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ABSTRACT 1 

 2 

Localized prostate cancer exhibits multiple genomic alterations and heterogeneity at the 3 

proteomic level. Single-cell technologies capture important cell-to-cell variability responsible for 4 

heterogeneity in biomarker expression that may be overlooked when molecular alterations are 5 

based on bulk tissue samples. The aim of this study was to identify novel prognostic biomarkers 6 

and describe the heterogeneity of prostate cancer and the associated immune cell infiltrates by 7 

simultaneously quantifying 36 proteins using single-cell mass cytometry analysis of over 1,6 8 

million cells from 58 men with localized prostate cancer. To perform this task, we proposed a 9 

novel computational pipeline, Franken, which showed unprecedented combination of 10 

performance, sensitivity and scalability for high dimensional clustering compared to state of the 11 

art methods.  We were able to describe subpopulations of immune, stromal, and prostate cells, 12 

including unique changes occurring in tumor tissues and high grade disease providing insights 13 

into the coordinated progression of prostate cancer. Our results further indicated that men with 14 

localized disease already harbor rare subpopulations that typically occur in castration-resistant 15 

and metastatic disease, which were confirmed through imaging. Our methodology could be used 16 

to discover novel prognostic biomarkers to personalize treatment and improve outcomes. 17 

 18 

 19 

INTRODUCTION 20 

The treatment of localized prostate cancer is based on clinicopathological information 21 

including Gleason score, prostate-specific antigen (PSA) levels, stage and patient age1. While the 22 

majority of patients with localized disease can be cured, some men recur with metastatic disease2 23 

because of microscopic spread. The observed heterogeneity of outcomes might be explained by 24 

heterogeneity within tumors3, which is missed by the current grading system and new prognostic 25 

biomarkers are of utmost importance. 26 

Several potential biomarkers including gene fusions, mutations, epigenetic heterogeneity, 27 

and proteins have been studied4. Technological advances in proteomics now allow both 28 

exploration of the proteome for biomarkers and assessment of the heterogeneity of biomarker 29 

expression. However, analysis of a whole tissue core misses important cell-to-cell variability. In 30 

ths study, we performed mass cytometry analysis of dissociated single cells from prostatectomies 31 
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of 58 patients with tumors at varying grades and UICC (Union internationale contre le cancer) 32 

stages using a set of 36 metal-tagged antibodies that recognize surface markers, enzymes, 33 

transcription factors, and markers of functional readouts selected to facilitate characterization of 34 

the phenotypic diversity of prostate tumors and their microenvironment. The power to 35 

comprehensively analyze heterogeneity of tumors by simultaneously measuring dozens of 36 

markers in hundreds of thousands to millions of cells makes mass cytometry the ideal tool to 37 

characterize single-cell subpopulations present in prostate or other tumors including those rare 38 

populations that cannot be detected with lower parametricity or lower throughput methods.  39 

 
Figure 1. Schematic of method for characterization of primary prostate cancer tissue using mass cytometry. (a) The 
patient cohort consisted of 58 primary prostate cancer cases. For 16 patients, tumor and adjacent benign prostatic tissue (ABPT) 
samples were available. The remaining samples were from randomly selected regions from a prostatectomy without tumor 
assessment. Samples were analyzed by mass cytometry, and data were analyzed using Franken. (b) Markers used to categorize 
prostate epithelial cells as luminal, basal, or transitional, and markers used to identify tumor cells, cells from the 
microenvironment and functional features, such as proliferation, apoptosis or hypoxia.  

 

Although mass cytometry has single-cell resolution capabilities, there are statistical 40 

challenges involved in analyzing such high-dimensional data. State-of-the-art clustering methods 41 

either underperform in precision and recall or require unnecessarily long runtimes and 42 

prohibitive computational resources5. To address this issue we developed an unsupervised, 43 

single-cell clustering approach, Franken, which is unmatched in its combination of speed and 44 

performance. Use of Franken to quantify the phenotypic diversity of single cells in prostate 45 

tumor samples identified unique progression-related single-cell phenotypes. We detected 46 

immune landscape features unique to patients with high grade prostate cancer, reflected by 47 
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higher frequencies of macrophage and T cell phenotypes than observed in patients with 48 

intermediate grade disease. Further, we observed tumor-specific prostate epithelial phenotypes, 49 

including AR-negative and/or PSA-negative phenotypes typically associated with resistance to 50 

ADT and CRPC6–8, and previously undescribed and rare CD15+ phenotypes.  51 

 52 

RESULTS 53 

Clustering of high-dimensional mass cytometry data defines molecular profiles of prostate 54 

subpopulations  55 

Using mass cytometry, we profiled tumor samples from 58 prostate cancer patients, 56 

including 24 patients with the International Society of Urological Pathology (ISUP) grade II 57 

(Gleason score 3+4), 22 grade III cases (Gleason score 4+3), and 12 patients with grade V 58 

prostate carcinomas (Gleason scores 4+5, 5+4 or 5+5) (Figure 1a). Fresh tissue samples for 59 

dissociation into single cell suspensions were collected from 58 prostate cancer patients. From 41 60 

of 58 (71%) patients, the tumor could not be demarcated macroscopically. The presence of 61 

prostate cancer was confirmed histologically after examining the opposite side of the specimen, 62 

first in the frozen section and then after paraffin embedding; these samples are referred to as 63 

random prostate tissue (RPT) samples. For a further 17 patients (29%), paired samples were 64 

taken from a macroscopically visible tumor mass and adjacent benign prostatic tissue (ABPT); 65 

tumor samples were validated using a frozen section of the opposite side. ABPT specimens were 66 

taken from the contralateral transitional zone of the prostate and never from the peripheral one, 67 

where tumor is more likely to be located. Single-cell suspensions from all prostate tissue samples 68 

and from 10 cell lines, including prostate cancer, stromal, and immune cells (Supplemental table 69 

1), were barcoded, pooled and stained with a 36-antibody prostate cancer-centric panel, before 70 

mass cytometry acquisition. The antibody panel was designed to quantify markers that identify 71 

prostate epithelial cells, cells of the stroma and immune microenvironment, and markers of 72 

proliferation and survival (Figure 1b). Data for a total of 1,670,117 live cells were generated.  73 

The high dimensionality of this dataset represented a challenge for data visualization and 74 

clustering. To address this task, we developed a highly efficient computational pipeline called 75 

Franken (Supplemental Figure 1a). The pipeline begins by building a large self-organizing map 76 

(SOM), which is used to fit all of the data. The SOM nodes in the original high-dimensional 77 

space are then used to build a mutual nearest neighbor graph using the Tanimoto similarity9 (also 78 
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known as extended Jaccard similarity)  that is subsequently clustered via the Walktrap graph 79 

clustering technique10. Although all results presented in this paper were obtained in an 80 

unsupervised manner, the pipeline also offers the option to define the chosen number of clusters 81 

(detailed description found in methods). We demonstrated the F1 performance and scalability of 82 

