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In  viral  infections  often  multiple  related  viral  strains  are  present,  due  to  coinfection  or                

within-host  evolution.  We  describe  Haploflow,  a  de  Bruijn  graph-based  assembler  for   de              

novo  genome  assembly  of  viral  strains  from  mixed  sequence  samples  using  a  novel  flow                

algorithm.  We  assessed  Haploflow  across  multiple  benchmark  data  sets  of  increasing             

complexity,  showing  that  Haploflow  is  faster  and  more  accurate  than  viral  haplotype              

assemblers  and  generic  metagenome  assemblers  not  aiming  to  reconstruct  strains.            

Haplotype  reconstructed  high-quality  strain-resolved  assemblies  from  clinical  HCMV          

samples  and  SARS-CoV-2  genomes  from  wastewater  metagenomes  identical  to  genomes            

from   clinical   isolates.   
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Due  to  co-infection  or  within  host  evolution,  in  viral  infections  closely  related  strains,  or                

haplotypes,  might  be  present,  with  high  average  nucleotide  identity  (ANI) 1  to  one  another 2–5 .               

Modern  sequencing  technologies  can  capture  this  variation  and  computational  assembly            

techniques  reconstruct  the  individual  genomes  from  the  resulting  data.  Currently  there  are              

predominantly  two  types  of  methods  for  this  problem,  viral  haplotype  assemblers 6,7  and              

general  (meta)genome  assemblers 8–12 .  Assembly  of  individual  strains  is  very  difficult,            

especially  if  variation  is  low  and  few  reads  span  varying  sites,  resulting  in  highly  fragmented                 

strain   genome   reconstructions   or   consensus   assemblies 13,14 .   

  

(Meta)genome  assemblers  usually  represent  read  data  initially  as  a  deBruijn  (kmer)  graph  and               

haplotype  assemblers  use  string  graphs 15–18 .  String  graphs,  while  being  computationally  more             

expensive  to  construct 19 ,  due  to  overlap  calculation  for  all  read  pairs,  have  the  advantage  of                 

detecting  mutations  that  co-occur  on  a  single  read 6 ,  while  for  deBruijn  graphs,  this  is  limited                 

to  mutations  occurring  within  the  specified   k -mer  length 20 .  String  graphs  are  thus  more               

sensitive  in  matching  mutations  to  strains.  If  the  strains  have  long  stretches  of  identical                

sequences,  co-occurrences  may  not  happen,  which  typically  is  then  solved  by  returning              

fragmented  genome  assemblies,  where  contigs  are  split  between  consecutive  mutations  that             

cannot  be  assigned  to  individual  strains.  As  more  contextual  information  is  lost  in  the                

deBruijn  graph,  mutations  appear  as  “bubbles”  in  the  graph,  where  consecutive  vertices  are               

connected  by  more  than  one  edge 21,22 .  (Meta)genome  assemblers  typically  consider  these             

bubbles  as  errors  and  follow  different  approaches  for  their  resolution 22 .  The  popular  SPAdes               

assembler  only  considers  one  path  of  the  bubble,  and  thus  loses  the  information  of  the  second                  

strain  and  reconstructs  the  dominant  strain 9,13,23 .  MEGAHIT  instead  terminates  contigs            

prematurely  if  a  bubble  is  encountered 8 .  This  leads  to  fragmented  assemblies  in  the  presence                

of   closely   related   strains 13 .   

We  here  describe  Haploflow,  a  new  method  and  software  for  the  de  novo,  strain-resolved                

assembly  of  viral  genomes,  which  overcomes  the  problems  for  both  types  of  methods,  i.e.                

low  speed  versus  loss  of  strain-specific  information,  by  using  information  on  differential              

coverage  between  strains  to  deconvolute  the  assembly  graph  into  strain  resolved  genome              

assemblies.  Haploflow  thus  does  not  require  reads  spanning  multiple  variable  sites  for  strain               

resolved  assembly  of  low  divergent  haplotype  populations.  As  it  is  based  on  deBruijn  graphs                

it  approaches  the  runtime  behaviour  of  modern  metagenome  assemblers.  We  demonstrate  the              
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ability  of  Haploflow  to  resolve  strains  fast  and  accurately  on  multiple  data  sets,  including  a                 

low  complexity  HIV  strain  mixture  to  a  complex,  simulated  virome  sample  consisting  of  572                

viruses  with  substantial  strain-level  variation,  varying  abundances  and  genome  sizes  as  well              

as   two   data   sets   of   clinical   human   cytomegalovirus   (HCMV)   and   SARS-CoV-2   data.   

Results   

We   next   describe   the   algorithm   for   creating   and   manipulating   the   assembly   graph   and   the   

flow   algorithm   that   gave   Haploflow   its   name.   

deBruijn   and   unitig   graph   creation   

The  input  to  Haploflow  is  a  sequence  file  including  read  sequences  and  specifying  the  k-mer                 

size  for  constructing  the  deBruijn  graph.  Optionally,  the  lowest  expected  strain  abundance  (or               

error  rate )  can  be  specified,  leading  to  removal  of  more  rare  kmers  from  the  graph,  for  graph                   

simplification.  Setting  the   error-rate  size  too  low  possibly  makes  the  unitig  graph  and               

subsequent  assembly  more  complex,  while  a  too  high  value  will  prevent  low  abundant  strains                

from   being   assembled.   

  

First,  a  deBruijn  graph 21  is  created  from  the  reads,  using  ntHash 24  for  kmer  hashing.  Given  the                  

reads  ,  the  deBruijn  graph   contains  all  substrings  of  length   k   r , .., }R = { 1 . rn      V , E, k)G = (          

of   R   as  vertices   V  and  two  vertices   u  and   v   are  connected  with  an  edge  if  the  prefix  of   u                       

overlaps  with  the  suffix  of  length    of   v  or  vice  versa 25 ,  i.e.        k − 1        

.  In  addition,   k- mer  counts  for  every u, )   v  u  v  ( v ∈ E ⇔ u 1...k 1− =  2...k ⋁  2...k =  1...k 1−        

encountered  kmer  are  stored  and  all  weakly  connected  components  (called  CCs,  a  set  of                

vertices  that  are  connected  directly  or  indirectly  to  each  other  in  the  graph)  of  the  graph  are                   

calculated.  The  connected  components  are  found  with  repeated  depth-first  searches,  until             

every  vertex  has  been  visited  and  its  connected  component  set.  Afterwards,  CCs  are               

transformed  individually  into  condensed  versions  of  deBruijn  graphs,  so-called  unitig  graphs,             

where  linear  paths  of  vertices,  having  only  one  ingoing  and  one  outgoing  edge,  are  collapsed                 

into   one   vertex.   

  

This   unitig   graph   has   the   following   properties:     
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a)  Every  remaining  vertex  is  a  junction,  having  more  than  one  ingoing  or  outgoing  edge  or                  

being  a  source  or  sink.  This  means  that  all  variation  is  found  in  vertices,  all  non-unique                  

sequences   (i.e.   occurring   in   multiple   haplotypes)   are   found   in   edges.   

b)  The  unitig  graph  is  a  homeomorphic  image  of  the  input  deBruijn  graph,  disregarding  error                 

correction.  This  means  that  no  information  is  lost  and  the  original  deBruijn  graph  could  be                 

reconstructed.   

  

When  constructing  this  unitig  graph,  for  each  connected  component,  so-called  junctions,             

vertices  having  a  different  in-  from  out-degree,  or  an  in-  or  out-degree  of  more  than  one  in  the                    

de  Bruijn  graph  are  identified  with  a  depth-first  search.  These  will  be  the  vertices  of  the  new                   

unitig  graph,  and  their  kmers  are  maintained  (Supplementary  Fig.  S1).  The  sequence  of  all                

the  traversed  kmers  is  added  to  the  connecting  edge  and  we  define  the  length  of  an  edge  as                    

the  length  of  this  sequence  in  base  pairs.  Starting  from  any  junction,  the  next  junction  in  the                   

deBruijn  graph  is  searched,  passing  vertices  with  exactly  one  ingoing  and  one  outgoing  edge                

until  the  next  junction  is  found.  Since  all  junctions  are  guaranteed  to  be  searched  and  the                  

transformation  is  deterministic,  the  choice  of  starting  junction  does  not  matter.  When  the  next                

junction  is  found,  the  coverage  of  all  the  traversed  edges  is  averaged  and  checked  versus  a                  

threshold  based  on  the   error  rate  (Supplementary  Fig.  S2).  If  it  is  above,  the  target  junction  is                   

also  added  as  a  vertex  to  the  unitig  graph  and  an  edge  with  the  (averaged)  coverage  value  as                    

the  edges  coverage  is  added  between  the  two  vertices.  If  the  coverage  is  below  the  threshold,                  

then  neither  the  target  vertex  nor  the  edge  are  created  and  the  next  outgoing  edge  of  the                   

source  is  considered.  This  is  repeated  until  all  junctions  have  been  searched,  such  that  no                 

vertices  with  in-degree  =  out-degree  =  1  are  remaining  (Figure  S1).  The  resulting  unitig  graph                 

is  usually  of  drastically  reduced  size  in  comparison  to  the  original  graph,  with  sometimes  less                 

than  0.01%  of  vertices  remaining.  All  linear  paths  of  the  original  graph  are  condensed  into                 

single   edges   that   represent   stretches   of   unique   contig   sequences.     

  

For  every  unitig  graph  a  kmer  coverage  histogram  is  built  (Fig.  S2).  These  histograms  reveal                 

several  key  properties  on  our  data  sets:  First,  the  coverage  of  reads  belonging  to  one  genome                  

is  approximately  normally  distributed  around  the  “real”  coverage  of  that  genome 19,20  If              

multiple  sufficiently  distinct  (in  terms  of  average  nucleotide  identity)  genomes  are  present  in               

a  single  unitig  graph,  then  all  of  them  will  have  a  corresponding  peak  in  the  histogram.  The                   
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longer  a  genome,  the  more  different  kmers  it  includes,  and  accordingly,  the  higher  the  peak.  If                  

genomes  are  very  closely  related,  then  the  peaks  will  consist  of   k -mers  that  are  unique  to  the                   

individual   strains   and   there   will   be   another   peak   for   the   common    k -mers.     

  

Haploflow  uses  these  coverage  histograms  as  indication  of  the  putative  number  of  genomes 26               

and  their  size  relation  as  well  as  for  error  correction.  Every  read  error  will  create   k  erroneous                   

kmer  vertices  in  the  deBruijn  graph 27,22 ,  with  low  coverage  in  comparison  to  the  real  coverage                 

cov  of  the  genomes.  Since  sequencing  errors  are  rare  in  Illumina  reads,  most  erroneous  kmers                 

will  only  appear  once 28,29 ,  with  fewer  kmers  appearing  multiple  times,  creating  an              

exponentially  decreasing  curve  in  the  kmer  histogram.  This  information  is  factored  into  the               

error  correction  with  too  rare   k -mers  being  removed  (red  line,  Figure  S2).  The  exact  method                 

and  values  used  for  error  correction  can  be  customized  by  the  user,  but  by  default,  all   k -mers                   

with  a  coverage  less  than  the  first  inflection  point  of  the  coverage  histogram  are  filtered  and                  

every   k -mer  which  has  less  than  2%  of  the  coverage  of  its  neighbouring   k -mers.  This                 

parameter  can  be  increased  when  dealing  with  long  read  data  to  reflect  the  higher  number  of                  

errors   in   current   long   read   technologies.   

