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Abstract

Personalized precision dosing is about mathematically determining effective dosing strategies that opti-
mize the probability of containing a patient’s outcome within a therapeutic window. However, the common
Monte Carlo approach for generating patient statistics is computationally expensive because thousands of
simulations need to be computed. In this manuscript we describe a new method which utilizes the Koop-
man operator to perform a direct computation of expected patient outcomes with respect to quantified
uncertainties of Bayesian posteriors in a nonlinear mixed effect model framework. We detail how quantities
such as the probability of being within the therapeutic window can be calculated with a choice of loss
function on the Koopman expectation. We demonstrate a high performance parallelized implementation of
this methodology in Pumas® and showcase the ability to accelerate the computation of these expectations
by 50x-200x over Monte Carlo. We showcase how dosing can be optimized with respect to probabilistic
statements respecting variable uncertainties using the Koopman operator. We end by demonstrating an
end-to-end workflow, from estimating variable uncertainties via Bayesian estimation to optimizing a dose
with respect to parametric uncertainty.

1 Introduction: The Importance of Precision Dosing
Quantitative clinical pharmacology model-based dose selection in the wider context of model-informed drug
development is widely used by the pharmaceutical industry. However, the applications of such technologies
have had little to no impact in the clinic till about a few years ago. The challenge for model-based dosing lies
in the idea that drug development programs are often incentivized to devise dosing recommendations in the
product label primarily for ease of prescribing. This extends to the dosing guidelines for special populations
where the label specifies dosing based on certain cut-points for prognostic factors such as age, weight, kidney
function or disease status. Historically, the primary reason for such simplified label recommendations was to
facilitate approval for the average patient. This, however, is no longer the case as advances in quantitative
clinical sciences (e.g., pharmacometrics) and technology enable an individualized approach to drug therapy.
For much therapeutics, this signifies an important paradigm shift from a predefined dose to a more tailored
and personalized dose aimed to increase efficacy and reduce toxicity.

For effective care, dosing for each patient can be individualized to achieve some desired target goal, such
as serum concentrations, or an effect such as bacterial kill or longitudinal glucose measurements over time.
Frequent observations of these targets at optimal times will facilitate dose adjustment as needed. However,
it is also important that these adjustments are made in real time to avoid delays in decision making that can
lead to unintended consequences with regards to safety or loss of efficacy. Target goals are usually defined
by therapeutic windows, especially for drugs with a narrow safety margin. For such drugs, therapeutic
drug monitoring (TDM) is used to measure e.g., serum concentrations frequently. Based on the observed
concentrations and prior clinical experience these drugs are then classified into sub-therapeutic, therapeutic
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or toxic levels. Clinical and therapeutic committees in hospital management meet and develop guidelines
as to what the acceptable ranges of drug concentration are, which are subsequently used by clinicians to
adjust doses to achieve those ranges. Over the years, therapeutic windows have been defined for multiple
drugs. While the list of narrow therapeutic index differs across regulatory bodies, a comprehensive list of
narrow therapeutic index drugs can be found in DrugBank Online Database∗. Precision dosing has seen a
widespread implementation in the areas of infectious disease and transplant, while more recently application
in oncology and epilepsy have also surfaced [9].

However, adequately modeling the probability that a drug concentration remains within the therapeutic
window remains a challenge. Monte Carlo methods compute the probability by simply computing millions of
samples and checking the percentage of results which lie within in the window. Given that model simulations
can be computationally time consuming and have slow convergence, it can be impractical to achieve accurate
probabilistic estimates through this classical approach.

To address this issue, we describe a mathematical formalism and a new method to facilitate precision dosing.
We utilize the Koopman expectation for computing expectations and probabilities of model quantities with
respect to estimated parametric uncertainties. We show how to phrase the probability of internal drug
concentrations being within the therapeutic window as a quantity that can be calculated via the Koopman
expectation. We demonstrate how the Koopman expectation allows for 50x-200x more efficient estimation of
these probabilistic quantities compared to Monte Carlo which enables optimization of dosing schemes with
respect to uncertainty in less than a second. Additionally, we showcase how the quadrature approach to
the calculation of the Koopman expectation yields informative error bounds on the probabilistic estimates,
improving their ability to be used and trusted in practice. Together this demonstrates a practical approach
for real-time decision making under uncertainty that can be applied to precision dosing scenarios.