Franken when compared to state-of-the-art methods on two independent mid-size CyTOF 83 

datasets (around 200,000 cells each; Supplemental Figure 1b-d). We also showed that our 84 

pipeline is robust to its parameters' choice and scalable up to dozens of millions of cells in a 85 

synthetic dataset (Supplemental Figure 1e,f).  86 

 Franken's scalability and ability to resolve rare metaclusters made it uniquely suitable to 87 

explore our new prostate cancer patient dataset containing 1,670,117 cells. Analysis of the 88 

prostate cancer dataset using Franken identified a total of 55 clusters (Figure 2a). Franken is a 89 

very sensitive technique and leads to fine grained clusters that may represent the gradient 90 

expression of certain markers without clear biological differences. It must be noted that discrete 91 

labels do not easily apply to datasets with continuous expression such as single-cell data, where a 92 

clear cutoff between cell states does not necessarily exist. Nonetheless, to obtain clusters that 93 

were qualitatively different in terms of marker combination (which markers were expressed, 94 

instead of how much), Franken clusters were further merged into 33 metaclusters using 95 

hierarchical clustering of Pearson correlation dissimilarities with average linkage. We found 14 96 

epithelial, 16 immune, one stromal and one endothelial phenotypes, based on marker expression 97 

profiles (Supplemental figure 2a). We also identified one cluster which was mostly negative for 98 

all 36 markers in the panel (denoted as NE01). Given that our panel does not cover the entire 99 

proteome, this may represent a cell type not characterized by the markers in our panel or simply 100 

outliers and was excluded from further analysis. All metaclusters were annotated using a two-101 

letter and two-digit identifier ranked by decreasing metacluster size (TC01 > TC02 > TC03 >…) 102 

for each cell category. The total number of cells in a cluster ranged from a few hundred (437 103 

cells in EP01) to hundreds of thousands (391,554 in TC01; Supplemental Figure 2a).  104 

In order to project the high dimensional data into a two-dimensional representation, we 105 

used the UMAP (Uniform Manifold Approximation and Projection) method for dimensionality 106 

reduction visualization29. UMAP showed that our analysis recapitulated the main cell-type 107 

compartments within the prostate (Figure 2b); also detected were rarer cell states such as 108 

apoptotic cells (TR02, AE01, AI01, MA03 and TC03). Franken was capable of resolving very 109 
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rare populations present at frequencies as low as 1/5,000 (PR-high metacluster EP01; 110 

Supplemental Figure 2b). FlowSOM, although very efficient in terms of speed, revealed fewer 111 

and larger subpopulations than Franken; very rare populations identified by Franken could not be 112 

identified by FlowSOM or PhenoGraph. Franken, therefore, provides an unprecedented 113 

combination of performance, sensitivity and speed compared to existing clustering methods19. To 114 

ensure good separability of each class (metacluster) and quality of the final clustering 115 

configuration, we trained a logistic regression classifier with lasso regularization (using 5-fold 116 

cross-validation to identify the regularization parameter λ; Supplemental Figure 2c,d). Most 117 

metaclusters could be predicted with higher than 99% accuracy, and the lowest at 93%.  118 

 All detected clusters contained cells from ABPT and tumor regions (Supplemental 119 

Figure 3a). This suggested that tumor cells were present within the ABPT tissue and/or that 120 

ABPT tissue was present inside the tumor mass which was expected due to the usual way 121 

prostate tumors spread in the prostate as well as intrinsic limitations of the macroscopic-based 122 

sample collection procedure (which could not ensure the adjacent regions were 100% tumor-123 

free). Alternatively, this could suggest our custom panel missed important markers to make such 124 

distinction.  125 

 126 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.25.428046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428046


 

 77

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.25.428046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428046


 

 8

Figure 2. Prostate cancer samples have similar overlapping phenotypic profiles. (a) Heatmap of scaled mean signal of 

marker expression in 55 Franken clusters; numbers are colored according to metaclusters resulting from hierarchical clustering 

merging (using Pearson correlation dissimilarities) of Franken clusters. Bar plot below the heatmap corresponds to the number of 

cells found in each cluster. (b) UMAP map of 23,200 (400 per patient) cells colored by cellular metacluster as indicated in panel 

(a). (c) UMAP map of 23,200 (400 per patient) cells colored by patient. (d) (e) Boxplots of frequencies of the main cell types 

across all 58 samples from tumor, ABPT, and RPT. Significant changes were seen between tumor and ABPT in the proportion of 

granulocytes (two-sided Wilcoxon signed rank paired test, p = 0.008). N=17. (e) Boxplots of frequencies of the main cell types in 

samples from all 58 patients in our cohort stratified by intermediate and high grade tumors. Changes in luminal and T cell 

compartments are significant according to a two-sided Mann-Whitney-Wilcoxon test (p = 0.028 and 0.014, respectively). 

Intermediate N = 46 and high grade N = 12. 

 

Luminal cells were the most abundant cell type in the prostate and corresponded on 127 

average (across all 58 patients) to 32% of a patient’s sample; T cells were the second most 128 

abundant population (24% on average). When combined, cells from the immune compartment 129 

and other cells of the tumor microenvironment made up over half the cells (54% on average) 130 

found within samples of this cohort (Supplemental Figure 3b). Franken clustering identified a 131 

range of prostate epithelial phenotypes including a single basal cell phenotype characterized by 132 

CK5 and CK14 expression (BA01), four transitional epithelial phenotypes expressing a 133 

combination of CK7 and CK19 (TR01-04), and seven epithelial luminal phenotypes (LU01-07) 134 

defined by the expressed CK8, CK18. Cellular metaclusters that contained a combination of CK7 135 

or CK19 and CK8 or CK18 were annotated as luminal epithelial cells. Only CK7 and CK19-136 

positive metaclusters with very low to no CK8 and CK18 expression were denoted as transitional 137 

epithelial cells. Luminal epithelial cells also expressed a combination (or varying expression 138 

intensities) of AR, PSA, Prostein, Synaptophysin, AMACR, EZH2, PTEN and Nkx3.1. These 139 

were weakly or not expressed in transitional or basal cell metaclusters.  140 

 In the microenvironment, five different T cell phenotypes were detected expressing CD3 141 

and CD45, and five macrophage phenotypes were characterized by CD68 and CD45 expression. 142 

Also detected were three granulocyte (expressing CD24 and/or CD15), one stromal 143 

(characterized by SMA and S100A4), one B cell (CD20-expressing), and one endothelial (CD31-144 

expressing) clusters. Unlike in previous works11, we did not observe patient-specific batch 145 

effects, which could have led to each patient clustering separately from one another. We found 146 

that each metacluster contained a mixture of cells from most patients as illustrated in the UMAP 147 

visualization (Figure 2c).  148 
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There was considerable overlap in the single-cell phenotypes present within paired tumor and 

ABPT regions (UMAP; Figure 2d). Samples were stratified according to tumor, ABPT and RPT 

across cell types and we found significantly lower frequency of granulocytes in tumor regions 

than in ABPT (Figure 4e. Visualization of cells from intermediate grade (ISUP grades II and III) 

and high grade tumors (ISUP grade V) also revealed significant overlap (UMAP; Figure 2e) and 

indicated lower frequencies of luminal cells and higher frequencies of T cells in samples from 

patients with high grade compared to intermediate grade disease (Figure 2d).  