Assembly   using   the   flow   algorithm   

In  the  second  stage  the  algorithm  operates  on  the  unitig  graph.  It  infers  and  returns  a  set  of                    

contigs  based  on  paths  of  similar  coverages  throughout  the  graph.  The  flow  algorithm               

consists  of  three  steps  that  are  repeated  until  the  whole  graph  has  been  resolved  into  contigs:                  

(i)  finding  paths  through  the  graph,  (ii)  assigning  flow  values  to  them,  and  (iii)  determining                 

the   path   sequence.   

  

In  the  first  step,  the  source  vertex  (with  an  in-degree  of  0)  with  the  highest  coverage  is                   

selected  from  the  unitig  graph.  Starting  from  this  source,  a  modified  Dijkstra’s  algorithm 30  is                

applied,  which  identifies  the  fattest  path  from  a  source  to  sink  (a  vertex  having  an  out-degree                  

of  0)  based  on  edge  coverages  (Alg.  1,  Fig.  1).  The  fatness  of  a  path  is  defined  by  the                     

minimal  fatness  of  the  edges  on  the  path.  The  fatness  of  an  edge  is  determined  as  the                   

minimum  of  its  coverage  and  the  fatness  of  the  path  from  the  source  until  the  current  edge 31                   

and  can  also  be  called  the  “capacity”  of  the  edge.  The  fattest  path  from  a  source  to  a  sink  is                      
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then  determined  by  following  the  edges  maximising  fatness  until  the  sink  is  found.  All  edges                 

on  this  path  are  then  marked  with  a  path  number.  Subsequently,  the  coverage  for  all  edges  on                   

this  path  are  reduced  by  the  path  fatness,  the  next  source  is  selected  and  the  previous  steps  are                    

repeated   until   no   edges   with   coverage   remain.   

  

Likely  due  to  technical  issues,  such  as  amplification  biases 32  and  read  errors 33 ,  and  biological                

structures  such  as  genomic  repeats 34 ,  coverages  do  not  follow  a  normal  distribution  globally               

and  consequently  some  consecutive  edges  in  the  assembly  graph  may  exhibit  steep  changes               

in  coverage.  This  is  the  reason  why  Haploflow  uses  a  two-step  procedure  for  path  finding:                 

First,  paths  are  found  through  the  graph  as  described  before.  But  instead  of  directly  returning                 

contigs  for  these  paths,  these  paths  are  only  putative,  meaning  that  all  paths  and  changes  to                  

the   graph   are   temporary   first.   

The  algorithm  of  Haploflow  is  then  able  to  handle  heterogeneous  coverages  across  genomes,               

e.g.  highly  pronounced  in  amplicon  data  or  sequence  data  with  high  error  rates,  by  using  the                  

local,  not  global  coverage  distribution,  and  not  absolute  coverage,  but  relative  coverage,  i.e.               

the  only  assumption  is  that  the  ratio  between  haplotypes  is  somewhat  conserved.              

Additionally,  putative  paths  can  get  removed,  if  too  many  of  its  edges  are  already  part  of  a                   

previous  putative  path  (Supplementary  Methods).  If  a  path  consists  almost  only  of  edges  that                

have  been  used  before,  it  is  an  indicator  that  these  paths  would  lead  to  duplicated  contigs.                  

Finally,  this  results  in  a  graph  where  all  edges  are  marked  with  one  or  more  paths  they  are                    

assumed   to   be   on.   
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Figure  1 :  Flow  chart  of  the  Haploflow  algorithm  and  its  two  parts:  First  the  construction  of                  

the  deBruijn  graph  and  operations  thereon,  namely  splitting  it  by  connected  components  and               

calculating  coverages.  Then  the  creation  of  the  unitig  graphs  per  CC  and  the  assembly                

process  consisting  of  calculating  the  thresholds  and  the  coverage  histograms  and  the  putative               

paths  through  the  graphs.  Next  is  the  calculation  of  the  concrete  flows  and  thereby  the                 

generation  of  the  contigs  and  finally  the  cleaning  of  the  graph  and  the  generation  of  the                  

assembly  graphs.  As  intermediate  output  the  assembly  graph  is  created  during  every  step               

(bottom   left).   
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Alg.  1:   The  adapted  Dijkstra  algorithm  used  in  Haploflow  to  find  fattest  paths  through  the                 

unitig  graph.  Instead  of  determining  the  shortest  paths  from  the  source  to  all  vertices,  this                 

algorithm  determines  the  fattest  path.  The  fatness  is  initialised  as  0  for  all  vertices  but  the                  

source  and  then  the  graph  is  searched  using  a  breadth-first  search  and  based  on  the  fact  that                   

the  fattest  path  from  a  source   s   to  a  sink   t  is  based  on  the  edge  with  the  lowest  coverage  along                       

this   path   (lines   9   to   12).   

  

In  the  second  part  of  the  path  finding  we  start  again  from  the  source  with  the  highest                   

coverage.  Since  we  have  all  edges  marked  with  the  path  that  they  are  on,  we  can  select  the                    

edge  on  the  same  path  which  is  farthest  away  from  our  source  and  calculate  the  fattest  path                   

from  the  source  to  this  sink.  If  Haploflow  is  not  able  to  resolve  the  fatness  unambiguously,                  
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for  example  because  two  outgoing  edges  have  almost  the  same  fatness,  then  the  path  is                 

terminated  in  this  vertex.  This  is  to  prevent  formation  of  chimeric  contigs,  because  locally                

two  strains  might  have  similar  coverages.  For  the  final  path,  a  corresponding  contig  is                

returned  and  the  coverage  reduced  permanently  (Supplementary  Methods).  Then  all  edges             

with  capacity  0  and  all  vertices  without  any  edges  are  removed  and  the  flow  algorithm  started                  

anew  from  the  source  vertex.  This  procedure  is  repeated  until  the  graph  does  not  have  any                  

edges   remaining.   

Haploflow  has  multiple  parameters  that  can  be  set  to  improve  the  assembly,  if  more                

information  is  given.  If  no  additional  information  is  given,  Haploflow  has  default  settings  that                

usually  already  provide  high  quality  assemblies.  All  the  evaluations  in  this  article  were               

performed  using  these  default  parameters,  i.e.  a  value  for   k  of  41,  and  an   error-rate  of  0.02.                   

The  value  of   k  =  41  was  chosen  since  too  small  (in  comparison  to  read  lengths)  values  for   k                     

lead  to  more  ambiguities  and  a  higher   k  might  lead  to  fragmented  assemblies.  If   k  does  not                   

exceed  50%  of  read-size,  the  assemblies  are  of  comparable  quality.  The  error-rate  parameter               

was  set  to  0.02,  because  this  is  the  value  assumed  to  be  the  upper  bound  of  errors  in                    

short-read  sequencing 35  and  can  be  increased  when  dealing  with  more  error-prone  reads  like               

those   from   PacBio   or   Oxford   Nanopore.   

Additional  parameters  include  a  setting  for  detecting  strains  with  very  low  absolute              

abundance  ( strict ),  for  data  sets  with  exactly  two  strains  ( two-strain ),  as  well  as  an                

experimental  mode  for  highly  complex  data  sets  with  clusters  containing  five  or  more  closely                

related   strains.   

SARS-CoV-2   clinical   and   wastewater   metagenome   data   

We  reconstructed  viral  haplotypes  using  Haploflow  from  17  clinical  SARS-CoV-2  samples             

sampled  in  Northrhine-Westphalia,  Germany  (DUS,  5  Illumina  short-read  samples)  and            

Madison,  Wisconsin  (WIS,  6  Illumina  short-read  and  6  Oxford  Nanopore  long-read  samples).              

After  correcting  for  PCR  amplification  and  sequencing  errors  (Supplementary  Methods),            

Haploflow  identified  two  strains  in  nine  samples,  consistent  with  in-sample  variation 36–38 .  The              

assembled  contigs  were  assessed  with  QUAST 39  using  the  Wuhan-Hu-1  isolate  strain  (RefSeq              

NC_045512.2)  as  reference  genome.  For  all  samples,  Haploflow  produced  contigs  spanning             

the  complete  genome,  in  13  cases  as  a  single  contig.  Haploflow  reconstructed  the  consensus                

genome  sequence(s)  found  in  GISAID 40  with  almost  100%  identities  as  the  major  strain  -                
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from  both  Illumina  and  MinION  data  generated  for  all  WIS  samples  (Fig.  2).  For  the                 

Wisconsin  strains,  which  were  passaged  for  up  to  two  rounds  in  cell  cultures,  the                

reconstructed  minor  strains  from  short  read  data  had  more  evolutionary  divergences.  In              

comparison  to  calls  from  the  variant  caller  Lofreq 41 ,  (Supplementary  Methods),  which             

performs  particularly  well  on  mixed  strain  viral  data 14 ,  both  identified  17  (65.4%)  of  overall                

26  identified  variant  sites  (mutations  and  up  to  2bp  indels).  Interestingly,  most  of  these  are                 

C->T  transitions,  indicating  a  tendency  to  alter  genome  composition 42  (Supplementary  Table             

S6).  In  addition,  Haploflow  identified  three  longer  deletions.  Five  (19.2%)  “unique”  LoFreq              

variants  are  located  in  error-prone  regions  (homopolymeric  or  strand  biased)  or  at  the  very                

end  of  the  genome.  Four  further  low  frequency  sites  (<5%,  15.4%)  were  found  by  Haploflow                 

and   were   also   among   low   frequency   Lofreq   predictions.   

  

  

Figure  2 :  Phylogenetic  relationships  of  reconstructed  strain  genomes  inferred  with            

Raxml 54 , 55 ,  including  closely  related  (ANI  greater  than  99.99%,  determined  with  MASH 56 )             

strains  from  GISAID 57 .  Strains  from  the  same  sample  are  indicated  by  color,  and  “major”                

and  “minor”,  based  on  their  inferred  abundances.  Evolutionary  events,  including  mutations             

and   indels   are   shown   on   edges.   
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In  a  study  of   eight  shotgun  metagenome  samples  of  sewage  from  the  San  Francisco  Bay                 

Area 43 ,  the  authors  manually  assembled  consensus  SARS-CoV-2  genomes  from  seven            

samples  and  subsequently  called  variants  with  inStrain 44 .  A  comparison  to  common  variants              

of  clinical  isolate  genomes  showed  that  most  of  the  SNPs  found  in  the  data  set  could  be                   

detected  in  the  isolate  genomes,  with  the  more  (>10%)  abundant  ones  found  in  strains  from                 

California  or  the  US.  This  and  the  abundance  distribution  of  some  SNPs  over  time  suggested                 

that  the  data  set  captured  real  genomic  variation  and  that  different  SARS-CoV-2  strains  were                

present  in  this  data  set.  Haploflow  with  the  option   strict  1  (reduced  error  correction  threshold                 

to  account  for  shallow  sequencing  depth)  and  scaffolding  ( Supplement) ,  assembled            

full-length  SARS-CoV-2  genomes  for  the  same  seven  samples,  recovering  two  strains  for  six               

of  them  (Supplementary  Table  S8).  Strikingly,  for  all  assemblies  identical  genomes  of  clinical               

SARS-CoV-2  isolates  were  identified  in  the  GISAID  database  using  minimap 45   v2.17             

(Supplementary  Table  S8),  mostly  from  samples  obtained  in  the  U.S.  (5),  and  California  (3),                

highlighting  the  ability  of  Haploflow  to  recover  high  quality,  strain-resolved  viral  haplotype              

genomes   from   metagenomic   data.   

