety of cognitive tasks 
(Duncan & Owen, 2000). While these results support the hypothesis that task rule 
representation in the brain occurs on a continuum, it is important to note that this conclusion is 
based on the spatial limitations of fMRI data. It will be important for future studies to evaluate 
this hypothesis using methods capable of examining the brain on different scales.  

Multivariate activation patterns have also been used to decode task rule representations. 
Several studies have suggested that the most accurate rule decoding using multivariate 
activation patterns occurs in cognitive control regions (Cole et al., 2011; Esterman et al., 2009; 
Reverberi, Görgen, et al., 2012; Reverberi, Gorgen, et al., 2012). If cognitive control regions can 
decode a larger number of different rules as we observed, it would be consistent with more 
accurate rule decoding in these regions as well. Electrophysiological recordings have provided 
additional evidence that cells in the prefrontal cortex can code for specific task rules (Asaad et 
al., 2000; Brincat et al., 2018; Wallis & Miller, 2003; White & Wise, 1999). The concept of mixed 
selectivity – the representation of multiple pieces of information by single neurons – has been 
used as a model to understand how cognitive control brain regions can contribute to flexible 
cognition (Rigotti et al., 2013). Analyses of multi-unit recordings of non-human primates have 
identified mixed selectivity cells in some prefrontal neurons, demonstrating that single prefrontal 
neurons can respond to several aspects and combinations of task variables at once (Asaad et 
al., 1998; Warden & Miller, 2010). This type of context-dependent neural representation is one 
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possible mechanism for how cognitive control networks achieve their “multiple demand” status, 
potentially increasing cognitive flexibility via flexible representation of information. 

Some brain regions exhibited domain general characteristics, but other regions coded for 
more domain specific information. The logic rules were preferentially represented in the default 
mode network. We expected that logic rules would be preferentially coded in the frontoparietal 
network. It is important to note that the logic rules were represented there, but that the FPN 
regions also contained information from the other domains which led to more balanced coding 
and therefore less of a preference for the logic rules. The default mode network containing 
information more specific to the logic domain is consistent with previous studies showing task 
rule decoding in the default mode network related to; the level of self-reported detail during the 
performance of a working memory task (Sormaz et al., 2018), representing task-related 
information during task switching (Crittenden et al., 2015), or covert attention during a free 
selection task (Haynes et al., 2007). We found that sensory networks, specifically the visual and 
auditory networks, preferentially coded for sensory rules. Previous research has also found 
evidence of coding in visual cortex for orientation (Boynton, 2005; Haynes & Rees, 2005; 
Kamitani & Tong, 2005) and for color (Brouwer & Heeger, 2009; Parkes et al., 2009). 
Multivariate patterns of activity in the auditory network can also decode auditory stimuli including 
human speech (Formisano et al., 2008) and decode several other categories of auditory stimuli 
(Staeren et al., 2009; Zhang et al., 2015). Finally, we found that the motor rules were 
preferentially coded in the somatomotor network. Previous studies have found that intended 
motor actions can be decoded from activity patterns in the motor network (Ariani et al., 2015; 
Gallivan et al., 2015; Gertz et al., 2017). 

We observed that domain general brain regions also had a higher probability of 
activation during the task. This finding is consistent with descriptions of a multiple demand 
network (Duncan, 2010) which overlaps with cognitive control networks. We also found that 
domain general brain regions had higher between-network global connectivity, a measure of 
how well a brain region is connected to other out-of-network regions, during a resting state 
scan. Other studies suggest that cognitive control networks have a high degree of connectivity 
(Cole, Pathak, et al., 2010; Power et al., 2011), specifically for between network connections 
(Schultz et al., 2018). Along with a high degree of connectivity, cognitive control networks can 
also adaptively update these connections based on current goals (Cole, Reynolds, et al., 2013). 
Cognitive control networks have a high degree of connectivity and the ability to rapidly update 
these connections which are characteristics of flexible hubs. This is one possible explanation for 
why cognitive control networks show domain general characteristics. 