 149 
Immune landscape differs between tumor and benign adjacent tissue and across prostate 150 

cancer ISUP grade 151 

The UMAP visualization of 23,200 (400 per patient) cells, randomly selected across the 

patient cohort, revealed the expression patterns of markers associated with the microenvironment 

(Figure 3a and Supplemental Figure 3c). We validated both observations by quantifying T cells 

(CD3+) and granulocytes (CD15+) in a tissue microarray (Supplemental Figure 3d and data 

availability section) that included formalin-fixed paraffin-embedded tissues from all patients in 

the cohort. Confirming the mass cytometry data, we observed higher densities of T cells in high 

grade tumors (Figure 3b and c) than in intermediate grade prostate tumors and lower densities of 

granulocytes in tumor regions than in ABPT regions (Figure 3d and 3e). 
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Figure 3. Stratification of samples reveals prostate tissue changes associated with tumor and advanced disease.  152 
(a) UMAP of 23200 cells (400 per patient) colored by expression of indicated marker (b) Representative tissue sample stained for153 
CD3 from a tissue microarray generated from prostate samples from the same cohort analyzed by mass cytometry. (c) Densities154 
of T cells as determined by CD3 staining (p = 0.042). (d) Representative tissue sample stained for CD15 from a tissue microarray155 
generated from prostate samples from the same cohort analyzed by mass cytometry. (e) Densities of granulocytes as determined156 
by CD15 staining (p = 0.058). Scale bar, 50 μm. (f) Proportion of T cell metaclusters in ABPT and tumor samples across patients157 
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with paired samples (p = 0.066, 0.169, 0.023, 0.002 and 0.332 for TC01-05, respectively). N=17. (g)  Summary table of clusters 158 
that were significant when comparing ABPT and Tumor samples (N=17 for both groups). Metaclusters enriched in ABPT are 159 
colored in blue while those enriched in tumor samples are colored in red. Comparison between intermediate and high grade 160 
patient samples (for combined tumor/ABPT; Intermediate N = 46 and high grade N = 12). Metaclusters enriched in patients with 161 
high grade disease are colored in dark red. Only significant relationships are colored and remaining comparisons are shown in 162 
grey. (h) Proportion of macrophage metaclusters in ABPT and tumor samples across patients with paired samples (p = 0.095, 163 
0.169, 0.515, 0.0004 and 0.014 for MA01-05, respectively). N=17. In panels (f) and (h) dots are colored by disease severity 164 
(intermediate vs high grade). In all boxplots, boxes illustrate the interquartile range (25th to 75th percentile), the median is shown 165 
as the middle band, and the whiskers extend to 1.5 times the interquartile range from the top (or bottom) of the box to the furthest 166 
datum within that distance. Statistical testing between dependent paired Tumor and ABPT samples was done using a Wilcoxon 167 
signed rank paired-sample statistical tests (two-sided). Independent intermediate and high grade samples were tested using a two-168 
sided Wilcoxon rank sum test. Number of patients in each group is indicated by N. 169 

 170 

We identified multiple subpopulations of each immune cell type. By focusing on the 171 

comparison of each individual metacluster, we found that two T cell clusters were significantly 172 

enriched in tumor samples (TC03 and TC04, apoptotic T cells and proliferating T cells, 173 

respectively) when compared to the adjacent ABPT regions (Figure 3f). Notably, proliferating T 174 

cells were also enriched in high grade tumors and in high grade patient samples when tumor and 175 

adjacent tissue were mixed (Figure 3g and Supplemental Figure 4a) suggesting that this T cell 176 

phenotype is enriched throughout the prostate of patients with high grade disease and not only in 177 

the core of the tumor.  178 

The overall frequencies of macrophages were not significantly different between tumor 179 

and tumor-adjacent (ABPT) samples (Figure 2d). However, two macrophage metaclusters were 180 

enriched in tumor samples (MA04 and MA05, proliferating macrophages and CD45low 181 

macrophages respectively). These same metaclusters were further enriched in high grade patient 182 

samples (Supplemental Figure 4b). The overall macrophage proportion was actually lower in 183 

tumor samples than in tumor-adjacent samples, highlighting the importance of analyzing such a 184 

complex dataset at single-cell resolution to reveal that rare macrophages phenotypes can change 185 

in the opposite trend to the overall macrophage population. The majority of macrophages are 186 

localized in the prostate stroma, but their density is greater in tumorigenic regions12,13. This is a 187 

confounding factor when comparing macrophage frequencies across tumor grades, since lower 188 

grade tumors have a greater proportion of stroma than high grade tumors, resulting in a higher 189 

frequency of stroma-infiltrating macrophages (Figure 3h).  190 

In summary, our clustering analysis identified changes in the cellular phenotypes present 191 

in the prostate tumor microenvironment compared to adjacent ABPT regions. Distinct 192 

macrophage phenotypes were associated with prostate tumors and with the stroma rich ABPT 193 

regions. Overall, the cell-type compositions of the tumor microenvironments differed with tumor 194 
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grade, with the exception of granulocytes, which were decreased in tumor regions regardless of 195 

grade (Supplemental Figure 4c). Although the tumor microenvironment of the intermediate sub-196 

cohort was characterized mostly by a relative decrease of immune phenotypes compared with 197 

ABPT regions, we found the opposite in the high grade sub-cohort where multiple immune 198 

phenotypes were enriched, notably highly proliferative macrophage and T cell phenotypes.  199 

 200 

Malignant and benign prostate tissues diverge in rare phenotypes 201 

Matched tumor and ABPT samples exhibited overall similar single-cell phenotypic 202 

profiles, and phenotypic profiles were similar across patients (Supplemental Figure 5b). These 203 

similarities were likely due to the presence of benign tissue in both tumor and ABPT samples, 204 

whereas patient-specific phenotypes are related to heterogeneous, deregulated malignant cells14. 205 

We found that every sample from every patient, including tumor and ABPT samples, contained 206 

basal cells (BA01) as well as CK7+/CK19+ live and apoptotic transitional epithelial cells (TR01 207 

and TR02, respectively). All patient samples also contained a variety of luminal epithelial cells 208 

(LU01-LU07) containing varying combinations of luminal markers CK8/18, AR, PSA, Prostein, 209 

Nkx3.1 and in some cases the co-expression of CK19 and CK7 (LU02 and LU04, respectively). 210 

However, cell types co-expressing both, CK7 and CK19, expressed little to no CK8/18 (TR01-211 

04). Stem cell marker CD24 and neuroendocrine marker Synaptophysin showed highest 212 

expression in luminal epithelial cells. 213 

We carried out statistical comparisons for epithelial metaclusters and summarized the 214 

significant relative enrichment results across all metaclusters (Figure 4a and Table S1) for 215 

comparisons between patient grade groups (top row; NI = 46, NH = 12),  tumor and ABPT 216 

(middle row; NI,H = 17), and high versus intermediate grade tumor regions only (bottom row; NI 217 

= 10, NH = 7). We identified the enrichment of apoptotic epithelial cells in tumor versus ABPT 218 

regions, which was irrespective of tumor grade (Figure 4a and Supplemental Figure 5a). We also 219 

found that luminal metaclusters were typically enriched in ABPT regions and/or in intermediate 220 

stage patient samples. In particular, Prostein-high and AR-low metaclusters (LU03 and LU05; p 221 

values = 0.0001 and 0.026 respectively) were depleted in tumors versus ABPT samples (Figure 222 

4a and Supplemental Figure 5c,d). The depletion of Prostein-high phenotypes was even more 223 

pronounced in high grade compared to intermediate tumors (Figure 4a; bottom row). It is 224 

possible that during tumor progression, regulation of differentiation programs is lost, and 225 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.25.428046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428046


 