Performance   evaluation   

We  evaluated  Haploflow  on  three  simulated  data  sets  with  increasing  complexity:  a  mixture               

of  three  HIV  strains  represented  by  error-free  simulated  reads,  multiple  in-vitro  created              

mixtures  with  different  proportions  of  two  HCMV  strains  sequenced  with  Illumina  HiSeq 46 ,              

and  a  simulated  virome 47,48  data  set  of  572  viruses,  with   417  genomes  in  unique  taxa  and  155                   

genomes  in  common  strain  taxa  with  up  to  eleven  closely  related  strains,   to  assess                

Haploflow’s  ability  to  assemble  complex,  larger  data  sets.  Finally,  we  assembled  HCMV              

genome  data  from  clinical  samples  collected  longitudinally  over  time  from  different             

patients 49 ,  to  characterize  the  within-  and  across  patient  genomic  diversity  of  viral  strains,               

including  also  larger  genomic  differences  between  individual  strains  in  mixed-strain            

infections,  which  has  not  been  possible  so  far.  The  evaluation  was  performed  using               

metaQUAST 50  v.5.0.2,  which  is  commonly  used  to  evaluate  metagenome  assemblies  and             

provides  useful  metrics  for  measuring  completeness  (genome  fraction),  continuity  (NGA50,            

largest  alignment)  and  accuracy  (mismatches  per  100kb,  duplication  ratio)  of  assemblies  and              

has  specific  options  for  analyzing  strain-resolved  assemblies.  In  addition,  we  calculated             
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metrics  for  assessing  strain-resolved  assembly;  the  strain  recall,  specifying  the  fraction  of              

correctly  assembled  strains  (more  than  90  (80)%  genome  fraction  and  less  than  1  (5)                

mismatches/kb),  the  strain  precision,  specifying  the  fraction  of  correctly  assembled  strain             

genomes  of  all  provided  genome  assemblies  (true  positives  defined  as  in  recall;  total  number                

of  genome  assemblies  estimated  as  number  of  ground  truth  genomes  with  at  least  one                

mapping  contig  *  duplication  ratio),  as  well  as  the  composite  assembly  quality  score,  we                

previously  defined 14 .  This  composite  score  takes  six  common  assembly  metrics  (genome             

fraction,  largest  alignment,  duplication  ratio,  mismatches  per  100  kb,  number  of  contigs  and               

NGA50),  normalises  them  in  the  range  of  all  results,  such  that             

 for  genome  fraction,  largest  core(method) s =  value(method)  min(value(m ∈ methods))−
max(value(m ∈ methods))  min(value(m ∈ methods))−      

alignment  and  NGA50  and  for  the      core(method) s =  max(value(m ∈ methods))  value(method)−
max(value(m ∈methods))  min(value(m ∈ methods))−   

other  metrics  and  then  weighs  with  a  weight  of  0.3  for  genome  fraction  and  largest  alignment,                  

respectively   and   a   weight   of    0.1   for   the   other   metrics.   

HIV-3   in   silico   mixture   

HIV,  the  human  immunodeficiency  virus,  is  a  single-stranded  RNA  virus  with  an              

approximately  9.5  kb  genome  that  infects  humans,  causing  AIDS  (acquired            

immunodeficiency  syndrome).  HIV  evolves  rapidly  within  the  host  and  may  also  present  as               

multi-strain  infections 51,52 .  The  three  HIV-1  strains  89.6,  HXB2  and  JR-CSF,  which  are              

commonly  used  to  evaluate  viral  haplotype  assemblers 53,54 ,  were  downloaded  from  NCBI             

RefSeq 55 ,  mixed  in  the  proportions  10:5:2  and  error-free  reads  with  a  length  of  150bp  and                 

depth  of  20,000  created  with  CAMISIM 56  and  the  wgsim  read  simulator 57 .  These  genomes               

differ  mainly  by  SNPs  and  have  an  average  nucleotide  identity  (ANI)  of  ~95%.  This                

threshold  was  chosen,  because  experiments  on  MEGAHIT  and  metaSPAdes  showed  that             

genomes   more   closely   related   than   95%   will   not   be   resolved 56 .   

We   benchmarked   the   quality   of   strain-resolved   Haploflow   assemblies   for   the   three   strain   HIV   

data   against   five   other    de   novo    assemblers   (SPAdes,   metaSPAdes,   megahit,   PEHaplo,   

SAVAGE   in    de   novo    mode)   with   metaQUAST   v.5.0.2,   using   multiple   parameter   settings,   if   

defaults   settings   were   undefined   (QuasiRecomb,   PEHaplo).   Furthermore,   we   assessed   five   

reference-based   assemblers   (GAEseq 58 ,   SAVAGE   ref-based   mode,   PredictHaplo,   

QuasiRecomb   and   CliqueSNV),   which   were   provided   with   one   strain   genome   for   assembly.   
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Of   all   evaluated    de   novo    assemblers,   Haploflow    performed   best   across   all   metrics   and   the   

composite   assembly   score   ( Figure   S2 ) ,   assembling   all   three   strains   almost   completely   (more   

than   90%),   with   less   than   1   mismatch/kb,   providing   no   false   positive   strain   assemblies   -   that   

for   some   methods   (QuasiRecomb)   reached   several   thousand   strains   -   and   with   more   than   

double   the   assembly   contiguity   (NGA50)   than   the   second   best   method   (PEHaplo).   Haploflow   

was   the   only   method   assembling   all   strain   genomes   into   complete   contigs.   Also   in   

comparison   to   the   reference-based   assemblers,   Haploflow   performed   best.   SAVAGE   in   

reference-based   mode,   run   on   a   subsample   of   the   data,   performed   similarly   well   in   five   of   the   

eight   metrics,   however,   provided   a   substantially   more   fragmented   assembly   (lower   NGA50,   

more   contigs)   and   a   strain   genome   with   more   mismatches.   Haploflow   also   closely   estimated   

the   true    underlying   strain   proportions,   with   predicted   coverages   of   10,371   for   HIV   89.6,   

5,372   for   HIV   HXB2   and   1,745   for   HIV   JR-CSF.   

HCMV   in   vitro   mixtures   

We   next   evaluated   Haploflow   on   six   lab-created   mixtures   of   two   HCMV   strains   sequenced   

with   Illumina   MiSeq 59 .   HCMV   is   one   of   the   largest   human   pathogenic   viruses,   causing   severe   

illness   in   immunocompromised   patients   and   infants,   and   possessing   a   double   stranded   DNA   

genome   of   more   than   220   kb 60 .   The   data   set   includes   two   different   strain   mixtures,   denoted   

“TA”   (strains   TB40   and   AD169,   97.9%   ANI)   and   “TM”   (strains   TB40   and   Merlin,   97.7%   

ANI),   with   three   different   mixture   ratios   each   (1:1,   1:10   and   1:50),   allowing   us   to   test   the   

ability   of   assemblers   to   resolve   strains   at   varying   abundances.   We   ran   Haploflow   on   these   

data   and   compared   the   results   to   those   of   twelve   other   assemblers.   These   include   nine   

(meta)genome   assemblers   (ABySS,   IDBA,   MEGAHIT,   metaSPAdes,   Ray,   SPAdes,   tadpole,   

IVA 61    and   Vicuna 62 )   also   widely   used   for   single-cell   and   virome   data   because   of   their   

accuracies   and   speed,   and   three   specialised   viral   haplotype   assemblers   delivering   a   result   

(reference-based   SAVAGE,   VirGenA 63    and   PEHaplo).   Four   more   viral   haplotype   assemblers,   

SAVAGE    de   novo ,   PredictHaplo 64 ,   CliqueSNV 65    QuasiRecomb 46 ,   either   did   not   return  

results 14    or   were   terminated   after   ten   days   (Haploflow   on   average   required   1.5h   per   sample).   

Assemblies   were   evaluated   using   metaQUAST   v.5.0.2   with   the   benchmarking   workflow   

QuasiModo 14 ,   based   on   common   assembly   metrics,   the   composite   assembly   score,   recall   and   
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precision   in   strain-resolved   genome   assembly,   as   before,   and   the   top   performing   methods   

falling   in   the   95-100%   range   of   results   identified   for   every   metric.     

  

Of   the   12   evaluated   de   novo   assemblers,   Haploflow   scored   best   in   5   of   the   8   metrics ,   

followed   by   metaSPAdes   (best   in   2   of   8:   NGA50,   duplication   ratio),   while   PEHaplo,   tadpole,   

IDBA,   Vicuna   and   IVA   each   scored   best   for   one   metric,   respectively   (Supplementary   Table   

S2).   Haploflow   assemblies   were   of   very   high   quality,    recovering   the   most   correct   strain   

genomes   (10   of   12),   providing   the   best   strain   precision   and   composite   assembly   score   (9.34   

of   10),   highest   genome   fraction   (83.87%)   and   the   most   contiguous   assemblies   (NGA50   

62,560).   Interestingly,   the   similarly   good   NGA50   values   of   metaSPAdes   and   Haploflow   were   

obtained   in   different   ways,   for   the   former   due   to   a   more   contiguous   assembly   for   the   

abundant   strain,   while   only   Haploflow   and   the   haplotype   assembler   SAVAGE   in   

reference-mode   recovered   more   than   50%   of   the   low   abundant   strain   in   several   mixtures.   
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Figure  3 :   A:  HI  virus  genome  structure 66  and  Icarus  plots 67  for  three  HIV  strains                

reconstructed  by  Haploflow.  For  each  of  the  three  reference  genomes  there  is  one  contig               

spanning  almost  the  complete  genome.  B:  Radar  plot  of  relative  performance  with  commonly               

used  and  strain-resolved  genome  assembly  metrics  for  Haploflow  and  12  other  methods  on               

the  HCMV  benchmark  data  (best  values  are  at  100%,  see  Performance  evaluation).              

Haploflow,  in  orange,  ranks  first  in  genome  fraction,  Strain  recall,  Strain  precision  and               

Composite  score.   C:  Boxplots  with  median  and  interquartile  range  of  genome  fraction  and               

NGA50   values   across   samples   for   different   methods.   
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Simulated   virome   data   set   

To  test  Haploflows  ability  to  recover  viral  strain  genomes  from  complex  data  sets,  we                

evaluated  Haploflow,  MEGAHIT  and  metaSPAdes  on  the  simulated  virome  data  set  from  the               

Namib  desert 47 ,  which  includes  short-read  data  simulated  from  an   in-silico  mixture  of  572               

viral  genomes  created  to  assess  different  assemblers 48 .  It  was  not  possible  to  run  the                

reference-free   haplotype-assemblers  (SAVAGE,  PEHaplo)  on  this  data  set.  To  assess  the             

evolutionary  divergence  between  the  viral  genomes,  we  identified  clusters  of  similar  genomes              

using  dRep 68 ,  which  resulted  in  469  clusters  total,  out  of  which  52  clusters  had  at  least  two                   

members  with  more  than  95%  ANI  (average  nucleotide  identity),  resulting  in  417  “unique”               

genomes  and  155  genomes  in  common  strain  clusters.  The  95%  threshold  was  chosen  since                

MEGAHIT   and   metaSPAdes   are   only   able   to   resolve   genomes   less   similar   than   that 56 .   

