- 1 Surface-based Single-subject Morphological Brain Networks: Effects of
- 2 Morphological Index, Brain Parcellation and Similarity Measure, Sample
- 3 Size-varying Stability and Test-retest Reliability
- 4
- 5 Yinzhi Li^{1,5#}, Ningkai Wang^{1,5#}, Hao Wang², Yating Lv³, Qihong Zou⁴ and Jinhui
- 6 Wang^{$1,5^*$}
- 7
- ¹Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of
- 9 Mental Health and Cognitive Science, Center for Studies of Psychological
- 10 Application, South China Normal University, Guangzhou, China
- ²Institute of Fundamental and Frontier Sciences, University of Electronic Science and
- 12 Technology of China, Chengdu, China
- ³Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou,
- 14 Zhejiang, China
- ⁴Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking
- 16 University, Beijing, China
- ⁵Key Laboratory of Brain, Cognition and Education Sciences (South China Normal
- 18 University), Ministry of Education
- 19
- [#]These authors contribute equally to this work.
- 21
- 22 ***Correspondence author**

- 23 Jinhui Wang, Institute for Brain Research and Rehabilitation, Guangdong Key
- 24 Laboratory of Mental Health and Cognitive Science, Center for Studies of
- 25 Psychological Application, South China Normal University, Guangzhou 510631,
- 26 China. Email: jinhui.wang.1982@m.scnu.edu.cn

27 Abstract

28	Morphological brain networks, in particular those at the individual level, have become
29	an important approach for studying the human brain connectome; however, relevant
30	methodology is far from being well-established in their formation, description and
31	reproducibility. Here, we extended our previous study by constructing and
32	characterizing single-subject morphological similarity networks from brain volume to
33	surface space and systematically evaluated their reproducibility with respect to effects
34	of different choices of morphological index, brain parcellation atlas and similarity
35	measure, sample size-varying stability and test-retest reliability. Using the Human
36	Connectome Project dataset, we found that surface-based single-subject
37	morphological similarity networks shared common small-world organization, high
38	parallel efficiency, modular architecture and bilaterally distributed hubs regardless of
39	different analytical strategies. Nevertheless, quantitative values of all interregional
40	similarities, global network measures and nodal centralities were significantly
41	affected by choices of morphological index, brain parcellation atlas and similarity
42	measure. Moreover, the morphological similarity networks varied along with the
43	number of participants and approached stability until the sample size exceeded ~70.
44	Using an independent test-retest dataset, we found fair to good, even excellent,
45	reliability for most interregional similarities and network measures, which were also
46	modulated by different analytical strategies, in particular choices of morphological
47	index. Specifically, fractal dimension and sulcal depth outperformed gyrification
48	index and cortical thickness, higher-resolution atlases outperformed lower-resolution

- 49 atlases, and Jensen-Shannon divergence-based similarity outperformed
- 50 Kullback-Leibler divergence-based similarity. Altogether, our findings propose
- 51 surface-based single-subject morphological similarity networks as a reliable method
- 52 to characterize the human brain connectome and provide methodological
- recommendations and guidance for future research.
- 54
- 55 **Keywords:** morphological brain network, cortical surface, structural MRI, sample
- 56 size, test-retest reliability

57 Introduction

58	Morphological brain networks depict patterns of interregional relations in regional
59	brain morphology on the basis of structural magnetic resonance imaging. Historically,
60	morphological brain networks are mainly derived via population-based morphological
61	covariance network methods by estimating interregional covariance across a cohort of
62	participants in a certain morphological index, such as gray matter volume, cortical
63	thickness and surface area (Bassett et al., 2008; He et al., 2007; Sanabria-Diaz et al.,
64	2010). To date, the population-based morphological covariance network methods have
65	been widely used as an important tool to study the human brain, including but not
66	limited to parsing of organizational principles of healthy brains, characterization of
67	trajectories during development and aging and identification of abnormalities in
68	various brain diseases (see Alexander-Bloch et al., 2013a; Evans, 2013 for two
69	excellent reviews).
70	However, the population-based morphological covariance networks suffer from
71	several noticeable issues, such as neglect of interindividual variability, requirement of
72	a large sample size and introduction of complicated models for subsequent statistical
73	inference. All these issues limit the universal application of morphological brain
74	networks, in particular in uncovering their neurobiological significance and clinical
75	diagnostic and prognostic value. Recently, the advent of individual-level
76	morphological similarity networks has overcome, to a great extent, these issues and
76 77	morphological similarity networks has overcome, to a great extent, these issues and has thus attracted considerable attention (Jiang et al., 2017; Kong et al., 2015; Li et al.,

79	these individual-level methods, several studies show that morphological similarity
80	networks can capture known cortical cytoarchitecture and related gene expression
81	(Seidlitz et al., 2018), account for interindividual differences in cognition (Li and
82	Kong, 2017; Seidlitz et al., 2018; Tijms et al., 2014), and distinguish patients with
83	schizophrenia from healthy controls (Zhao et al., 2020) and predict clinical
84	progression of patients with Alzheimer's disease (Tijms et al., 2018). These findings
85	provide strong evidence that individual-level morphological similarity networks are
86	biologically meaningful and are of great value in helping clinical diagnosis and
87	prognosis.
88	Technically, individual-level morphological similarity networks can be divided
89	into two subcategories. The first estimates interregional morphological similarity by
90	computing Pearson correlation coefficients in regional mean signals across different
91	morphological indices (Li et al., 2017; Seidlitz et al., 2018). This type of method,
92	however, not only neglects intraregional morphological distributions but also may
93	lead to unstable similarity estimation due to a limited number of morphological
94	indices available (< 10 in previous studies), which are treated as samples for the
95	correlation analysis. In contrast, the second subcategory estimates interregional
96	morphological similarity at a more refined level by taking intraregional morphological
97	distributions into account from different perspectives (Jiang et al., 2017; Kong et al.,
98	2015; Tijms et al., 2012; Yu et al., 2018). In this regard, we previously constructed
99	single-subject morphological similarity networks by estimating interregional
100	morphological similarity in the distribution of regional gray matter volume in terms of