2 Background: Bayesian Estimation of Nonlinear Mixed Effects
Models

Dynamics of drug concentrations (pharmacokinetics, PK) and patient outcomes (pharmacodynamics, PD)
on patient populations are commonly modeled via nonlinear mixed effects models (NLME) [4]. The dynamics
of the PK/PD system are defined in terms of an ordinary differential equation

�̇�𝑖 = 𝑓(𝑢𝑖, 𝐷𝑖, 𝜂𝑖, 𝜃, 𝑍𝑖) (1)

where 𝐷𝑖 is the dosage regimen, 𝜃 are the fixed effects, 𝜂𝑖 are the random effects for patient 𝑖 and 𝑍𝑖 are the
covariates of patient 𝑖, known measurable quantities of a patient such as their age, weight, or sex. For this
model, we assume that 𝜂𝑖 ∼ 𝑁(0, Ω), and thus the expected patient outcome given only the prior known
information 𝑍𝑖 is the dynamics predicted by 𝜃 with 𝜂𝑖 = 0.

Given observations 𝑑 of the underlying dynamical system 𝑢, fixed effects 𝜃 and random effects variance Ω,
the population likelihood 𝐿 is given by

𝐿(Ω, 𝜃, 𝑑) ∼ ∏
𝑖

𝐿𝑖(𝑢𝑖, 𝑑𝑖)

where 𝐿𝑖 is the likelihood for individual 𝑖 which is a chosen functional form. The likelihood is the probability
of seeing the data 𝑑𝑖 given a distribution around the predicted value. For example, a common choice of 𝐿𝑖 is
the normal distribution centered around the subject’s predictions, i.e., 𝐿𝑖 ∼ 𝑁(𝑢𝑖, 𝜎) for some fixed variance
𝜎. Note that with this choice of likelihood, choosing 𝜃 and 𝜂𝑖 which maximize 𝐿𝑖 is equivalent to choosing
the parameters which minimize ‖𝑢𝑖 − 𝑑𝑖‖.

Since we wish to capture the uncertainty in the parameters, instead of performing a deterministic maximum
likelihood procedure, we resort to a Bayesian estimation of the posterior distributions for 𝜃 and 𝜂𝑖 given

∗https://go.drugbank.com/categories/DBCAT003972
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assumed prior distributions [3, 22, 24, 18, 27]. Common probabilistic programming languages, such as
Stan [7] or Turing [10], can be utilized to determine these posterior distributions using Markov Chain
Monte Carlo (MCMC) techniques such as Hamiltonian Monte Carlo [1, 2, 15]. We will demonstrate how
estimated distributions of NLME parameters computed using the Pumas® software [20] can be reinterpreted
as probability distributions via a kernel density estimate (KDE) [16] and used within a Koopman expectation
framework to greatly accelerate probabilistic estimates and optimization of clinical choices with respect to
uncertainty.

3 Uncertainty-Aware Personalized Precision Dosing via the Koop-
man Expectation

3.1 The Frobenius-Perron and Koopman Operators
The mathematical background of the problem and the Koopman expectation is explained in detail in [11].
This is adapted here specifically for pharmacology applications. Assume that Bayesian estimation has given
sufficient estimates of posterior distributions for 𝜃 and 𝜂𝑖 and we wish to answer the following question: what
is the optimal dosage regimen 𝐷𝑖 for patient 𝑖? For the rest of this manuscript we will be focusing on this
single patient 𝑖 and thus the subscript will be dropped.