For  the  155  common  strain  genomes,  Haploflow  correctly  assembled  13-28.6%  more             

sequence  (62.85%  genome  fraction  versus  55.58%  and  48.88%  for  SPAdes  and  MEGAHIT,              

respectively).  This  was  even  more  pronounced  for  clusters  with  genomes  of  at  least  eight-fold                

coverage,  for  which  19.8-37.5%  more  genome  sequence  was  correctly  assembled  (89.37%             

versus  74.58%  and  64.99%  for  SPAdes  and  MEGAHIT,  respectively).  For  the  less  abundant               

strains  from  these  clusters,  32.7-45.3%  more  genome  sequence  was  correctly  assembled             

(87.37%  versus  65.85%  and  60.12%  genome  fraction,  respectively).  Even  for  the  complete              

data  set  with  “unique”  genomes  and  low  abundant  genomes,  Haploflow  reconstructed             

genome  fractions  similar  to  the  MEGAHIT  and  metaSPAdes  assemblers  (72.2%  and  68.6%              

versus   66.6%   genome   fraction;   Table   S5),   which   performed   best   in   the   original   publication.     

Analysis   of   clinical   HCMV   data   

We  used  Haploflow  with  default  parameters  to  reconstruct  genomes  from  longitudinal  clinical              

samples  of  eight  HCMV  positive  patients,  who  had  multi-strain  infections 59  (Supplementary             

Table  S5).  QUAST  was  used  to  map  HaploFlow’s  contigs  against  the  consensus  strain  of  the                 

first  time  point  as  reference  genome,  as  the  exact  underlying  strain  genomes  in  the  samples                 

are  unknown.  Using  the  QUAST  output,  in  particular  the  duplication  ratio,  the  number  of                

strains  predicted  by  HaploFlow  was  determined  by  rounding  the  duplication  ratio  and  then               

clustering  the  contigs  into  that  many  clusters  using  HaploFlow’s  predicted  flow  (using              
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python's  sklearn 69   k- means  method).  For  each  of  the  clusters,  QUAST  was  re-run,  again  using                

the  consensus  as  reference  genome.  Since  the  resulting  genomes,  in  particular  the  low               

abundant  (minor)  strains,  will  inherently  be  different  to  the  consensus  to  some  degree,  only                

the  genome  fraction  is  considered  a  relevant  metric  here.  Additionally,  to  confirm  that               

HaploFlow  created  accurate  strain-resolved  contigs  instead  of  consensus  contigs,  we            

compared  clusters  from  the  same  patient  at  different  time  points  with  each  other,  finding  that                 

contigs  from  two  clusters  from  consecutive  time  points  showed  ~99.9%  ANI,  while  randomly               

matched   clusters   only   had   ~98%   ANI.   

  

For  all  patients  with  multi-strain  infections,  Haploflow  reconstructed  multiple  complete            

genomes  for  at  least  one  time  point.  For  most  patients,  sequencing  data  of  their  infection  exist                  

for  multiple  time  points  and  Haploflow  recovered  all  strains,  if  the  abundance  of  the  lower                 

abundant  strain  exceeded  6.8%,  once  as  low  as  6.1%  (Supplementary  Table  S5).  Haploflow               

reconstructed  the  genomes  of  both,  or  in  two  cases  three,  strains  infecting  the  patient.                

Haploflow  correctly  predicted  at  least  one  lower  abundant  strain  for  19  of  23  (82.6%)  time                 

points  with  multiple  strain  infections,  correctly  predicted  44  strains  of  the  total  48  strains                

(91.7%  recall)  and  only  predicted  (parts  of)  three  unconfirmed,  additional  strains  (93.2%              

precision).  Haploflow  also  reproduced  the  results  from  the  original  publication 59 ,  where  a              

strain  with  a  structurally  altered  genome  established  itself  as  dominant  over  two  consecutive               

time  points  in  patients  SCTR1  and  SCTR11,  and  also  recovered  three  distinct  strains  from  the                 

SCTR18  sample  (Supplementary  Table  S5).  The  samples  for  which  Haploflow  did  not              

assemble  a  second  strain  had  either  a  very  low  abundant  second  strain  (4%  for                

SCTR1-day91),  a  shallow  coverage  (coverage  of  22  and  38  for  SCTR1-245days  and              

SCTR3-320days)  or  a  combination  therof  (6.8%  variant  at  105  coverage  for             

SCTR1-194days).   

  

Finally,  we  tested  Haploflow  on  a  HCMV  sample  for  which  the  genotypes  and  proportion  of                 

both  strains  were  known  (Supplementary  Figure  4).  Haploflow  reconstructed  both  strains             

with  a  total  of  19  contigs,  4  for  the  high  abundant  strain  and  15  for  the  low  abundant.  The                     

high  abundant  strain  assembly  matched  the  consensus  strain  with  0.87  mismatches/100kb,  a              

NGA50  value  of  113,718  and  99.84%  genome  fraction.  The  contigs  produced  for  the  low                

abundant  strain  were  also  evaluated  using  the  consensus  sequence,  showing  94.58%  genome              
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fraction  and  an  NGA50  of  62,533.  The  largest  contig  showed  a  7,830  base  sequence  not                 

present  in  the  consensus  sequence,  but  matching  perfectly  to  another  (BE/43/2011)  HCMV              

sequence,   demonstrating   the   ability   of   Haploflow   to   accurately   phase   different   haplotypes.   

Runtime   and   memory   consumption  

Haploflow’s  run  time  depends  on  the  three  main  steps  (Fig.  1):  first  reading  in  the  read  data                   

and  building  the  deBruijn  graph.  For  this  every  read  is  split  into   k -mers,  with  a  time                  

complexity  in  O( n )  for  the  number  of  reads   n .  Since  the  maximal  number  of   k- mers  is                  

constant  in  the  number  of  reads  and  the  length  of  the  reads  with  | k |  =  (length( n )  -   k ) | n |,  it  is                   ·    

also  in  O( k ).  Next  the  graph  is  split  into  CCs  and  the  unitig  graph  constructed,  with  a  time                    

complexity  of  O( k )  using  Tarjan’s  algorithm 70 .  Finally  the  overall  complexity  of  the  assembly               

step  is  dominated  by  finding  the  paths  through  the  unitig  graph.  While  theoretically  there  is                 

an  exponential  number  of  different  paths  through  a  graph,  every  vertex  can  only  be  the  source                  

of  a  path  once  and  every  path  has  length  at  most   k ,  since  vertices  cannot  be  visited  multiple                    

times  on  the  same  path.  The  worst-case  complexity  of  the  assembly  step  is  thus  in  O( ),                  k 2  

where   k  is  the  number  of  distinct   k -mers.  In  practice,  the  number  of  paths  is  usually  limited                   

by   the   number   of   different   strains,   causing   this   step   to   also   be   linear   time   complexity.   

For  runtime  assessment  we  compared  Haploflow  to  SAVAGE  and  PEHaplo,  the  only  other               

haplotype  assemblers  able  to  process  the  HCMV  data,  though  SAVAGE  only  in              

reference-based  mode,  as  well  as  metaSPAdes  and  MEGAHIT,  which  performed  closest  to              

Haploflow  in  terms  of  the  summary  score  or  is  a  very  fast  metagenome  assembler,                

respectively  (Table  1).  On  the  HIV  data,  Haploflow  was  more  than  twice  as  fast  than                 

SAVAGE.  The  running  time  and  memory  requirements  of  Haploflow  and  metaSPAdes  were              

comparable,   while   MEGAHIT   was   most   efficient.   

On  the  HIV  three  strain  and  the  HCMV  two  strain  mixtures,  building  the  deBruijn  graph  and                  

creation  of  the  unitig  graphs  from  the  reads  dominated  the  overall  running  time.  For  the  HIV                  

data,  building  the  deBruijn  and  unitig  graphs  took  ~8  minutes  on  a  laptop  with  4  cores  and  16                    

GB  RAM.  The  resulting  single  unitig  graph  included  281  vertices  and  assembly  finished  after                

0.6  seconds.  For  the  HCMV  data,  assembly  on  the  same  laptop  required  ~100  minutes,  of                 

which   85   were   used   for   building   the   deBruijn   and   unitig   graphs   from   the   reads.   
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Table  1:   Run  time  and  memory  consumption  of  Haploflow,  SAVAGE  in  de  novo  mode                

(version  0.4.1),  metaSPAdes  (3.14)  and  MEGAHIT  (1.2.9).  Time  and  memory  is  averaged  for               

the  HCMV  mixtures.  SAVAGE  did  not  successfully  complete  on  the  HCMV  in-vitro  mixtures               

and   the   simulated   virome   data.   Values   were   calculated   using   linux’   time   command.   

  

Discussion   and   conclusions   

Viral  pathogens  can  evolve  rapidly,  leading  to  infections  with  multiple  strains  either  by               

within-host  evolution  or  multiple  infections  of  the  same  host.  Reconstructing  their  genomes              

in  a  strain-resolved  manner  can  substantially  advance  our  understanding  and  capabilities  to              

combat  the  diseases  they  cause.  It  is  also  key  for  genomic  epidemiology,  i.e.  tracing  viral                 

spread  using  genomic  information 71,72  and  genome-based  viral  phenotyping 73 .  Strains  can            

differ  in  their  phenotypes,  such  as  virulence,  resistance,  or  the  degree  of  their  immune                

resistance   to   host   immunity,   which   may   be   critical   for   the   choice   of   therapy.     

Strain-resolved   de  novo  assembly  from  short-read  as  well  as  long  read  data  generated  in  viral                 

genome  sequencing,  however,  is  also  extremely  challenging.  Haploflow  fills  a  void  between              

fast  metagenome  assemblers  not  aiming  for  strain-level  resolution,  and  viral  haplotype             
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Software/   

Dataset   

HIV   3   in   

silico   

mixture   

  HCMV   in  

vitro   

mixture   

  Simulated   

virome   

  

Metric   CPU    user   

time   

(seconds)   

Memory   

peak   

(GB)   

Avg.   CPU   

user   time   

(seconds)   

Avg.   

memory   

peak   (GB)   

CPU   user   

time   

(seconds)   

Memory   

peak   (GB)   

Haploflow   724  0.009  5,170  17.509  18,245  47.678  

SAVAGE   110,208   102.938  75,518  17.658  -   -   

PEHaplo   10,127  11.819   58,920  13.998  -  -  

metaSPAdes   1,500  1.054  42,906  65.641  25,996  23.399  

MEGAHIT   250  0.269  2,910  0.754  9,690  2.148  
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assemblers  for  small  viral  genomes  of  a  few  kb  in  size.  It  combines  the  best  of  both  worlds                    

for  strain-resolved  genome  assembly,  by  using  the  fast  algorithms  of  the  metagenome              

assemblers,  i.e.  deBruijn  graph  based  assembly,  together  with  a  specialised  flow  algorithm  for               

capturing   strain   variation,   which   allows   to   link   variants   that   do   not   co-occur   on   reads.   