 13

prostate-specific antigens are no longer expressed, supporting the hypothesis that aggressive 226 

tumor cells are de-differentiated. A rare SMA-positive luminal cell type (LU06; p value = 0.012) 227 

was characteristic of patients with intermediate disease, irrespective of tumor or ABPT region. 228 

The only luminal metacluster enriched in high grade patients was a rare PSA low, CD15+, 229 

CD24+ (an adhesion protein previously identified as a cancer stem-cell marker15) and AR-high 230 

cell type (LU07; p value = 0.028; Figure 4a and Supplemental Figure 6). Two additional CD15+ 231 

cell populations were identified, TR03 and TR04, amongst transitional epithelial metaclusters. 232 

Both were increased in tumor and high grade patient samples, though significant enrichment 233 

could only be detected in TR03 (p value = 0.003) which co-expressed CK19 and CK7 (Figure 4a, 234 

Supplemental Figure 5e,f) while TR04 may be a more common precursor with lower cytokeratin 235 

expression. TR03 and TR04 also expressed a low amount of basal markers CK5/14.  236 
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 237 
Figure 4. Characterization of epithelial tumor clusters and patient groups. (a) bar indicating which metaclusters were
significantly enriched between three pairs of conditions: (top bar) high and intermediate grade samples, irrespective of tumor
status; (middle bar) tumor versus ABPT; (bottom bar) intermediate and high grade tumor regions only. All nominal p values are
given in Supplemental Table 2. (b) Pairwise Tanimoto similarity of intermediate (I) and high grade (H) tumor (T) and benign
tumor-adjacent (TA) samples for metaclusters in the microenvironment and epithelium. (c) Correlation of metaclusters across 17
tumor patient samples. Correlations in the paired adjacent benign tissue that were lost in tumor are indicated by an L in the
correlation plot while correlations that were gained are indicated by a G. Metacluster labels are colored to reflect cell types as in
Figure 2a. (d) UMAP projections of 23200 cells (400 cells  per patient) colored by expression of indicated epithelial and prostate-
specific markers. Maximum signal (=1) is shown in grey. (e) CD15 and p63 co-stained showing CD15 expression in both a
patient with acinar (left) and another with ductal (middle) carcinoma as well as absence of CD15 in normal glands (right)
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showing basal cell layer expressing p63. Scale 25μm. (f) Number of patients with cells belonging to a specific metacluster. 
Colors and labels matched to panels (a) and (c). (g) Grouped patient samples represented by proportion of metaclusters. Colors in 
bar plot reflect those on panels (a) and (c).  
 

When interpreting changes in tumor and ABPT (Figure 4a, middle bar) in combination 238 

with tumor-only changes across grades (Figure 4a, bottom bar), we found that in some 239 

metaclusters (LU03, MA04, TC04) the effect between tumor and ABPT was stronger than the 240 

effect between patient grades. The depletion of LU03 and enrichment of MA04 and TC04 in 241 

tumors was observed across high and intermediate grade patients, however an effect could still 242 

be observed between the different grade groups. In other cases (AE01, GR01, GR02 and TC03), 243 

no effect could be detected between grades, only between tumor and ABPT samples, suggesting 244 

that enrichment (AE01 and TC03; p values = 0.003 and 0.022) or depletion (GR01 and GR02; p 245 

values = 0.044 and 0.0004) of these cellular phenotypes happens in tumors of patients 246 

irrespective of grade. Lastly, there were metaclusters that changed less significantly between 247 

tumor and ABPT (LU05, TR03 and MA05; p values = 0.025, 0.096 and 0.014) and more across 248 

grades (p values = 0.004, 0.026, and 0.0007). This suggests that although there may have been a 249 

difference between tumor and ABPT regions, a difference also existed between the tumor 250 

regions of intermediate and high grade tumors. These cellular phenotypes suggest a possible 251 

progressive change in the prostate, where some metaclusters are lowest in ABPT, higher in 252 

intermediate grade tumors, and even higher in high grade tumors (or the reverse with highest 253 

expression in ABPT and progressive loss in intermediate, then high grade tumors). We were also 254 

interested in integrating information across all cellular phenotypes in the epithelium and in the 255 

microenvironment (Figure 4b). We took the mean metacluster proportion across all 17 patients 256 

for which we had tumor and ABPT (tumor adjacent) samples. We calculated the Tanimoto 257 

similarity between intermediate tumor-adjacent regions (ITA), intermediate tumors (IT), high 258 

grade tumor-adjacent regions (HTA) and high grade tumors (HT). We found that in the 259 

epithelium, tumor-adjacent regions in intermediate and high grade are most similar to one 260 

another, while intermediate and high grade tumors bear more similarity to each other than to 261 

their benign adjacent regions. However, in the microenvironment, high grade tumor-adjacent 262 

regions (HTA) are more similar to intermediate grade tumors (IT) than to their paired high grade 263 

tumors (HT), suggesting that high grade tumors may have progressed from intermediate tumors, 264 

but with further changes in epithelial cellular phenotypes, while the tumor-adjacent 265 

microenvironment remains similar to that of an intermediate grade tumor (Figure 4b). 266 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.25.428046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428046


 

 16

Next, we analyzed correlations between metaclusters in tumor samples across the 17 267 

patients for which we had paired tumor and ABPT samples (Figure 4c). We restricted the 268 

analysis to Spearman correlations with a significance level < 0.05 for both correlations across 269 

tumor and ABPT samples. We compared correlations in the tumor to those in the paired adjacent 270 

benign tissue and found that while some correlations were lost in tumor (indicated by an L in the 271 

correlation plot; Figure 4c) others were gained (indicated by a G; Figure 4c). For example, 272 

luminal epithelial cell types LU03 and LU05 were uncorrelated in benign tissue but correlated in 273 

tumors. Indeed, we had found that both of these prostein-high metaclusters were depleted in 274 

tumors and we found their decrease was correlated with one another. We found that while 275 

transitional epithelial metaclusters TR01 and TR02 (CK7+/CK19+ cells and CK7+/CK19+ 276 

apoptotic cells respectively) were correlated in both tumor and adjacent benign prostate tissue, 277 

the strong correlation between TR03 and TR04 (CD15+/CK7+/CK19+ and CD15+/CK-low cells 278 

respectively) was only present in tumor regions. New correlations also appeared between cell 279 

types of the microenvironment. For example, GR02 and GR03 (CD15-low and CD3+ 280 

granulocytes, respectively) were newly correlated in tumor regions. We also observed that most 281 

T cell types became correlated in tumors although they were uncorrelated in adjacent benign 282 

tissue. Anti-correlations were also gained. Notably, MA04, MA05 (proliferating and CD45-low 283 

macrophages) and TC04 (proliferating T cells) became anti-correlated with LU03 in tumor. This 284 

result suggests that the increase of these macrophage and T cell metaclusters may be related to 285 

the depletion of this, likely benign, prostein-high luminal cell type.  286 

While many new correlations and anti-correlations were gained in tumor regions, we also 287 

found that previously (anti-)correlated cell types in benign tissue became uncorrelated in tumor 288 

samples. Most macrophage metaclusters were correlated in benign tumor-adjacent samples but 289 

no longer in tumor. Basal cells were correlated with TR03 but this was not the case in tumor 290 

samples anymore, likely due to the de-regulated, malignant expansion of these transitional 291 

epithelial cells. Apoptotic epithelial cells (AE01) were correlated with transitional metaclusters 292 