To motivate the application of the Koopman operator for choosing the optimal dose, we first introduce the
Frobenius-Perron (FP) operator on dynamical uncertainty distributions [17]. Define 𝑆(𝑥) = 𝑢(𝑇 ) where
𝑢(0) = 𝑥. In other words, 𝑆(𝑥) is the solution of the dynamical system where the initial condition is 𝑥.
We wish to compute probabilistic statements on patient outcomes with respect to uncertainty of the initial
condition. First, we note how uncertainties in parameters (𝜂 and 𝜃) are incorporated into this calculation.
For the ordinary differential equation, we can use the extended system:

�̇� = 𝑓(𝑢, 𝐷, 𝜂, 𝜃, 𝑍) (2)
̇𝜂𝑖 = 0 (3)
̇𝜃 = 0 (4)

where 𝜂(0) = 𝜂 and 𝜃(0) = 𝜃, and thus the parametric uncertainties can be treated as uncertainties in the
initial condition on this extended system. Thus without loss of generality, we model the uncertainty via the
initial conditions in a probability space (Π, 𝒜, 𝜇) where Π = ℝ𝑛. For a given dynamical system 𝑆∶ ℝ𝑛 → ℝ𝑛,
its associated FP operator, 𝑃𝑆, is defined such that the following equality is satisfied:

∫
𝐴

𝑃𝑆𝑓 (𝑥) 𝜇 (d𝑥) = ∫
𝑆−1(𝐴)

𝑓 (𝑥) 𝜇 (d𝑥) , ∀𝐴 ∈ 𝒜 (5)

where 𝑆−1 (𝐴) is the counter-image of 𝐴 and 𝑓 is the posterior distribution given by the Bayesian estimation
[17]. This equivalence is depicted in Figure 1. In terms of precision dosing, the uncertainty in the fixed and
random effects, i.e., 𝜃 and 𝜂 according to the probability distribution 𝑓(𝑥), induces a probability distribution
on the solution of the dynamics 𝑢(𝑡). This pushforward of the probability distribution through the dynamical
system is the FP operator, i.e., 𝑃𝑆𝑓(𝑥) = ℙ[𝑢(𝑡, 𝜃, 𝜂𝑖) = 𝑥].

If 𝑆 is both measurable and nonsingular, then 𝑃𝑆 is uniquely defined by Eq. 5 [17]. Monte Carlo estimation
of probabilistic quantities of the dynamical system’s solution thus correspond to approximating the pushed
forward probability mass 𝑃𝑆𝑓 by direct sampling of initial conditions from the probability distribution 𝑓.

In contrast, the Koopman operator 𝑈𝑆 is defined as

𝑈𝑆𝑔 (𝑥) = 𝑔 (𝑆 (𝑥)) (6)
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Figure 1: Graphical representation of Eq. 5, where shaded regions have equal area. (Figure adapted from
[26])

where 𝑔(𝑥) denotes the observed quantities of the solution to the dynamical system (which we will later call
the cost function). Note that 𝑈𝑆 is adjoint to the FP operator, 𝑃𝑆, i.e.,

⟨𝑃𝑆𝑓, 𝑔⟩ = ⟨𝑓, 𝑈𝑆𝑔⟩ (7)

where ⟨⋅, ⋅⟩ is the inner product. Eq. 7 can be rewritten as

𝔼 [𝑔 (𝑋) ∣ 𝑋 ∼ 𝑃𝑆𝑓] = 𝔼 [𝑈𝑆𝑔 (𝑋) ∣ 𝑋 ∼ 𝑓] (8)

We refer to the left- and right-hand sides of Eq. 8 as the Frobenius-Perron (FP) and Koopman Expectations,
respectively. Figure 2 provides a 1D illustration of Eq. 8. The top row represents the FP Expectation while
the bottom row represents the Koopman Expectation. For the top row, the PDF 𝑓 (dashed line) is pushed
to the right through the system dynamics via 𝑃𝑆 and an inner product is taken with 𝑔 (solid line). The
expected value, 𝔼 [𝑔 ∣ 𝑃𝑆𝑓], is represented by the area of the shaded region. Conversely, on the bottom row,
the function 𝑔 is pulled to the left through the system dynamics via 𝑈𝑆. The expected value, 𝔼 [𝑈𝑆𝑔 ∣ 𝑓], is
represented by the area of the shaded region. The areas of the two shaded regions are equal.