Taken  together,  our  results  demonstrate  a  substantial  performance  improvement  in            

strain-resolved  assembly  for  Haploflow  in  comparison  to  sixteen  other  metagenome  and  viral              

haplotype  assemblers  evaluated  across  different  benchmark  data  sets.   The  benchmark            

experiments  on  data  sets  with  varying  numbers  of  strains  and  abundances  demonstrated  that               

Haploflow  can  handle  data  sets  with  substantial  variation  in  genomic  coverage  introduced  by               

amplicon  sequencing  and  resolved  strains  at  different  degrees  of  evolutionary  divergences             

well,  ranging  from  95%  ANI  (HIV),  over  98%  ANI  (HCMV),  to  more  than  99%  ANI                 

(SARS-CoV-2  data).   On  the  six  lab-generated  HCMV  mixed  strain  data  sets,  Haploflow  was               

top  scoring  in  the  most  metrics  (5  of  8)  in  comparison  to  twelve  other  assemblers.  This                  

performance  improvement  in  strain  recall,  strain  precision,  composite  score,  genome  fraction             

and  NGA50  was  largely  due  to  a  better  assembly  of  the  less  abundant  strains.  Except  for                  

Haploflow  and  SAVAGE   no  method  assembled  low  abundant  strains  to  50%  on  average  and                

Haploflow  had  a   far  higher  NGA50,  creating  long  contigs  rather  than  a  highly  fragmented                

assembly.  On  the  clinical  HCMV  data  tested,  Haploflow  almost  perfectly  (91.7%  recall  and               

93.6%  precision)  assembled  strains  with  variants  predicted  by  variant  callers  and  very  closely               

predicted  the  abundances  of  second  and  third  strains.  On  a   three  strain  HIV  data  set,                 

Haploflow  assembled  all  three  genomes  almost  entirely,  with  very  few  mismatches.  This  is               

reflected  in  Haploflow  scoring  top  in  all  eight  metrics,  with  a  composite  assembly  score  of                 

9.66  (out  of  10),  in  comparison  to  8.02  for  the  best   reference-based  assembler  PredictHaplo,                

and   of   6.28   for   the   best    reference-free    assembler   PEHaplo.   

Benchmarking  on  a  rather  complex  simulated  virome  data  set  with  417  taxa  with  unique                

genomes  and  155  genomes  in  common  strain  taxa  showed  that  Haploflow  successfully              

assembled  2-3  strains  for  “common  strain  taxa”  with  2-11  strains,  substantially  better  so  than                

the  state-of-the-art  metagenome  assemblers  able  to  process  these  data,   that  the  tested              

haplotype  assemblers  could  not.  This  effect  was  particularly  pronounced  for  strain  genome              

coverages  within  a  favorable  (>8)  range  for  assembly.  The  abundance  distribution  of  taxa  in                

microbial  communities  is  assumed  to  be  oftentimes  log-normal 13 ,  with  only  a  few  abundant               

and  a  long  tail  of  very  low  abundant  ones  with  consequently  low  coverages.  This  indicates                 
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that  Haploflow  is  suitable  for  processing  many  real  world  data  sets  and  characterizing  the                

more  abundant  strains,  similar  to  the  reference-based  StrainPhlan  strain-typing  software 74 .            

Finally,  Haploflow  reconstructed  multiple,  full  length  SARS-CoV-2  strains  from  a            

multi-sample  wastewater  metagenome  data  set  with  exact  matches  to  clinical  isolate  genomes              

found  in  the  GISAID  database,  highlighting  the  ability  of  Haploflow  to  recover  high  quality,                

strain-resolved   viral   haplotype   genomes   from   metagenomic   data.   

  

In  addition  to  short-read  data,  Haploflow  also  allows  processing  of  long  read  data,  which  we                 

demonstrated  on  the  SARS-CoV-2  clinical  data  sets.  For  most  applications  dealing  with  low               

viral  loads  (e.g.  the  SARS-CoV-2  sequencing  demonstrated  in  this  article),  PCR  amplification              

is  necessary  to  enrich  viral  reads.  This  naturally  limits  the  possible  maximum  read  length  to                 

the  length  of  the  PCR  product,  which  is  for  those  applications  in  the  domain  of  short-read                  

sequencing.  The  speed  of  the  Haploflow  algorithm  principally  also  allows  its  extension  to               

bacterial  data,  e.g.  by  adding  multi-core  and  multi- k   support  and  modules  for  handling               

differently  sized  and  structured  microbial  genomes.  Thus  strain-resolved  assembly  from            

metagenome  data  for  microbial  taxa  with  several  closely  related  strains  could  be  a  future                

application.     

  

Availability   of   Data   and   Materials   

The  code  of  Haploflow  is  available  on  Github  under   https://github.com/hzi-bifo/Haploflow .            

The  version  used  for  the  assemblies  in  this  publication  is  available  under  the  DOI                

https://doi.org/10.5281/zenodo.4106497 .  All  supplemental  scripts  used  are  on  Github  under           

https://github.com/hzi-bifo/Haploflow_supplementary  and  are  stored  using  publisso  along  all          

data   sets   and   performed   evaluations   with   the   DOI   TODO.   
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Supplement   

Exemplary   clarification   of   path   finding   step   realized   in   Haploflow   

In   the   unitig   graph   there   are   multiple   paths   between   a   source   and   a   sink   which   (sans   
sequencing   errors)   correspond   to   the   different   strains   present   in   a   sample.   The   choice   of   the   
correct   path   follows   the   fatness   algorithm   described   before.   There   is   another   factor   though,  
namely   the   length   of   the   fattest   path,   which   Haploflow    also    maximises.   In   Figure   S1   there   is   
exactly   one   source,   the   vertex   ACTA,   and   one   sink,   the   vertex   ATGC,   but   there   are   infinitely   
many   paths   from   ACTA   to   ATGC,   since   CTAT   to   TCTA   and   TCTA   to   CTAT   form   a   loop.   To   
prevent   this,   Haploflow   allows   every   edge   only   to   be   used    once    in   every   path   finding   step.   
This   makes   the   particular   loop   in   Figure   S1   “resolvable”,   the   number   of   paths   reduces   to   five:   
1:     with   a   fatness   of   30  CT A T AT CT A T AT T GCA → C → T → C → A  
2:   with   a   fatness   of   45  CT A T AT CT A T AC T AT T GCA → C → T → C → C → A  
3:     with   a   fatness   of   75  CT A T AT T GCA → C → A  
4:     with   a   fatness   of   25  CT A T AC T AT T GCA → C → C → A  
5:     with   a   fatness   of   25  CT A T AC T AT CT A T AT T GCA → C → C → T → C → A  
Just   going   by   the   fattest   graph,   path   3   would   get   selected,   but   this   path   is   shorter   than   all   
other   paths   and   thus   only   paths   2   and   5   can   be   selected,   out   of   which   path   2   has   the   higher   
fatness   of   45   (the   coverage   of   the   first   sequence).   The   next   longest   and   fattest   path   is   path   5   
with   a   fatness   of   25   (the   coverage   of   the   last   sequence)   and   finally   path   1   remains   with   a   
fatness   of   30.   Paths   3   and   4   do   not   exist   at   this   point,   since   the   capacity   of   all   edges   has   been   
used.   
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Suppl.  Figure  S1:  The  deBruijn  graph  (1)  and  its  corresponding  Unitig  graph  (2)  for  three                 

related  sequences  and  their  coverage  (3).  The  red   k -mers  and  edges  between  them  are  part  of                  

linear  paths  and  are  replaced  by  a  single  red  edge  in  the  unitig  graph.  The  edges  are  labelled                    

with  the  “capacity”,  the  sum  of  the  coverages  of  the  sequences  going  over  them,  in  the                  

deBruijn  graph  and  the  average  capacity  of  all  smoothed  edges  in  the  Unitig  graph  -  which  in                   
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this  case  is  the  same  as  the  original  capacity.  Some  of  the  edges  represent  one  (capacities  25,                   

30,  45),  some  two  (capacity  70  =  45  +  25)  and  some  all  (capacity  100  =  45  +  30  +  25)  of  the                         

sequences.   

Algorithmic   details   of   the   flow   algorithm   

The  fatness  of  a  path  is  defined  by  the  lowest  fatness  value  of  any  edge  along  this  path.  Since                     

the  fatness  of  an  edge  might  be  underestimated  if  the  coverage  dropped  for  edges  occurring                 

before  this  edge  in  the  path,  it  is  not  sufficient  to  just  remove  the  calculated  fatness  when                   

reducing  flow  along  a  path.  Instead,  the  coverage  of  the  source  is  set  to  0  and  for  every  other                     

edge  on  the  path  the  flow  is  reduced  to   max(capacity  -  previously_removed_flow,  0)  where                

previously_removed_flow   is  the  flow  removed  from  the  last  edge  on  the  path.  Since  it  is                 

possible  that  edges  are  used  multiple  times,  it  is  also  possible  that  there  are  paths  that  have                   

hardly  any  edges  that  are  “unique”  to  that  path.  We  call  an  edge   unique ,  if  it  is  part  of  exactly                      

one  path.  If  the  fraction  or  length  of  unique  edges  of  a  path  is  too  low,  by  default  less  than                      

500  bases,  the  path  is  removed  for  all  edges  on  which  it  is  not  unique,  to  avoid  overestimating                    

the  total  number  of  paths  in  the  graph.  Edges  with  coverage  of  0  will  get  removed,  possibly                   

producing  new  sources.  If  Haploflow  crosses  a  junction  with  two  or  more  outgoing  edges                

with  similar  coverage  values  and  cannot  make  an  informed  decision  which  is  the  higher                

abundant  path,  Haploflow  will  break  the  contig  at  this  position.  This  happens  either  if                

multiple  strains  have  very  similar  coverages  or  on  genomic  repeats.  The  exact  threshold  for                

this  break  is  derived  using  the   error_rate  and   strict/threshold   parameter:  If  the  difference  is                

less  than  the  percentage  value  given  or  the  (either  explicitly  stated  or  derived  from   strict )                 

threshold,   the   contig   is   broken.   

After  the  path  has  been  found,  the  coverage  of  all  unique  edges  on  this  path  is  reduced  to  0,                     

as  no  other  path  will  be  traversing  this  edge.  If  there  is  more  than  one  path  going  over  the                     

edge,  then  the  flow  is  reduced,  corresponding  to  the  expected  coverage  of  the  current  edge.                 