TR01, TR02 and TR04 in tumor-adjacent regions but these correlations were lost in tumors. The 293 

main transitional epithelial metacluster TR01 used to be anti-correlated with various, likely 294 

benign, luminal cell types (LU01, LU03, LU05). It is believed that these transitional cells may 295 

originate from basal cells and are precursors of luminal cells and therefore a balance between the 296 
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population of CK7+/CK19+ cells and CK8/18 exists in healthy scenario. However, our results 297 

support that this balance is disrupted in tumor regions.   298 

The expression of CD15 in various malignant prostate epithelial cell populations (LU07, 299 

TR03 and TR04) was surprising although high-dimensional mapping using UMAP had already 300 

revealed CD15-high expressing cells in regions of epithelial marker expression such as E-301 

Cadherin and EpCAM, luminal markers CK8 and CK18, and transitional epithelial markers CK7 302 

and CK19 (Figures 3a and 4d). Immunohistochemistry confirmed the presence of CD15 in both 303 

ductal and acinar carcinoma of the prostate from  patients who were shown to have this rare 304 

population by mass cytometry (one representative acinar and one ductal patient samples shown 305 

in Figure 4e). This adhesion molecule is typically used as a granulocyte marker and plays 306 

important roles in cell adhesion16 and migration17. Although previously observed in other 307 

carcinomas18–20 and demonstrated to be a marker of propagating tumor cells21, cells expressing 308 

CD15 had not been previously detected in prostate tumors. To assess the clinical relevance of 309 

this CD15+/CK19+ subpopulation (metacluster TR03) we analysed two other TMA cohorts with  310 

374 patients (example core shown in Supplemental Figure 7a) with localized disease (336) and 311 

metastatic disease (38) and found that the proportion of patients with CD15 positive cells 312 

increased with disease severity (low, intermediate and high ISUP grades) and was highest 313 

amongst metastatic cases (Supplemental Figure 7b). Survival analysis did not yield any 314 

differences for this cohort however, the number of CD15+/CK19+ cases was very low. Only 5% 315 

positive cases were detected (19 patients out of 374, for which survival data was only available 316 

for 11) while via CyTOF most patients contained this cellular phenotype and 12% (7 out of 58) 317 

showed an enrichment.  However, even in enriched cases, TR03 represented on average 0.6-318 

1.1% of cells in a patient and overall, across all patients, this cellular phenotypes represented on 319 

average 0.3% of cells, making it difficult to identify a lot of potitive cases in a TMA spot with 320 

diameter0.06mm, here the number of cells is substantially lower than can be detected via high-321 

throughput mass cytometry. It is very likely many CD15-positive patients were missed in the 322 

TMA analysis which impaired survival analysis. 323 

Overall, 0.1%, 0.3% and 0.1% cells were found across the whole dataset from LU07, 324 

TR03 and TR04 respectively. Additionally, these rare CD15-expressing metaclusters were 325 

amongst the 14 observed in a subset of the patient cohort (Figure 4f). The remaining majority of 326 

metaclusters (29) were represented across all patients. In conclusion, our methodology identified 327 
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a previously uncharacterized prostate-tumor subpopulation, which may also characterize a 328 

distinct patient subtype. 329 

Although elevated PSA levels are typically associated with localized prostate cancer, 330 

luminal and transitional phenotypes found enriched in tumor or high grade samples had very 331 

little or no PSA expression (AE01, TR03 and LU07). Prostate cancer cells that express low 332 

levels or no PSA may be a self-renewing, tumor-propagating cell population that resists ADT7. 333 

Similarly, not all phenotypes increased in tumor regions were high in AR. While AR 334 

overexpression is associated with advanced disease and was found in one of the metaclusters 335 

enriched in high grade tumors (LU07), an AR-low phenotype was also enriched in high grade 336 

samples (TR03). Loss of AR has been associated with resistance to ADT8, and our results 337 

support that malignant phenotypes are not necessarily high in AR. We also found that AR-low 338 

metaclusters could be distinguished between benign and malignant by the presence of prostein 339 

and PSA. AR-low phenotypes that were PSA- and prostein-high were benign (LU03 and LU05), 340 

while malignant TR03, which was low in AR, was also low in PSA and prostein.  341 

 342 

Rare cellular phenotypes define patient subgroups. 343 

After having described the different cellular phenotypes present in prostate tumors, we wondered 344 

whether certain metaclusters (or combinations) could characterize patient groups. We clustered 345 

patients according to metacluster proportions using hierarchical clustering with Pearson 346 

correlation dissimilarity. We found many small groups across our 58 patient cohort that could 347 

each be characterized by the enrichment or depletion of a handful of phenotypes (Figure 4g). 348 

After statistical testing, we were able to define which metaclusters significantly defined a patient 349 

group (Figure 4g and Supplemental Figure 7c). Notably, patient group 1 consisted of patients 350 

with enrichment of transitional epithelial cells expressing CD15 (TR03 and TR04). The former, 351 

as had already been observed, was enriched in high grade tumors. Patient group 2 showed 352 

significant enrichment of prostein high phenotype LU05. Group 3 consisted of patients with the 353 

highest proportion of apoptotic epithelial cells (AE01), previously associated with tumor. One 354 

patient, with the highest enrichment of SMA, metacluster LU06, clustered separately from the 355 

rest and solely constituted patient group 5. High proportion of LU07 (CD15+, AR-high luminal 356 

cells), which we had already shown as enriched in high grade tumors (Figure 4a), was 357 

characteristic of patient group 8. The long-term effect that these phenotypes may have on 358 
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survival remains to be determined. We showed that few single-cell phenotypes are necessary to 359 

further stratify patients beyond their ISUP tumor grade and may represent treatment targets for 360 

personalized treatment.  361 

 362 

DISCUSSION 363 

 364 

We achieved the first single-cell analysis of prostate tumors and tissues by mass 365 

cytometry using a newly developed computational method that provides an unprecedented 366 

combination of high-dimensional clustering performance and speed. To reveal the phenotypic 367 

diversity of primary prostate tumors and their microenvironment, we profiled 1,670,117 cells 368 

from 58 prostate cancer patients through simultaneous quantification of 36 different protein 369 

abundances using mass cytometry. 370 

For data analysis, we used the newly developed Franken pipeline. The initial step builds a 371 

SOM22,23 to over-cluster the preprocessed data into a large number of nodes. Next, a mutual k-372 

nearest neighbor graph is created between the SOM nodes using the Tanimoto similarity9. This 373 

similarity measure is extremely suitable to analyzing high-dimensional data as it takes into 374 

consideration both the angle and the length of vectors when indicating their proximity making it 375 

more robust than more commonly used distance measures such as Euclidean or cosine. Lastly, 376 

the resulting graph is clustered using a random-walk-based graph clustering technique called 377 

Walktrap10. By comparing Franken to two state of the art methods for clustering mass cytometry 378 

data we found that when compared to FlowSOM, Franken provided superior F1-scores. 379 

Comparison of Franken to PhenoGraph showed that although they performed equivalently in F1-380 

scoring for data-sets of around 200,000 cells, Franken could be run on up to 40 million cells 381 

(which would be computationally infeasible for PhenoGraph) in the time it would take 382 