3.2 Precision Dosing as Optimization Under Uncertainty
Precision dosing under uncertainty can be phrased as a problem of optimal decision making under uncertainty.
Concretely, the optimal dose is one which has the highest expectation of good patient outcomes, e.g., being
within a therapeutic window. In other words, we wish to find the dosing schedule 𝐷 which optimizes the
expectation with respect to a cost function on the solution of the dynamical system. If we let 𝑔(𝑢(𝑇 )) be
the cost associated with a given patient outcome, this corresponds to finding 𝐷∗ such that

𝐷∗ = arg min
𝐷

𝔼 [𝑔(𝑥)|𝑥 ∼ 𝑃𝑆𝑓] (9)

Thus the common way to perform dosing optimization with respect to parametric uncertainty is to utilize a
Monte Carlo estimation of 𝑃𝑆𝑓 in order to evaluate the expectation, i.e.,

1. Sample parameters 𝜃 and 𝜂𝑖 from the uncertainty distribution 𝑓

2. Solve the dynamical system to compute 𝑆(𝑥) for each set of parameters

3. Compute 𝑔(𝑆(𝑥)) on each set of parameters, and take the discrete average

This procedure is computationally expensive since it requires the solution of many differential equations.
However, using the relationship of Equation 8, we see that the argument of the optimization problem is
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Frobenius-

Perron

Koopman

Figure 2: Illustration of the FP and Koopman operator adjoint property. The inner products, represented
by the area of the filled regions, are equivalent. (Figure reproduced from [19])

simply the Frobenius-Perron expectation, and thus it can equivalently be rephrased in terms of the Koopman
expectation [11]:

𝐷∗ = arg min
𝐷

𝔼 [𝑈𝑆𝑔(𝑥)|𝑥 ∼ 𝑓] (10)

Notice from Figure 2 that the Koopman operator pulls back to the original probability distribution. Thus
we can explicitly represent the calculation as:

𝔼 [𝑈𝑆𝑔 (𝑋) ∣ 𝑋 ∼ 𝑓] = ∫
Π

𝑈𝑆𝑔(𝑥)𝑓(𝑥)𝑑𝑥 (11)

In other words, this means the desired expectation can be calculated via a multidimensional quadrature where
𝑈𝑆𝑔(𝑥) is the solution of the dynamical system at parameters determined by the quadrature procedure and
𝑓(𝑥) is the evaluation of the probability distribution at the quadrature points.

3.3 Representation of Therapeutic Windows in Cost Functions
Clinical experience via TDM establish safety guidelines known as the therapeutic window. For example, for
a given drug the area under the curve (the total concentration or AUC) of the drug over 24 hour periods
may be known to be safe when it is between 200 and 400 mg.hr/L. Given variability in drug disposition and
elimination, the goal is to optimize the probability that the dose will be in the therapeutic window with
respect to the uncertainty in the patient-specific effects.

To calculate this probability, let 𝑔(𝑋) = 𝜒𝑊(𝑋) where 𝜒𝑊 is an indicator function for the therapeutic window
𝑊, i.e., 𝑔 is a function defined as 1 if the solution to the differential equation with parameters (𝜃, 𝜂, 𝐷, 𝑍)
falls in the therapeutic window, and 0 otherwise. With this definition of the cost function, we note that the
expectation of a characteristic function is the probability that the event occurs, and as such this definition
of 𝑔 gives rise to:

𝐷∗ = arg min
𝐷

ℙ [𝑢(𝑡) ∈ 𝑊] (12)
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Therefore under this choice of 𝑔 the optimal dosing regimen 𝐷∗ computed by the optimization over the
Koopman expectation is the dosing regimen that has the maximal probability of the patient’s outcomes
to be in the therapeutic window. We note in passing that this formulation is slightly more general, as it
allows for a quantification of “badness”, i.e., the cost could be a distance from the therapeutic window which
encapsulates the idea that being close to the therapeutic window might be sufficient while being far away
incurs a greater risk on the patient. Generalizations to this computation which include higher order statistics
and process noise are given in [11].