The pattern of task rule information in each brain region could be predicted by weighting 
the task rule information patterns in the rest of the brain by its resting-state functional 
connectivity strength. Additional analyses indicated that information fingerprints from cognitive 
control networks played a disproportionate role in predicting patterns of task rule information in 
other networks. While these cognitive control networks appeared to contain domain general 
information, these domain general regions can be subdivided into smaller networks that 
specialize in different cognitive functions. The FPN is thought to be involved in the initiation of 
control and for adjusting control in response to feedback or instructions (Braver et al., 2003; 
Cocuzza et al., 2019; Cole, Reynolds, et al., 2013; Dosenbach et al., 2007). The function of the 
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CON has been more difficult to characterize with some suggesting it has a role in task-set 
maintenance (Dosenbach et al., 2007; Sadaghiani & D’Esposito, 2015), arousal or alertness 
(Coste & Kleinschmidt, 2016), or conflict monitoring (Braem et al., 2019; Neta et al., 2014). The 
DAN is thought to be involved in the top-down control of attention (Buschman & Kastner, 2015; 
Corbetta & Shulman, 2002) and eye movement control (Corbetta et al., 1998). The 
heterogeneity of these components of the multiple demand network has been supported by 
resting-state functional connectivity data demonstrating that these components are 
characterized by distinct functional connectivity profiles (Ji et al., 2019; Power et al., 2011; Yeo 
et al., 2011). Additionally, changes in functional connectivity patterns during the performance of 
cognitive tasks also supports functional specialization across cognitive control networks (Cohen 
& D’Esposito, 2016). Other task activation studies have found evidence for domain specificity 
within the multiple demand network (Crittenden et al., 2016; Yeo et al., 2015), and even 
between portions of the FPN (Badre & D’Esposito, 2007; Nee & D’Esposito, 2016).  

We found that information fingerprints in the CON could predict the pattern of task rule 
information in the DAN and vice versa. In addition to predicting information fingerprints between 
themselves, the cingulo-opercular and dorsal attention network information fingerprints could 
predict task rule information patterns in sensory networks. The relationship between both the 
CON and DAN with sensory and motor networks is consistent with a recent report suggesting 
that CON and DAN possess a large number of “control processing” hubs which aid in the 
transfer of information between these networks (Gordon et al., 2018). Another recent study 
found that during the performance of a task the CON can disband to some degree, potentially to 
provide resources to other task-relevant networks under certain demands (Cocuzza et al., 
2019). Alternatively, information fingerprints in the frontoparietal network could predict task rule 
information patterns in more transmodal networks including the DAN, language, and default 
mode networks. This result is also consistent with previous work suggesting that the FPN 
contains more “control default” hubs which aid in the communication between the FPN and 
DMN potentially allowing for regulation of internally generated processes like planning (Gordon 
et al., 2018). This result may also be related to the FPN serving as a “flexible coordinator” by 
maintaining within network connections, but altering connections between the FPN and other 
networks during tasks which would allow the FPN to serve as a coordinator of information flow 
(Cocuzza et al., 2019). 

There are some limitations of this study which impact how generalizable the results are 
to other situations. One limitation is that although the C-PRO task allows us to compare many 
different rule combinations, the task structure is relatively rigid. Participants view instructions, 
are presented with stimuli, and make a response. The instructions are text presented visually. 
Future studies may want to consider presenting instructions with auditory stimuli, or using a 
non-text based visual presentation. Additionally, the stimuli used in the study were simple 
auditory and visual. It will be important for future studies to examine how information content is 
represented for other stimulus modalities, or with more complex auditory and visual stimuli. 
While we balanced the numerous task rules as well as possible, there were some differences in 
task accuracy across the rules. Ideally, participants would demonstrate equivalent accuracy on 
the various task rules to rule out the possibility that task accuracy was contributing to the 
decoding analyses we conducted. Although we cannot conclude that differences in task 
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accuracy are not contributing to our results to some degree, we did observe largely consistent 
decodability across different rules within the same domain even in situations where there were 
task accuracy differences.  

Together, our results support our hypothesis that task rule representations exist on a 
continuum between distribution and localization. We also found that patterns of task rule 
information in cognitive control networks could predict patterns of task rule representation in 
other networks. This prediction used functional connectivity estimated via an independent 
resting state scan which suggests that intrinsic whole-brain connectivity patterns help shape the 
way that task activation patterns from different brain regions are combined during task 
performance. These results support the hypothesis that cognitive control networks use their 
unique intrinsic functional connectivity patterns to integrate domain-specific representations. 
These representations can then be coordinated during task performance in situations when 
novel combinations of rules are encountered. This likely increases the cognitive flexibility of the 
human brain. 
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