This  value  is  the  flow  removed  from  the  last  visited  unique  edge,  meaning  that  local  increases                  

and  decreases  in  coverage  are  also  captured.  If  the  coverage  of  an  edge  would  be  reduced  to                   

0,  even  though  there  are  still  paths  going  over  this  edge,  the  coverage  is  set  to  a  dummy  value                     

such  that  it  can  still  be  used.  On  the  other  hand,  if  a  path  consists  solely  of  non-unique  edges,                     

a   duplication   is   assumed   and   the   current   path   is   not   considered.   
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When  permanently  reducing  the  flow,  it  is  not  sufficient  to  remove  the  (overall)  fatness  of  the                  

path,  since  the  fatness  can  only  decrease  (or  stay  the  same)  along  a  path,  while  the  coverage                   

values  might  fluctuate,  based  on  amplification  and  sequencing  strategy.  To  circumvent  this,              

the  flow  is  reduced  by  a  “local  fatness”:  All  unique  edges  are  removed  as  described  before,                  

for  all  other  edges  either  flow  removed  from  the  last  edge  or,  if  the  value  is  higher,  of  the                     

average  per-base  removed  flow,  is  taken  as  a  baseline  and  depending  on  the  fact  whether  the                  

flow  decreased  or  increased  within  the  last  edge,  the  flow  to  be  removed  is  decreased  and                  

increased   accordingly.   If   there   would   not   be   any   flow   remaining,   a   minimal   value   is   left   over.   

  

Suppl.  Figure  S2:  log-log  kmer  coverage  histogram  for  a  sequence  sample  of  HCMV  strain                

TB40E  and   E.  coli.  This  shows  the  kmer  coverage  (or  counts)  on  the  x-axis  versus  the                  

number  of  kmers  with  that  coverage  on  the  y-axis.  Original  values  are  shown  with  the  solid                  

line,  the  cumulative  minimum  of  the  number  of  k-mers  of  a  certain  depth  with  the  dashed                  

line.  k-mers  with  a  depth  less  than  the  depth  of  the  first  k-mer  for  which  the  cumulative                   

minimum  (cum  min)  is  less  than  the  original  value  are  regarded  as  probable  erroneous  k-mers                 

(red  line).  For  example,  for  a  mixture  of   Escherichia  coli   (5,129,110  bp)  and  HCMV                
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(234,127  bp),  with  a  length  ratio  of  22:1,  distinct  peaks  occur  at  coverages  of  ~45  and  ~2500.                   

The  first  peak  has  10,000  distinct  kmers  and  the  second  one  400,  indicating  that  the  first                  

genome   might   be   around   25x   as   large   as   the   second   one.       
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Suppl.  Figure  S3:   Radar  plot  of  relative  performance  for  Haploflow  and  nine  other  methods                

for  the  HIV-3   in  silico   data  set.  Best  performance  is  at  100%  and  Haploflow,  in  dark  blue,                   

ranks   first   in   Strain   recall,   Strain   precision   and   composite   score.   
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Suppl.   Figure   S4:    Genes   with   different   genotypes   and   their   coverage   distribution   in   the   reads   

(left)   and   in   the   contigs   (right).   VATK   was   run   on   the   reads   and   the   contigs.   For   the   contigs   

the   bar   height   was   set   based   on   the   coverage   value   Haploflow   reports.   VATK   found   the   exact   

same   genotypes   in   the   reads   and   the   Haploflow   contigs.   

Reconstruction   of   full   length   SARS-CoV-2   sequences   

In  nine  out  of  17  SARS-CoV-2  samples  and  6  out  of  7  wastewater  SARS-CoV-2  samples,                 

quast  reported  a  high  duplication  ratio  for  the  Haploflow  assembly;  four  out  of  five  DUS  and                  

five  out  of  twelve  WIS  samples.  This  can  be  explained  by  either  artificially  duplicating  parts                 

of  the  genome  or  the  presence  of  two  closely  related  strains.  Since  Haploflow  did  not                 

construct  single  contig  assemblies  for  all  these  strains,  first  a  “scaffolding”  step  was               

performed:  All  contigs  are  clustered  using   k -means  clustering  on  Haploflow’s  predicted             

abundance,  the  number  of  clusters  depending  on  the  duplication  ratio.  Then,  using  the               

NC_0455122.2  RefSeq  strain,  the  contigs  are  extended  to  complete  genomes,  using  the              

contigs  bases  for  all  parts  of  the  genome  covered  by  it.  If  a  part  of  a  genome  is  not  covered  by                       

a  strain,  the  bases  from  the  highest  abundant  strain  with  bases  at  this  position  are  inserted,  if                   
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no  strain  has  bases  at  this  position,  the  reference  base  is  inserted.  If  a  position  is  covered                   

twice,  the  base  from  the  contig  with  higher  flow  is  chosen.  To  reduce  the  number  of  false                   

positive  SNPs,  an  additional  filtering  step  was  performed  to  remove  typical  sequencing  and               

PCR  related  artifacts,  such  as  deletions  within  homopolymeric  sites 35 ,  mutations  in             

short-tandem  repeats 75  and  mutations  on  sites  with  strong  strand  bias 76 .  This  for  example               

removed  a  SNP  included  in  the  original  submission  of  the  DUS  sample  (in  the  HCMV  data                  

set)   at   position   4655   due   to   a   high   strand   bias   value.   

Lofreq  version  2.1.4  was  run  on  the  original  reads  and  the  variants  filtered  by  an  abundance                  

value  over  5%  and  a  score  of  >1000  to  reduce  the  number  of  false  positive  calls.  This  filtered                    

similar  SNPs  as  the  filtering  of  homopolymeric  or  strand  biased  sites  performed  for               

Haploflow.   
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Supplementary   tables   

Suppl.  Table  S1:  Benchmark  of  Haploflow  against  five   de  novo   assemblers  and  five               
reference-based  assemblers  (grey  background)  on  the  HIV-3  data  set.  For  every  metric,  best               
performing  methods  (95-100%  range  of  results)  are  indicated.   Strain  recall :  fraction  of              
correctly  recovered  high  quality  strain  genomes  ( 1  ( 5)  mismatches  per  kb;  more  than        ≤  ≤       
90%  (80%)  genome  fraction 77 );   Strain  precision :  fraction  of  correctly  recovered  high  quality              
strain  genomes  of  all  genome  assemblies.  Evaluation  using  metaQUAST  results  and  derived              
strain  assembly  metrics  with  HIV  reference  genomes  89.6,  HXB-2  and  JR-SCF  in  “combined               
reference”  mode.   a Results  for  a  140  Mb  subset  of  the  500  Mb  dataset  generated  with   BBnorm.                  
*runs  that  did  not  complete  after  ten  days  or  failed.  **as  being  an  outlier,  QuasiRecomb                 
results   were   excluded   from   composite   score   and   radar   plot   calculation.   
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  Strain   
recall     

Strain     
precision    

Compo- 
site   
score   

Genome   
fraction   
(%)   

Number   
of   
contigs   

Mis-   
matches   

Dupli-   
cation   
ratio   

NGA50   

Haploflow   3/3   3/3   9.66   93.36   3   9   1.001   9083   

metaSPAdes   0/3   0/3   2.78   33.70   9   62   1.005   1246   

SPAdes   0/3   0/3   4.28   63.09   20   1   1.021   864   

MEGAHIT   0/3   0/3   4.28   48.47   12   257   1.084   1701   

PEHaplo    l=40   0/3   0/9   5.86   94.63   40   1208   3.106   4305   

PEHaplo a   0(1)/3   1/5   6.28   82.80   20   363   1.683   2774   

PEHaplo a   
correct     

0(2)/3   2/3   5.7   81.45   17   24   1.044   1773   

SAVAGE    de   
novo *   

-   -   -   -   -   -   -   -   

SAVAGE    ref    *   -   -   -   -   -   -   -   -   

SAVAGE a     ref   2(3)/3   3/3   6.74   93.72   18   5  1.057   1932   

PredictHaplo  1/3   1/3   8.02   67.12   3   631   1.497   9658   

QuasiRecomb 
**   

0/3   0/3,507   -   67.12   3506   1,011,054   1748.6   9649   

QuasiRecomb   
conservative   
**   

0/3   0/1,155   -   67.12   1154   411,576   575.67   9654   
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Suppl.  Table  S2:   Benchmark  results  for  the  HCMV  data  set.  Shown  are  average  values  for                 

the  metaQUAST  metrics  over  the  six  data  sets  and  additional  assembly  metrics  (see               

“performance  evaluation”).  For  every  metric,  the  best  performing  methods  (95-100%  range             

of  results)  are  indicated.  * Strain  recall   includes  correctly  recovered  genomes  at  two  quality               

levels:  more  than  80(90)%  genome  fraction  and  less  than  5(1)  mismatches/kb.  PEHaplo  did               

not   assemble   one   (TA-1-10)   of   the   six   mixtures.   
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CliqueSNV   1/3   1/7   4.89   33.5   7   538   7.000   9669   

GAEseq*   -   -   -   -   -   -   -   -   

GAEseq a *   -   -   -   -   -   -   -   -   

  

Strain   
recall*   

Strain     
precision    

Compo- 
site   
score   

Genome   
fraction   

  Contigs   Mis-   
matches   
per   
100kb   

Dupli-   
cation   
ratio   

NGA50   

Haploflow   10(3)/12   10/14   9.34   
83.87  ±  
10.37%   

20.50 ±
7.20   

166.26 ±
122.97   

1.20 ±
0.15   

62,560.42 
35,233  ±  

metaSPAdes   5(4)/12   5/12   8.18   
58.57 ±
4.44%   

17.42 ±
8.38   

184.13 ±
337.14   

1.01 ±
0.01   

60,008.25 
37,089  ±  

SPAdes   6(4)/12   6/12   5.22   
65.52 ±
3.94%   

85.17 ±
15.75   

40.38 ±
29.84   

1.05 ±
0.01   

2,552.42 
951  ±  

MEGAHIT   2(0)/12   2/23   4.71   
68.01 ±
8.23%   

324.83 ±
244.29   

2254.09 
1901.7  ±  

1.92 ±
0.67   

32,446.08 
35,925  ±  

PEHaplo   4(3)/12   4/12   5.70   
52.72  ±  
18.07%   

54.0  ±  
78.17   

13.04  ±  
11.68   

1.05  ±  
0.07   

10,960.1 
6,602  ±  

tadpole   1(0)/12   1/12   3.15   
24.47 ±
13.31%   

39.92 ±
12.98   

27.14 ±
50.67   

1.00 ±
0.00   

1,344.3 ±
3,292   

ABySS   6(3)/12   6/12   6.41   
64.88 ±
4.94%   

20.92 ±
8.85   

250.0 ±
85.39   

1.05 ±
0.01   

12,399.25 
5,157  ±  

Ray   4(4)/12   4/12   5.90   
51.39 ±
2.27%   

16.67 ±
12.53   

67.54 ±
63.39   

1.07 ±
0.06   

26,154.75 
36,557  ±  

IDBA   0(0)/12   0/12   3.10   
32.71 ±
9.52%   

83.75 ±
13.24   

104.46 ±
76.39   

1.03 ±
0.01   

154.67 ±
178   

Vicuna   4(1)/12   4/12   4.18   
47.26 ±
0.93%   

36.33 ±
7.79   

104.05 ±
71.31   

1.02 ±
0.01   

2,657.67 
704  ±  
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IVA   4(3)/12   4/12   7.42   
43.23 ±
16.2%   

11.92 ±
8.22   

121.61 ±
185.89   

1.02 ±
0.03   

63,773.0 
49,449  ±  

VirGenA   6(5)/12   6/12   7.63   
47.25 ±
1.35%   

5.67 ±
2.48   

102.41 ±
107.01   

1.01 ±
0.00   

33,324.58 
30,049  ±  

SAVAGE   9(5)/12   9/17   4.61   
82.43 ±
15.69%   

283.17 ±
98.89   

33.86 ±
28.37   

1.46 ±
0.14   

1,245.33 
  349  ±  
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Suppl.  Table  S3:   Genome  fraction  and  NGA50  and  their  standard  deviation  for  the  high  and                 

low  abundant  strains  in  the  HCMV  in-vitro  mixtures  (two  1:10  and  two  1:50  mixtures).                