Phenograph to analyze 1 million cells. Franken also ran over 20 times faster than the state-of-the-383 

art single-cell RNA sequencing clustering technique, Seurat. Our Franken pipeline was able to 384 

identify very rare subpopulations with a frequency as low as 1/5,000 and detected previously 385 

unknown rare prostate cancer phenotypes which were later confirmed through imaging, showing 386 

that Franken does not compromise performance or sensitivity while providing high scalability.  387 

As Franken is sensitive, it can detect rare metaclusters based on subtle gradient variation 388 

of markers. To focus on clusters with qualitatively similar expression patterns through 389 
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hierarchical clustering of correlation similarities and described 33 prostate cellular phenotypes 390 

including 14 epithelial and 18 cell types from the microenvironment and one cluster with very 391 

low to no expression of the markers in our panel. Tumors and surrounding ABPT had 392 

considerable similarity: Nine of the 33 metaclusters (27%) were present at significantly different 393 

frequencies between the two regions. Although this was much higher than would be expected at 394 

random for a confidence level of 5% (1.65 out of 33), almost two thirds or cell types and states 395 

detected (24 out of 33), were shared at similar proportions in tumor and ABPT tissue. Most 396 

epithelial differences between tumor and ABPT and tumor grades involved luminal cell types 397 

with the exception of one transitional epithelial phenotype (the CD15-high metacluster TR03), 398 

suggesting that prostate tumorigenesis is strongly affected by an interplay of luminal phenotypes. 399 

Prostein-high phenotypes were depleted in tumor regions and even more so in high grade tumors; 400 

this suggests that during tumorigenesis there is selection for poorly differentiated cell types. 401 

Tumor-enriched phenotypes all contained EpCAM. High levels of EpCAM expression at both 402 

mRNA and protein levels were previously reported in prostate cancer tissues and cell lines24,25. 403 

Our analysis showed that both AR-high /PSA-low (LU07) and AR-low /PSA-low  (TR03) cells 404 

were present in localized, hormone-naïve prostate tumors even though such phenotypes had 405 

previously been associated only with castration-resistant disease after ADT or metastatic disease 406 
6–8. Cells in the AR-high /PSA-low cluster also overexpressed Nkx3.1. Loss of prostein26 and 407 

PSA expression27, Nkx3.1 overexpression28, and AR overexpression or amplification29–31 have 408 

been shown to be common in castration-resistant disease states. Furthermore, men with localized 409 

high-grade prostate cancer but low PSA show inferior cancer survival32. It remains to be 410 

determined whether these rare cells with the properties of tumors resistant to ADT are capable of 411 

dissemination and are responsible for disease progression after prostatectomy. Surprisingly, two 412 

phenotypes enriched in high grade patients expressed CD15. After analysing an additional 374 413 

patients’ TMA samples, we also found that CD15+/CK19+ prostate epithelial cells were further 414 

enriched in metastatic disease. CD15 plays an important role in cell adhesion and migration16,17 415 

and CD15-expressing cells have been identified in other tumor types as having stem-like 416 

potential but not in prostate cancer18–20 and might represent a new biomarker for aggressive 417 

phenotypes with a bigger potential to metastasize.  418 

The tumor microenvironments were similar in both the tumor regions and the 419 

neighboring ABPT regions for patients of different tumor grades with the exception of 420 
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granulocytes, which were present at lower levels in tumors regardless of grade. Other rarer 421 

immune cell types changed both between tumor and ABPT regions as well as across tumor 422 

grades. In particular, we observed that one proliferating T-cell (TC04) and two macrophage 423 

(proliferating MA04 and CD45-low MA05) phenotypes were enriched in tumor regions and were 424 

further enriched in high-grade tumors.  425 

The microenvironments of tumors from the intermediate sub-cohort had lower 426 

frequencies of immune phenotypes compared to the ABPT regions, but we found the opposite in 427 

the high grade sub-cohort. In high grade tumors, there was an enrichment of multiple immune 428 

phenotypes compared to the ABPT regions. It is currently unclear whether intermediate grade 429 

tumors progress to high grade disease. If such a progression happens, our analysis suggests that 430 

the hyperplasia and expansion of the epithelial compartment might precede alterations in the 431 

tumor microenvironment, or it may be that these differences are reflective of disease stage. We 432 

proceeded to analyze the overall changes in the microenvironment and epithelium by integrating 433 

information across all metaclusters in these two compartments and estimating the Tanimoto 434 

similarity between high grade (HT) and intermediate tumors (IT) as well as high grade and 435 

intermediate tumor-adjacent ABPT regions (HTA and ITA, respectively). We found further 436 

evidence of a possible progression from intermediate to high grade tumors suggested by the 437 

similarity of the microenvironments of intermediate grade tumors and high-grade ABPT regions. 438 

Some of the rare cell types in the microenvironment, which we found to be enriched in tumors 439 

from both grade groups and further enriched in high grade patients may represent new putative 440 

targets that can be used to prevent the progression of the disease.  441 

Tumors do not grow in isolation; cancerous cells require support from the 442 

microenvironment. Accessory cells have been successfully targeted with therapy33–35. We found 443 

that most immune metaclusters were present at similar frequencies or were decreased in the 444 

tumor compared to the adjacent ABPT regions with the notable exceptions of rare T cell and 445 

macrophages cellular phenotypes. Both monocyte infiltration and macrophage proliferation are 446 

necessary for macrophage maintenance during tumor growth36, and in breast cancer, proliferating 447 

macrophages are associated with high tumor grade, hormone receptor negativity, and poor 448 

clinical outcome37. However, macrophage counting based on immunohistochemical analysis had 449 

not led to any consensus on the prognostic significance of tumor-associated macrophages in 450 

prostate cancer12,38. In our prostate cancer cohort, proliferative macrophages were enriched in 451 
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prostate tumors and even more so in high grade patients. Taken together with findings that 452 

tumor-associated macrophages (TAMs) are capable of proliferation37, our data suggests that in 453 

addition to therapy that inhibits differentiation of TAMs from circulating monocytes, blocking 454 

the proliferation of macrophages may have an effect in slowing the development of high grade 455 

disease in prostate cancer. Our clustering analysis identified that not all macrophage phenotypes 456 

changed frequency in tumor compared to ABPT regions. This suggests the presence of separate 457 

cancer- versus stroma-infiltrating macrophage phenotypes that may have opposing influences on 458 

tumorigenesis12,14, highlighting the importance of investigating macrophage infiltration in 459 

prostate cancer.  460 

In summary, new biomarkers are needed to identify which men qualify for active 461 

surveillance or need aggressive treatment. Understanding the cellular complexity of prostate 462 

tumors and their microenvironments is key to the development of new diagnostic and treatment 463 

strategies. Here, we provide a thorough description of prostate tissue heterogeneity on the single-464 

cell level and describe differences between tumors and the neighboring benign hyperplasia 465 

regions as well as across patient grades. We identify two CD15-high phenotypes enriched in high 466 

grade patients as well as changes to the microenvironment in rare macrophage and T cell 467 

phenotypes associated with tumor regions and high grade disease. We also identify in men with 468 

localized disease, epithelial subpopulations associated with advanced castration-resistant disease. 469 