4 Efficient Computation of the Koopman Expectation in Pumas®

4.1 Description of the Implementation and Features
To demonstrate the utility of this method for performing dosage optimization under uncertainty, we created
a high-performance implementation of the Koopman expectation in Pumas®. Equation 11 was implemented
by utilizing DifferentialEquations.jl [21] to calculate 𝑈𝑆𝑔 given a Pumas® [20] specification of a dynamical
system and the multidimensional integral was calculated using Quadrature.jl, a wrapper library over common
quadrature methods such as Cuba [13] and Cubature [12, 6]. This integration implementation allows for
a batch solve that parallelizes the computation over the quadrature points, allowing for multithreaded,
distributed, and GPU acceleration of the quadrature. The quadrature techniques were made differentiable
in order to allow automatic differentiation use for optimization under uncertainty.

4.2 Calculating Probabilities With Respect to Theophylline Dosing
The following code demonstrates the use of the Koopman expectation for the calculation of the probability
that the AUC will be below 300 on the Theopylline model. The nonlinear mixed effect model’s definition is
defined using Pumas®’ standard @modelmacro form:

using Pumas, Quadrature

model = @model begin
@param begin

𝜃 ∈ VectorDomain(4)
end

@covariates sex wt etn

@pre begin
Ka = 𝜃[1]
CL = 𝜃[2] * ((wt/70)^0.75) * (𝜃[4]^sex)
V = 𝜃[3]

end

@dynamics begin
Depot' = -Ka*Depot
Central' = Ka*Depot - CL*Central/V

end

@derived begin
cp = Central ./ V
nca := @nca cp
auc = NCA.auc(nca)
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end
end

Then to define the subject and the dosage regimen, we read in a dataset:

subject = read_pumas(datapath,cvs = [:sex,:wt,:etn])[1] # 1 for patient 1

Next we input the parameter uncertainty distributions. This would normally come from Bayesian posteriors
as described in Section 2, but here we will directly prescribe distributions as an illustrative example.

param_dists = (theta = [Uniform(1.0,5.0),
Uniform(20.0,100.0),
Uniform(200.0,400.0),
Uniform(0.1,2.0)])

We then define the therapeutic window via the cost function 𝑔 on the observables. Notice that we used the
Pumas® NLME integration with NCA to compute the AUC as part of the derived variables from the model,
and thus the AUC exists as one of the observed outputs of the system. We can thus define the therapeutic
window via:

function g(obs)
obs[:auc] < 300

end

Now we simply call expectation and tell it to use the KoopmanExpectation method. In there we designate
that we would like to use the HCubatureJL quadrature method, which tends to be efficient for low dimensional
integrands (<8 uncertain variables).

expectation(g,KoopmanExpectation(CubatureJLp()),model,subject,param_dists)

This computation will then compute the given expectation to the desired tolerance. Given its differentiability,
this function can then be used inside of an optimization loop with defined dosage regimens to thus perform
dosage optimization under uncertainty.

4.3 Efficiency and Robustness of the Koopman Expectation vs Monte Carlo
This extra formalism is useful because of the tremendous performance and feature benefits. To demonstrate
this, we compared the KoopmanExpectation to the MonteCarloExpectation option with various increasing
choices of imaxiters (allowed number of ODE solves) to determine the rate of convergence of the two methods
for calculating the probability of patient outcomes occuring in the therapeutic window. Figure 3 demonstrates
two results. One is that the Koopman method converges to give stable probability estimates of the second
digit with approximately 50x less ODE solves. Secondly, by utilizing the HCubature method the Koopman
calculation not only determines the probability but also gives numerical error bounds on the probability
estimate, allowing the user to effectively know the uncertainty introduced by the numerical error. Such
a bound is highly difficult to calculate with Monte Carlo estimates given the slow rate of convergence of
the variance. Together, this demonstrates the Koopman expectation as both a method for efficiency and
robustness.

While the quadrature-based Koopman significantly outperforms Monte Carlo, we note that the chosen ob-
servable, a characteristic function, was a discontinuous function. The efficiency of quadrature methods can
be considerably improved when the integrands are smooth. Thus to test the efficiency in the smooth case,
we used the Koopman method to estimate the expected value of the AUC via:

function g(obs)
obs[:auc]

end
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Figure 3: Convergence of the Koopman Expectation calculation via Cubature’s CubatureJLp on the integral
(blue line) vs Monte Carlo (orange line), measured in terms of the number of ODE solver calls required.
Note that the cubature integration method used with the Koopman Expectation comes with a free error
estimation (blue region). Top: 𝑃 [𝐴𝑈𝐶 < 300]. Bottom: 𝐸[𝐴𝑈𝐶].