PEHaplo  and  SAVAGE  as  reference-free  haplotype  assemblers  did  not  return  any  results  on               

this   data   set.   
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  metaSPAdes   MEGAHIT   Haploflow   

Genome   fraction   
(lower   abundance)   

19.77 6.44%   ±  30.00 12.6%   ±  76.67 12.24%   ±  

Genome   fraction   
(higher   abundance)   

94.86 0.57%   ±  89.97 8.59%   ±  91.62 5.38%   ±  

NGA50   (lower   
abundance)   

0 0   ±  0 0   ±  9,625 6,578   ±  

NGA50   (higher   
abundance)   

149,712 48,744   ±  45,481 45,766   ±  79,284 50,679   ±  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.25.428049doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428049
http://creativecommons.org/licenses/by/4.0/


Suppl.  Table  S4:   One  cluster  with  closely  11  related  phage  strains  from  the  simulated                

virome 48  and  the  genome  within-cluster  similarities.  Columns  give  the  maximal  or  average              

ANI   to   all   other   sequences   in   the   cluster.  
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GI   number  Scientific   name   Within-cluster   
similarity   max   

Within-cluster   
similarity   avg   

118725053   Staphylococcus   phage   phiNM3   98.10%   93.32%   

119443652   Staphylococcus   phage   phiPVL108   98.31%   94.59%   

157102936   Staphylococcus   prophage   tp310-1   99.12%   95.47%   

157102938   Staphylococcus   prophage   tp310-3   98.74%   95.72%   

239507361   Staphylococcus   phage   phiPVL-CN125   98.31%   94.59%   

257136356   Staphylococcus   phage   P954   96.12%   92.18%   

29028667   Staphylococcus   prophage   phi   13   98.74%   95.73%   

30043925   Staphylococcus   prophage   phiN315   98.10%   92.98%   

41189515   Staphylococcus   phage   77   96.12%   93.13%   

9635165   Staphylococcus   phage   PVL   99.12%   95.25%   

9635677   Staphylococcus   prophage   phiPV83   96.59%   93.86%   
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Suppl.  Table  S5:  Genome  fractions  in  %  on  different  subsets  of  the  simulated  virome.                

Unique  genomes  refers  to  genomes  for  which  no  other  genome  with  an  ANI  of  >95%  is  in  the                    

data  set,  common  strain  genomes  are  ones  for  which  at  least  one  such  genome  is  present.  The                   

coverage  value  was  calculated  by  dividing  the  total  number  of  base  pairs  in  the  reads                 

belonging   to   the   genome   by   its   size.   
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  SPAdes   MEGAHIT   Haploflow   

Common   strains   55.58   48.88   62.85   

Common   strains,   
coverage   >   8  

74.58   64.99   89.36   

Total   72.2   68.6   66.6   

Total,   coverage   >   8   93.07   87.55   94.52   
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Suppl.  Table  S6:   Comparison  of  multiple  strain  infection  labeling  of  samples  by  VATK 78 ,  the                

predicted  relative  abundance  of  the  low  abundant  strain(s)  and  the  predicted  abundance  by               

Haploflow  (relative  and  absolute)  as  well  as  the  genome  completeness  (genome  fraction,              

mapped  against  the  first  sample  consensus  genome)  of  strains  Haploflow  reconstructed             

(Supplementary  methods).  A  ”-”  denotes  that  no  evidence  of  a  second  strain  was  found  by                 

either  VATK  (column  3)  or  Haploflow  (column  4).  Percentage  values  with  a  (*)  denote                

problems  in  clustering,  evident  by  a  still  high  duplication  ratio  after  clustering  or  the  sum  of                  

genome  fractions  of  two  clusters  summing  up  to  ~1,  indicating  that  underclustering  or  in  the                 

latter  case  overclustering  took  place.  Three  percentage  values  in  the  third  column  indicate               

that   Haploflow   predicted   three   strains   being   present.   

46   

Patient   Time   points   Estimated   low   
strain   abundance   
(number   of   
predicted   strains)   

Haploflow   low   
strain   abundance   
predictions   (%   
and   absolute   
value(s))   

Genome   fraction   
(portion   of   recovered   
genome)   of   strains   vs.   
consensus   sequence   

RTR3   367   days   38.3%   (2)   27.1%   (43:16)   88.29%   /   40.70%   

408   days   17.9%   (2)   17.3%   (167:35)   92.93%   /   68.76%   

RTR6   vitreous   
humour   

9.4%   (2)   12.7%   (2576:373)   90.07%   /   31.06%   

blood   17.3%   (2)   18.4%   (213:48)   99.07%   /   92.73%   

SCTR1   91   days   4.0%   (2)   - (425)   99.69%   

126   days   22.9%   (2)   21.2%   (2429:653)   96.42%   /   75.93%   

130   days   14.0%   (2)   12.6%   (313:45)   99.63%   /   82.87%   

194   days   6.8%   (2)   - (105)   99.78%   

224   days   37.8%   (2)   26.8%   (60:22)   92.73%   /   79.36%   

231   days   25.4%   (2)   23.6%   (126:39)   92.09%   /   37.63%   

244   days   -   (1)   17.3%   (81:17)   93.19%   

245   days   29.8%   (2)   - (22)   92.86%   

SCTR3   189   days   - %   (1)   - (9)   98.74%   

272   days   20.5%   (2)   24.3%   (2781:893)   80.89%   /   34.96%   

320   days   28.1%   (2)   - (38)   98.46%   
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SCTR8   55   days   24.4%   (2)   7.3%   (178:14)   99.28%   /   24.28%   

287   days   16.5%   (2)   30.2%/8.3%   
(305:150:41)   

93.86%   /   58.5%   /   
52.33%   (*)   

SCTR11   88   days   15.6%   (2)   16.3%   (103:20)   99.07%   /   85.76%   

192   days   11.6%   (2)   11.2%   (119:15)   91.75%   /   78.20   %   

SCTR17   21   days   34.7%   (2)   22.1%   (106:30)   94.81%   /   30.96%   

28   days   30.6%   (2)   17.6%   (404:86)   98.39%   /   17.04%   (*)  

35   days   33.0%   (2)   29.8%/9.5%   
(362:178:57)   

99.46%   /   28.08%   /   
22.61%   (*)   

50   days   6.1%   (2)   8.5%   (4063:376)   97.26%   /   94.18%   

SCTR18   28   days   30.6%   (3)   26.8%   (101:37)   99.27%   /   50.60%   (*)  

35   days   30.3%/10.3%   (3)  32.6%/10.2%   
(291:166:52)   

80.79%   /   81.88%   /   
48.85%   

Summary   
strain   
detection   

  Total   strains:   48   Recall:    91.7%     
(44/48)     
Precision:   93.6%     
(44/47)   
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Suppl.  Table  S7:   SNPs  and  short  indels  detected  by  Haploflow  and  Lofreq  for  all  17  samples                  

of  SARS-CoV-2  in  at  least  one  sample.  Lofreq  was  run  with  default  parameters  and  SNPs                 

were  filtered  by  a  score  of  >1000  and  abundance  >5%.  “Rare”  indicates  thatLofreq  predicted                

this  variant  at  less  than  5%,  homopolymeric  means  that  this  site  is  located  within  or  in  the                   

direct   vicinity   of   a   4bp   or   longer   homopolymer.     

48   

Position   Original   base  Detected   
base   

Detected   by   Notes   

518-520   ATG   ---   Haploflow     

686-694   AAGTCATTT   ---------   Haploflow     

1440   G   A   Haploflow,   Lofreq     

2891   G   A   Haploflow     

4802   G   A   Lofreq   homopolymeric   

7717   T   A   Haploflow,   Lofreq     

10507   C   T   Haploflow,   Lofreq     

11335   G   T   Haploflow,   Lofreq     

11454   C   T   Haploflow,   Lofreq     

11467   G   T   Haploflow,   Lofreq     

11514   C   T   Haploflow,   Lofreq     

11897   C   A   Haploflow,   Lofreq     

12071   G   A   Haploflow   rare   

13115   C   T   Haploflow,   Lofreq     

15139   A   C   Haploflow,   Lofreq     

15157   C   A   Lofreq   Strand   bias,   called   
by   Haploflow   
then   filtered   

15168   G   A   Haploflow,   Lofreq   homopolymeric   

16954   C   T   Haploflow,   Lofreq     

18110   C   A   Haploflow   rare   

17373   C   T   Haploflow,   Lofreq     
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19182   A   G   Haploflow,   Lofreq     

19610   C   T   Haploflow,   Lofreq     

20298-20300   ATT   ---   Haploflow     

21077   C   T   Lofreq   homopolymeric   

21575   C   T   Haploflow   homopolymeric   

22323   C   T   Haploflow,   Lofreq     

25658   C   T   Haploflow,   Lofreq     

29659   C   T   Lofreq   homopolymeric   

29760   T   C   Lofreq     
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Suppl.   Table   S8:    Number   of     SARS-Cov-2   genomes   assembled   by     Haploflow   from   seven   
SARS-CoV-2   wastewater   metagenome   samples   and   GISAID   IDs   of   identical   genomes   
recovered   from   clinical   isolates.   Strains   are   listed   in   order   of   their   estimated   abundances   for   
individual   samples.   
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Sample   #   strains   
Haploflow   

GISAID   matches   to   strains   

Oakland   5/19   2  hCoV-19/USA/LA-SR0328/2020   
hCoV-19/USA/CA-CSMC67/2020   

Oakland   5/19   (2)   2  hCoV-19/Poland/PL_P31/2020   
hCoV-19/Beijing/DT-BJ01/2020   

Oakland   5/28   2  hCoV-19/USA/CA-CSMC25/2020   
hCoV-19/USA/CA-CSMC67/2020   

Oakland   6/09   1  hCoV-19/France/IDF-10064DR/2020   

Oakland   6/30   2  hCoV-19/USA/WA-UW-11903/2020   
hCoV-19/France/IDF-10064DR/2020   

Oakland   6/30   (2)   2  hCoV-19/USA/CA-CSMC25/2020   
hCoV-19/USA/LA-SR0328/2020   

Marin   7/1   2  hCoV-19/USA/VA-DCLS-1271/2020   
hCoV-19/USA/WA-UW-11903/2020   
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Software/ 

Dataset 

HIV 3 in 

silico 

mixture 

 HCMV in 

vitro 

mixture 

 Simulated 

virome 

 

Metric CPU user 

time 

(seconds) 

Memory 

peak 

(GB) 

Avg. CPU 

user time 

(seconds) 

Avg. 

memory 

peak (GB) 

CPU user 

time 

(seconds) 

Memory 

peak (GB) 