The alterations to the epithelium and microenvironment should be further explored to guide 470 

development of new diagnostic and treatment paradigms for prostate cancer and to understand 471 

which cellular phenotypes in primary prostate cancer need to be detected and may change 472 

treatment decisions. 473 

 474 

METHODS 475 

 476 

Patient samples and tissue microarray construction 477 

The Ethics Committee of the Canton of Zurich approved all procedures involving human 478 

prostate material (KEK-ZH-No. 2008-0040). All patients were part of the Zurich Prostate Cancer 479 

Outcomes Cohort (ProCOC) study 39,40, and each patient signed an informed consent form. 480 

Prostatectomy samples were taken from 58 prostate cancer patients from the ProCOC cohort 481 

between 2015 and 2017. Tumors were of a range of ISUP grades. No clinical or histological 482 
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status was used in the selection of the cohort. Staging and grading was performed using World 483 

Health Organization and ISUP criteria41). Twenty-four patients had ISUP grade II (Gleason score 484 

3+4), 22 had ISUP grade III (Gleason score 4+3), and 12 had ISUP grade V prostate carcinoma 485 

(Gleason scores 4+5, 5+4, and 5+5).  486 

Immediately after surgery, native radical prostatectomy specimens were transferred to the 487 

frozen section lab on ice (4 °C) and were processed within 15 min in the Department of 488 

Pathology and Molecular Pathology, University Hospital Zurich. The first slice after dissection 489 

of the apex was quartered and snap frozen in four separate blocks for biobanking within the 490 

ProCOC study. Fresh tumor and ABPT tissue was taken from the second slice after dissection of 491 

the apex without destruction of surgical margins and the pseudocapsule. After formalin fixation 492 

overnight, the rest of the specimen was embedded in paraffin. Hematoxylin and eosin stained 493 

sections of the four frozen blocks were sliced for immediate evaluation regarding tumor load and 494 

margins in synopsis with the standard formalin-fixed paraffin-embedded histology to control for 495 

the representativeness of tissue sampling for mass cytometry.  496 

Following evaluation of tissue sections by uropathologists (NJR, JHR, PJW) a tissue 497 

microarray (TMA) containing two ABPT and two tumor regions from all patients in the selected 498 

cohort was generated as previously described 42. For TMA construction, representative tumor 499 

areas of the second and third slice of radical prostatectomy specimens were chosen, as close as 500 

possible to the area of tissue sampling for mass cytometry. Supplementary Figure 5 shows H&E 501 

images of the selected regions. 502 

 503 

Fresh tissue preparation 504 

After surgical resection and based on the aforementioned real-time frozen sections, the 505 

index tumor lesions (the most extensive with the highest Gleason score) were immediately 506 

harvested and transferred to precooled MACS tissue storage solution (Miltenyi Biotec) and 507 

shipped at 4°C. To better select the index lesion, only cases in which a tumor nodule was also 508 

macroscopically visible were selected, ultimately resulting in a cohort with higher ISUP grades. 509 

Tissue processing was completed within 24 h of collection. For the dissociation of tissues to 510 

single cells, the tissue was minced using surgical scalpels and further disintegrated using the 511 

Tumor Dissociation Kit, human (Miltenyi Biotech) and the gentleMACS Dissociator (Miltenyi 512 

Biotech) according to the manufacturer's instructions. The resulting single-cell suspensions were 513 
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filtered through sterile 70-μm and 40-μm cell strainers and stained for viability with 25 μM 514 

cisplatin (Enzo Life Sciences) in a 1-min pulse before quenching with 10% FBS (Fienberg et al., 515 

2012). Cells were then fixed with 1.6% paraformaldehyde (Electron Microscopy Sciences) for 10 516 

min at room temperature and stored at -80 °C. 517 

  518 

Mass cytometry barcoding 519 

To ensure homogenous staining, 0.3 x 106 to 0.8 x 106 cells from each tumor sample were 520 

barcoded as previously described using a 126-well barcoding scheme consisting of unique 521 

combinations of four out of nine barcoding reagents43. Metals included palladium (105Pd, 106Pd, 522 
108Pd, 110Pd, Fluidigm) conjugated to bromoacetamidobenzyl-EDTA (Dojindo) and indium (113In 523 

and 115In, Fluidigm), yttrium (89Y, Sigma Aldrich), rhodium (103Rh, Sigma Aldrich), and bismuth 524 

(209Bi, Sigma Aldrich) conjugated to maleimido-mono-amide-DOTA (Macrocyclics). The 525 

concentrations were adjusted to 20 nM (209Bi), 100 nM (105-110Pd, 115In, 89Y), 200 nM (113In), or 2 526 

μM (103Rh) as previously reported to be optimal44. Cells were barcoded using the transient partial 527 

permeabilization protocol45. Cells were washed with 0.03% saponin in PBS (Sigma Aldrich) and 528 

incubated for 30 min at room temperature with 200 μl of mass tag barcoding reagents. Cells were 529 

then washed twice with PBS plus saponin and twice with cell staining medium (CSM, PBS with 530 

0.5% bovine serum albumin and 0.02% sodium azide). 531 

  532 

Antibodies and antibody labeling 533 

The supplier, clone, and metal tag for each antibody used in this study are listed in 534 

Supplemental Table 3. Antibody labeling with the indicated metal tag was performed using the 535 

MaxPAR antibody conjugation kit (Fluidigm). After metal conjugation, the concentration of 536 

each antibody was assessed using a Nanodrop (Thermo Scientific). The concentration was 537 

adjusted to 200 μg/ml and stored in Candor Antibody Stabilizer. All conjugated antibodies were 538 

titrated for optimal concentration for use with prostate tissues. Antibody usage in this study was 539 

managed using the AirLab cloud-based platform46. 540 

 541 

Immunohistochemistry 542 

For immunohistochemical validation studies anti-CD3 (mouse monoclonal, clone LN10, 543 

Leica Microsystems) and anti-CD15 (mouse monoclonal, clone Carb-3, Agilent Dako) 544 
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antibodies were used. Automated platforms were used for in situ protein expression analyses of 545 

CD15 (Ventana Benchmark CD15), and CD3 (Leica Bond-Max). 546 

   547 

Antibody staining and mass cytometry data collection 548 

After barcoding, pooled cells were incubated with FcR blocking reagent (Miltenyi 549 

Biotech) for 10 min at 4 °C. Samples were stained with 100 µl of the antibody panel per 106 cells 550 

for 60 min at 4 °C. Cells were washed twice in CSM and resuspended in 1 ml of nucleic acid Ir-551 

Intercalator (Fluidigm) overnight at 4 °C. Cells were then washed once in CSM, once in PBS, 552 

and twice in water. Cells were then diluted to 0.5 x 106 cells/ml in H2O containing 10% of EQ™ 553 

Four Element Calibration Beads (Fluidigm). Samples were placed on ice until analysis. Data 554 

were acquired on an upgraded Helios CyTOF 2 mass cytometer using the Super Sampler 555 

(Victorian Airship) introduction system. 556 

  557 

Mass cytometry data analysis 558 

Individual .fcs files collected from each set of samples were concatenated using the .fcs 559 

concatenation tool from Cytobank, and data were normalized using the executable MATLAB 560 

version of the Normalizer tool 47. Individual samples were debarcoded using the CATALYST 561 