In this case Figure 3 shows that it takes only 500 ODEs solves for the Koopman method to certify that
𝐸[𝐴𝑈𝐶] ≈ 400 ± 1. Meanwhile the Monte Carlo approach is unable to establish a stable estimate within
1 unit with 100,000 ODE solves, with the estimate at 99500 solves giving 398.91 and 10000 giving 401.13.
Therefore we see that the Koopman method in this case is effectively 200x as efficient as the classical Monte
Carlo method.

4.4 Accelerated Bayesian Precision Dosing Using Pumas®

In this next example we wish to use the accelerated expectation estimate to optimize a dosing scheme with
respect to a probabilistic quantity. We will do so on the Theopylline model with the included example data in
Pumas®. Let’s start by defining a one-compartment model and fitting it using Bayesian estimation against
the example data. This looks like:

using Pumas, Quadrature, KernelDensity, Optim, Plots, StatsPlots
# Read the data
data = read_pumas(example_data("THEOPP"))

m_diffeq = @model begin
@param begin

𝜃 ∈ VectorDomain(3,init=[30, 0.9, 1.0], lower=zeros(3), upper = [50.0, 1.0, 3.0])
Σ ∈ PDiagDomain(init=[1.70385E-02, 8.28498E-02])

end
@random begin
η ~ MvNormal(Matrix(I,2,2))

end
@pre begin
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Vc = 𝜃[1]
Ke = 𝜃[2]
Ka = 𝜃[3]
CL = Ke * Vc

end
@vars begin
conc = Central / Vc

end
@dynamics Depots1Central1
@derived begin
dv ~ @. Normal(conc, sqrt(conc^2 *Σ.diag[1] + Σ.diag[end]) + eps())

end
end

param = init_param(m_diffeq)
ftbayes = fit(m_diffeq, data, param, Pumas.BayesMCMC(), nsamples = 1000)
chns = Pumas.Chains(ftbayes)
plot(chns) # Plot the posterior distributions.

A plot of the posterior distributions for the 𝜃 terms is given in Figure 4 . Given these Bayesian estimates,
we can do one of two things to get uncertain parameter estimates. One way is to directly use the Kernel
Density Estimate (KDE) to reinterpret the chains into probability distributions. This is done as follows:

posts_dists = (𝜃 = [kde(chns.value.data[50:end,i,1]) for i in 1:3], Σ = param.Σ, )

This is exactly the same as how the density is shown in Figure 4. However, one can also simplify the
distributions by using a maximum likelihood fit against a standard distribution. For example, we can find
the best fitting normal distributions for our parameters using the fit overloads from Distributions.jl as
follows:

posts_dists = (𝜃 = [fit(Normal,chns.value.data[50:end,i,1]) for i in 1:3], Σ = param.Σ, )

We will continue the tutorial using these distributions for simplicity, though either will give similar results.
Note that to stabilize the distributions we chopped off the earliest part of the chain, a procedure known as
burn in to reduce the effect of the chain’s random starting guess [8, 14, 25, 5, 23].

Now let’s find the starter dose for which, on average given the estimated uncertainty in the population
parameters, has the best chance of having an AUC around 30 in the first five hours. To do so, we make our
observable be the AUC calculation using the NCA.jl module included in Pumas®:

function g(obs)
ncasub = NCA.NCASubject(obs[:conc], obs.time)
NCA.auc(ncasub, interval = (0.0, 5.0))

end

Next we design a new model which makes the maximum and minimum allowed values for the parameters
the same as the maximum and minimum of the estimated Bayesian posteriors (to improve the Koopman
calculation) and use Optim.jl to find the dose whose average AUC is 30.

m_diffeq2 = @model begin
@param begin

𝜃 ∈ VectorDomain(3, lower=[minimum.([chns.value.data[50:end,i,1] for i in 1:3])...],
upper=[maximum.([chns.value.data[50:end,i,1] for i in 1:3])...])