Haploflow 724 0.009 5,170 17.509 18,245 47.678 

SAVAGE 110,208 102.938 75,518 17.658 - - 

PEHaplo 10,127 11.819 58,920 13.998 - - 

metaSPAdes 1,500 1.054 42,906 65.641 25,996 23.399 

MEGAHIT 250 0.269 2,910 0.754 9,690 2.148 
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 Strain  

recall  

Strain  

precision  

Compo-

site 

score 

Genome 

fraction 

(%) 

Number 

of 

contigs 

Mis- 

matches 

Dupli- 

cation 

ratio 

NGA50 

Haploflow 3/3 3/3 9.66 93.36 3 9 1.001 9083 

metaSPAdes 0/3 0/3 2.78 33.70 9 62 1.005 1246 

SPAdes 0/3 0/3 4.28 63.09 20 1 1.021 864 

MEGAHIT 0/3 0/3 4.28 48.47 12 257 1.084 1701 

PEHaplo l=40 0/3 0/9 5.86 94.63 40 1208 3.106 4305 

PEHaploa 0(1)/3 1/5 6.28 82.80 20 363 1.683 2774 

PEHaploa 

correct  

0(2)/3 2/3 5.7 81.45 17 24 1.044 1773 

SAVAGE de 

novo* 

- - - - - - - - 

SAVAGE ref 

* 

- - - - - - - - 

SAVAGEa ref 2(3)/3 3/3 6.74 93.72 18 5 1.057 1932 

PredictHaplo 1/3 1/3 8.02 67.12 3 631 1.497 9658 

QuasiRecomb

** 

0/3 0/3,507 - 67.12 3506 1,011,054 1748.6 9649 

QuasiRecomb 

conservative 

** 

0/3 0/1,155 - 67.12 1154 411,576 575.67 9654 

CliqueSNV 1/3 1/7 4.89 33.5 7 538 7.000 9669 

GAEseq* - - - - - - - - 

GAEseqa* - - - - - - - - 
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Strain 

recall* 

Strain  

precision  

Compo-

site score 

Genome 

fraction 

 Contigs Mis- 

matches 

per 100kb 

Duplication 

ratio 

NGA50 

Haploflow 10(3)/12 10/14 9.34 

83.87± 

10.37% 

20.50± 

7.20 

166.26± 

122.97 

1.20± 

0.15 

62,560.42

±35,233 

metaSPAdes 5(4)/12 5/12 8.18 

58.57± 

4.44% 

17.42± 

8.38 

184.13± 

337.14 

1.01± 

0.01 

60,008.25

±37,089 

SPAdes 6(4)/12 6/12 5.22 

65.52± 

3.94% 

85.17± 

15.75 

40.38± 

29.84 

1.05± 

0.01 

2,552.42

±951 

MEGAHIT 2(0)/12 2/23 4.71 

68.01± 

8.23% 

324.83± 

244.29 

2254.09± 

1901.7 

1.92± 

0.67 

32,446.08

±35,925 

PEHaplo 4(3)/12 4/12 5.70 

52.72± 

18.07% 

54.0± 

78.17 

13.04± 

11.68 

1.05± 

0.07 

10,960.1

±6,602 

tadpole 1(0)/12 1/12 3.15 

24.47± 

13.31% 

39.92± 

12.98 

27.14± 

50.67 

1.00± 

0.00 

1,344.3±

3,292 

ABySS 6(3)/12 6/12 6.41 

64.88± 

4.94% 

20.92± 

8.85 

250.0± 

85.39 

1.05± 

0.01 

12,399.25

±5,157 

Ray 4(4)/12 4/12 5.90 

51.39± 

2.27% 

16.67± 

12.53 

67.54± 

63.39 

1.07± 

0.06 

26,154.75

±36,557 

IDBA 0(0)/12 0/12 3.10 

32.71± 

9.52% 

83.75± 

13.24 

104.46± 

76.39 

1.03± 

0.01 

154.67±1

78 

Vicuna 4(1)/12 4/12 4.18 

47.26± 

0.93% 

36.33± 

7.79 

104.05± 

71.31 

1.02± 

0.01 

2,657.67

±704 

IVA 4(3)/12 4/12 7.42 

43.23± 

16.2% 

11.92± 

8.22 

121.61± 

185.89 

1.02± 

0.03 

63,773.0

±49,449 

VirGenA 6(5)/12 6/12 7.63 

47.25± 

1.35% 

5.67± 

2.48 

102.41± 

107.01 

1.01± 

0.00 

33,324.58

±30,049 

SAVAGE 9(5)/12 9/17 4.61 

82.43± 

15.69% 

283.17± 

98.89 

33.86± 

28.37 

1.46± 

0.14 

1,245.33

± 349 
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 metaSPAdes MEGAHIT Haploflow 

Genome fraction 

(lower abundance) 

19.77±6.44% 30.00±12.6% 76.67±12.24% 

Genome fraction 

(higher abundance) 

94.86±0.57% 89.97±8.59% 91.62±5.38% 

NGA50 (lower 

abundance) 

0±0 0±0 9,625±6,578 

NGA50 (higher 

abundance) 

149,712±48,744 45,481±45,766 79,284±50,679 
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GI number Scientific name Within-cluster 

similarity max 

Within-cluster 

similarity avg 

118725053 Staphylococcus phage phiNM3 98.10% 93.32% 

119443652 Staphylococcus phage phiPVL108 98.31% 94.59% 

157102936 Staphylococcus prophage tp310-1 99.12% 95.47% 

157102938 Staphylococcus prophage tp310-3 98.74% 95.72% 

239507361 Staphylococcus phage phiPVL-CN125 98.31% 94.59% 

257136356 Staphylococcus phage P954 96.12% 92.18% 

29028667 Staphylococcus prophage phi 13 98.74% 95.73% 

30043925 Staphylococcus prophage phiN315 98.10% 92.98% 

41189515 Staphylococcus phage 77 96.12% 93.13% 

9635165 Staphylococcus phage PVL 99.12% 95.25% 

9635677 Staphylococcus prophage phiPV83 96.59% 93.86% 
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 SPAdes MEGAHIT Haploflow 

Common strains 55.58 48.88 62.85 

Common strains, 

coverage > 8 

74.58 64.99 89.36 

Total 72.2 68.6 66.6 

Total, coverage > 8 93.07 87.55 94.52 
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Patient Time points Estimated low 

strain abundance 

(number of 

predicted strains) 

Haploflow low 

strain abundance 

predictions (% 

and absolute 

value(s)) 

Genome fraction 

(portion of recovered 

genome) of strains vs. 

consensus sequence 

RTR3 367 days 38.3% (2) 27.1% (43:16) 88.29% / 40.70% 

408 days 17.9% (2) 17.3% (167:35) 92.93% / 68.76% 

RTR6 vitreous 

humour 

9.4% (2) 12.7% (2576:373) 90.07% / 31.06% 

blood 17.3% (2) 18.4% (213:48) 99.07% / 92.73% 

SCTR1 91 days 4.0% (2) - (425) 99.69% 

126 days 22.9% (2) 21.2% (2429:653) 96.42% / 75.93% 

130 days 14.0% (2) 12.6% (313:45) 99.63% / 82.87% 

194 days 6.8% (2) - (105) 99.78% 

224 days 37.8% (2) 26.8% (60:22) 92.73% / 79.36% 

231 days 25.4% (2) 23.6% (126:39) 92.09% / 37.63% 

244 days -  (1) 17.3% (81:17) 93.19% 

245 days 29.8% (2) - (22) 92.86% 

SCTR3 189 days - % (1) - (9) 98.74% 

272 days 20.5% (2) 24.3% (2781:893) 80.89% / 34.96% 

320 days 28.1% (2) - (38) 98.46% 

SCTR8 55 days 24.4% (2) 7.3% (178:14) 99.28% / 24.28% 

287 days 16.5% (2) 30.2%/8.3% 

(305:150:41) 

93.86% / 58.5% / 

52.33% (*) 

SCTR11 88 days 15.6% (2) 16.3% (103:20) 99.07% / 85.76% 

192 days 11.6% (2) 11.2% (119:15) 91.75% / 78.20 % 
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SCTR17 21 days 34.7% (2) 22.1% (106:30) 94.81% / 30.96% 

28 days 30.6% (2) 17.6% (404:86) 98.39% / 17.04% (*) 

35 days 33.0% (2) 29.8%/9.5% 

(362:178:57) 

99.46% / 28.08% / 

22.61% (*) 

50 days 6.1% (2) 8.5% (4063:376) 97.26% / 94.18% 

SCTR18 28 days 30.6% (3) 26.8% (101:37) 99.27% / 50.60% (*) 

35 days 30.3%/10.3% (3) 32.6%/10.2% 

(291:166:52) 

80.79% / 81.88% / 

48.85% 

Summary 

strain 

detection 

 Total strains: 48 Recall:  91.7%  

(44/48)  

Precision: 93.6%  

(44/47) 
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Position Original base Detected 

base 

Detected by Notes 

518-520 ATG --- Haploflow  

686-694 AAGTCATT

T 

--------- Haploflow  

1440 G A Haploflow, Lofreq  

2891 G A Haploflow  

4802 G A Lofreq homopolymeric 

7717 T A Haploflow, Lofreq  

10507 C T Haploflow, Lofreq  

11335 G T Haploflow, Lofreq  

11454 C T Haploflow, Lofreq  

11467 G T Haploflow, Lofreq  

11514 C T Haploflow, Lofreq  

11897 C A Haploflow, Lofreq  

12071 G A Haploflow rare 

13115 C T Haploflow, Lofreq  

15139 A C Haploflow, Lofreq  

15157 C A Lofreq Strand bias, called 

by Haploflow 

then filtered 

15168 G A Haploflow, Lofreq homopolymeric 

16954 C T Haploflow, Lofreq  

18110 C A Haploflow rare 

17373 C T Haploflow, Lofreq  

19182 A G Haploflow, Lofreq  

19610 C T Haploflow, Lofreq  

20298-20300 ATT --- Haploflow  

21077 C T Lofreq homopolymeric 
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21575 C T Haploflow homopolymeric 

22323 C T Haploflow, Lofreq  

25658 C T Haploflow, Lofreq  

29659 C T Lofreq homopolymeric 

29760 T C Lofreq  
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Sample # strains 

Haploflow 

GISAID matches to strains 

Oakland 5/19 2 hCoV-19/USA/LA-SR0328/2020 

hCoV-19/USA/CA-CSMC67/2020 

Oakland 5/19 (2) 2 hCoV-19/Poland/PL_P31/2020 

hCoV-19/Beijing/DT-BJ01/2020 

Oakland 5/28 2 hCoV-19/USA/CA-CSMC25/2020 

hCoV-19/USA/CA-CSMC67/2020 

Oakland 6/09 1 hCoV-19/France/IDF-10064DR/2020 

Oakland 6/30 2 hCoV-19/USA/WA-UW-11903/2020 

hCoV-19/France/IDF-10064DR/2020 

Oakland 6/30 (2) 2 hCoV-19/USA/CA-CSMC25/2020 

hCoV-19/USA/LA-SR0328/2020 

Marin 7/1 2 hCoV-19/USA/VA-DCLS-1271/2020 

hCoV-19/USA/WA-UW-11903/2020 
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