R/Bioconductor package 48. Debarcoded files were compensated for channel crosstalk using 562 

single-stained polystyrene beads as previously described 48. 563 

CyTOF data was analyzed by initially applying an arcsinh transformation with a cofactor 564 

of 5 (�������� �  �	
���
������/5�). The UMAP algorithm49 was applied to the high-565 

dimensional data from 23,200 (400 per patient) cells taken at random from across the patient 566 

cohort using default parameters (perplexity, 30; theta, 0.5) to facilitate visualization in two 567 

dimensions. The pre-processed data were analyzed using the Franken algorithm as described in 568 

detail below. All analysis was done using R version 3.4.1 569 

 570 

The Franken pipeline 571 

The initial step of the Franken pipeline uses a SOM 22,23 to over-cluster the preprocessed 572 

data into a large number of nodes. Prostate patient data was pooled from all patient samples 573 

(1,670,117 cells) and 400 SOM nodes were used (SOM grid dimensions were x=20 and y=20). 574 

Next, a mutual k-nearest neighbor graph (k=6) was built between the SOM nodes using the 575 
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Tanimoto similarity 9, which unlike the binary version, can be applied to continuous or discrete 576 

non-negative features and retains the sparsity property of the cosine while allowing 577 

discrimination of collinear vectors. Lastly, the resulting graph is clustered using a random-walk-578 

based graph clustering technique called Walktrap, using the implementations available in 579 

package igraph 50 in R. Walktrap is a graph partitioning technique that requires a choice of 580 

random walk steps.  To increase our pipeline’s robustness, this procedure is applied for a range 581 

of random walk steps and the smallest step that maximizes the graph’s modularity is chosen. 582 

 According to the thorough review and comparison of community detection algorithms by 583 

Yang et al. 51, Walktrap is amongst the best performing algorithms for both large and small 584 

networks regardless of whether the mixing parameter is high or low. Although Yang et al. found 585 

that for large mixing parameters most algorithms failed to detect the community structure, 586 

Walktrap was able to do it. Another advantage of Walktrap is that it is possible (although not 587 

necessary) for a user to define the number of communities one wishes to find in the data. This 588 

allows the user to decide exactly how many clusters they wish to find, although the method is by 589 

default run in an unsupervised way. Although Walktrap is not the fastest method for large 590 

networks, the network size in Franken is never large due to the initial SOM-building step.  591 

 592 

Benchmarking Franken against other methods for additional datasets  593 

To test the performance of Franken, we compared it to two state-of-the-art clustering 594 

methods for mass cytometry data, Phenograph52 and FlowSOM23. All three methods were used 595 

to cluster data obtained from analysis of healthy bone marrow cells53 and data from 10 cell lines 596 

stained with our prostate-centric antibody panel (Supplemental Figure 1b and 1c). The cell 597 

phenotypes were manually annotated in the data obtained from analysis of the bone marrow cells 598 

according to Bendall et al.53. We calculated precision and recall (as shown by F1 scores 599 

according to Weber et al.5) for each phenotype in each dataset (Supplemental Figure 1a and 1b). 600 

Franken was able to recover the most phenotypes in both datasets, resulting in the least 601 

phenotypes with zero F1 scores. After repeating the F1 estimates for multiple runs (with different 602 

random seeds) of each method, on average, Franken performed as well or better than the other 603 

methods. Franken requires the input of three parameters: the SOM grid dimensions (x and y 604 

which multiplied correspond to the number of nodes used to build the SOM) and k neighbors 605 

(the number of neighbors used to decide whether two nodes are connected by an edge in the 606 
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mutual nearest neighbor graph); a SOM size of 400 (x=y=20) and k = 6 were used in our 607 

simulations of all three datasets. Franken results were robust to the choice of its parameters 608 

(Supplemental Figure 1). 609 

Franken requires minimal computational resources, and runtimes were very fast when 610 

evaluated on the two benchmark datasets containing around 200,000 cells (Supplemental Figure 611 

2d). While FlowSOM was slightly faster than Franken, it performed very poorly in F1 scores 612 

compared to both Franken and Phenograph. FlowSOM was run using the default parameters 613 

chosen by the authors as optimal (SOM nodes 100). However, as FlowSOM and Franken share 614 

the SOM building step we also tested FlowSOM using the same 400 nodes SOM grid however 615 

the F1 scores were equivalent and the runtime was increased, no longer making FlwoSOM 616 

superior in speed therefore we chose to use the author's default FlowSOM parameters. We 617 

hypothesize that the poor performance of FlowSOM is due to the hierarchical clustering step 618 

which is less suitable to the high dimensional node representation resulting from the SOM than 619 

our mutual nearest neighbor graph-building approach. 620 

 Although the F1 scores from Phenograph were comparable to Franken’s, their scalability 621 

varied greatly. After testing Franken on several synthetic datasets of sizes varying from 20 622 

thousand to 40 million, we showed that one could analyze 40 million cells with Franken in the 623 

equivalent time taken to analyze 1 million cells using Phenograph (Supplemental Figure 2). 624 

Franken can also be applied to single-cell RNA sequencing data, therefore we also compared 625 

Franken’s scalability with the state-of-the-art method for single-cell RNA sequencing Seurat and 626 

could show that Franken was far superior in scalability (Supplemental Figure 2). Franken could 627 

cluster 40 million cells in the half of the time taken to cluster 3 million cells with Seurat. As 628 

Phenograph and Seurat require far larger computational resources they could not be run on the 629 

larger datasets beyond 1 and 3 million respectively.  630 

 631 

Other computational methods  632 

 PhenoGraph runs included in Supplemental Figure 1 were performed using the 633 

MATLAB (R2018b) implementation using the GUI CYT3 as the matlab implementation was the 634 

only one which allowed different random seeds to be used in each run. Default parameters were 635 

used: k nearest neighbors = 30. PhenoGraph runs in supplementary Figure 2 were performed 636 
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using its implementation in R (Rphenograph) for its ease in including it in scripts instead of 637 

manually running the MATLAB GUI.  638 

FlowSOM and Seurat runs were performed using their implementation in R and default 639 

parameters.   640 

TMA analysis 641 

 Immunohistochemistry applied to TMA was used to validate single-cell mass cytometry 642 

data. The open-source software QuPath 54 was used to quantify cell types in TMA. CD3+ cells 643 

were quantified using an automated detection procedure, and CD15+ cells were manually 644 

selected by a pathologist (J.H.R.).  645 

 646 

Data availability 647 

The single-cell data supporting the findings of this study including raw .fcs files from primary 648 

samples and cell lines as well as TMA images will be available online upon publication.  649 

The Bone marrow CyTOF data pertaining to Figure 2 refers to article: 650 

S.C. Bendall, E.F. Simonds, P. Qiu, A.D. Amir, P.O. Krutzik, R. Finck, R.V. Bruggner, R.Mela651 

med, A. Trejo, O.I. Ornatsky, et al. Single-cell mass cytometry of differential immune and drug 652 

responses across a human hematopoietic continuum 653 

Science, 332 (2011), pp. 687-696. The raw data is publicly available at 654 

http://cytobank.org/nolanlab/reports 655 

and was pre-processed according to Weber, Lukas M; Robinson, Mark D (2016). Comparison of 656 

clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry 657 

Part A, 89(12):1084-1096. 658 

Code availability  659 

Code for data pre-processing pipeline (from Weber et al.) can be found here: 660 

https://github.com/lmweber/cytometry-clustering-comparison 661 

 662 

The Franken package is available at https://github.com/ldvroditi/Franken 663 
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