Σ ∈ PDiagDomain(init=[1.70385E-02, 8.28498E-02])
end
@pre begin
Vc = 𝜃[1]
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Ke = 𝜃[2]
Ka = 𝜃[3]
CL = Ke * Vc

end
@vars begin
conc = Central / Vc

end
@dynamics Depots1Central1
@derived begin
dv ~ @. Normal(conc, sqrt(conc^2 *Σ.diag[1] + Σ.diag[end]) + eps())

end
end

function f(dose)
subject = Subject(events=DosageRegimen(dose,time=0))
exp_koop = expectation(g, KoopmanExpectation(HCubatureJL()),

m_diffeq2,subject,posts_dists,
iabstol=1e-2, ireltol=1e-2).u

(exp_koop - 30)^2
end
using Optim
@time res = Optim.optimize(f,0.0,500.0,abs_tol=0.1)
@show res.minimizer, f(res.minimizer)

The optimization suggests that the optimal dose to choose to achieve an AUC of 30, respecting the long
uncertainty tails in the parameter estimates, is approximately 311. The total time for the optimization was
approximately 0.05 seconds.

For reference we can consider the time against Monte Carlo. Accurate gradients are required in order for the
optimization to be stable, and thus the optimization procedure needs more digits of accuracy that required
by the user. Thus an optimization of the AUC to two digits requires at least 3 stable digits. We find that
needs approximately 50000 ODE solves via Monte Carlo, via the code:

@time mean(map(1:50000) do idx
sample_parmas = (𝜃 = rand.(posts_dists.𝜃), Σ = param.Σ, )
g(simobs(m_diffeq2,data[1],sample_parmas))

end)

which in three runs produced [36.41,36.45,36.47], showing the 3rd digit is almost stable. However, the time to
calculate this estimate is approximately 1.1 seconds, meaning the entire uncertain dosage optimization
with the Koopman expectation is faster than accurately calculating the expectation using
Monte Carlo at one point! We can then see the total effect when trying to optimize a dose with respect
to uncertainty:

function f2(dose)
subject = Subject(events=DosageRegimen(dose,time=0))
exp_koop = mean(map(1:50000) do idx

sample_parmas = (𝜃 = rand.(posts_dists.𝜃), Σ = param.Σ, )
g(simobs(m_diffeq2,data[1],sample_parmas))

end)
(exp_koop - 30)^2

end
@time res = Optim.optimize(f2,0.0,500.0,abs_tol=0.1)
@show res.minimizer, f2(res.minimizer)
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This finds the optimal dose to be around 302 before the optimizer exits due to the stochastic variation of
the objective function (reaching a final loss of approximately 41, as opposed to the previous < 1𝑒 − 8).
Multiple runs of the optimizer may be required as the stochastic objective can cause the optimizer to have
non-deterministic behavior. In addition, it took approximately 8.5 seconds, or around 170x as long as the
Koopman method while not attaining the same accuracy. Because this is done purely by reducing the number
of ODE solves required to calculate the expectations, it is expected that such gaps continue to exist as models
and data get more expensive to simulate and estimate.

5 Discussion
As personalized precision dosing becomes more commonplace, efficient and robust methods for optimizing
dosing with respect to probabilistic outcomes will become more central to pharmacometric practice. As
personalized computations become pervasive, more accurate models will be required, and the computations
will need to migrate to the patient, living on embedded or mobile devices with little compute power. In
this manuscript we demonstrated how utilizing the Koopman expectation can accelerate the computation
50x-200x over Monte Carlo while giving numerical error bounds for improved clarity of the results. This
methodology is implemented with the high performance differential equation solvers of DifferentialEqua-
tions.jl within the Pumas® pharmacometrics suite so that existing models can automatically be compatible
with the accelerated computation. Being a pure Julia software stack, this methodology can compile to mo-
bile devices like ARM for direct deployment to patients. Subsequent studies will detail the effect of this
methodology in real-world scenarios through its effect on the Lyv (www.lyv.ai) dosing system.
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Figure 4: Posterior distributions and MCMC Chains obtained using HMC in Pumas® for bayesian estimation
of parameters
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