101	the Kullback-Leibler divergence (<i>KLD</i> ; Wang et al., 2016). We found that this method
102	can reveal structured organization of morphological similarity networks with high
103	test-retest (TRT) reliability (Wang et al., 2016). It should be noted that the Pearson
104	correlation-based method and the KLD-based method are essentially different: the
105	former estimates interregional morphological similarity in intraregional mean of
106	multiple morphological indices, while the latter estimates interregional morphological
107	similarity based on intraregional distribution of a single morphological index. The
108	Pearson correlation method cannot be used to estimate interregional morphological
109	similarity based on a single morphological index. This is not only because there are
110	different numbers of vertices but also because there is no one-to-one correspondence
111	of the vertices between two regions. Thus, these two types of methods cannot be
112	compared directly.
112 113	compared directly. In the present contribution, we extended our previous study in several aspects.
112 113 114	compared directly. In the present contribution, we extended our previous study in several aspects. First, we constructed single-subject morphological similarity networks in cerebral
112 113 114 115	compared directly. In the present contribution, we extended our previous study in several aspects. First, we constructed single-subject morphological similarity networks in cerebral cortical surface rather than in volume space. The greatest benefit from this switch is
112 113 114 115 116	compared directly. In the present contribution, we extended our previous study in several aspects. First, we constructed single-subject morphological similarity networks in cerebral cortical surface rather than in volume space. The greatest benefit from this switch is that spherical registration of cortical surface meshes increases the accuracy of brain
 112 113 114 115 116 117 	compared directly. In the present contribution, we extended our previous study in several aspects. First, we constructed single-subject morphological similarity networks in cerebral cortical surface rather than in volume space. The greatest benefit from this switch is that spherical registration of cortical surface meshes increases the accuracy of brain registration and thus allows more precise localization (Desai et al., 2005). In addition,
 112 113 114 115 116 117 118 	compared directly. In the present contribution, we extended our previous study in several aspects. First, we constructed single-subject morphological similarity networks in cerebral cortical surface rather than in volume space. The greatest benefit from this switch is that spherical registration of cortical surface meshes increases the accuracy of brain registration and thus allows more precise localization (Desai et al., 2005). In addition, inflation of cortical surface meshes promotes better visualization of buried sulci by
 112 113 114 115 116 117 118 119 	compared directly. In the present contribution, we extended our previous study in several aspects. First, we constructed single-subject morphological similarity networks in cerebral cortical surface rather than in volume space. The greatest benefit from this switch is that spherical registration of cortical surface meshes increases the accuracy of brain registration and thus allows more precise localization (Desai et al., 2005). In addition, inflation of cortical surface meshes promotes better visualization of buried sulci by raising them to the surface. Second, there are more forms of morphological indices
 112 113 114 115 116 117 118 119 120 	compared directly. In the present contribution, we extended our previous study in several aspects. First, we constructed single-subject morphological similarity networks in cerebral cortical surface rather than in volume space. The greatest benefit from this switch is that spherical registration of cortical surface meshes increases the accuracy of brain registration and thus allows more precise localization (Desai et al., 2005). In addition, inflation of cortical surface meshes promotes better visualization of buried sulci by raising them to the surface. Second, there are more forms of morphological indices available for surface mesh-based analysis, with each capturing different aspects of

122 matter volume), used in our previous study, this work examined common and specific

123	degrees of organization among different types of morphological similarity networks						
124	derived from different morphological indices. These analyses are of great significance						
125	for comprehensive understanding of morphological similarity network architecture.						
126	Third, in addition to evaluating different brain parcellation atlases as in our previous						
127	study, this work examined effects of different similarity measures on morphological						
128	similarity networks. Despite accumulating evidence for significant impacts of						
129	different similarity measures on structural and functional brain networks (Liang et al.,						
130	2012; Sarwar et al., 2019; Zalesky et al., 2010), the extent to which morphological						
131	similarity networks depends on choices of similarity measure is largely unknown.						
132	Finally, this work evaluated stability with respect to different sample sizes and TRT						
133	reliability of morphological similarity networks.						
134	We hypothesize that quantitative descriptions of surface-based single-subject						
135	morphological similarity networks are dependent on choices of morphological index,						
136	brain parcellation atlas and similarity measure, are robust to variation in sample size						
137	and have high TRT reliability.						
138							
139	Materials and Methods						
140	General analytical pipeline						

141 In this study, using a large-scale dataset, we first derived 4 surface-based, vertexwise

142 morphological brain maps (fractal dimension, FD, gyrification index, GI, sulcal depth,

143 SD, and cortical thickness, CT) for each participant, based on which single-subject

144 morphological similarity networks were constructed using two surface atlases for

145	brain parcellation (a2009s atlas and a2005s atlas) and two similarity measures for
146	interregional similarity estimation (KLD-based similarity, KLDs, and Jensen-Shannon
147	divergence-based similarity, JSDs). Therefore, we obtained 16 morphological
148	similarity networks in total for each participant (4 morphological indices \times 2
149	parcellation atlases \times 2 similarity measures). Then, we examined effects of the
150	different analytical strategies as well as sample sizes on interregional similarity,
151	global network organization and nodal centrality of the resultant morphological
152	similarity networks. Finally, we utilized an independent, TRT dataset to explore
153	reliability of surface-based single-subject morphological similarity networks under
154	different analytical strategies, aiming to provide methodological recommendations for
155	future studies. Figure 1 presents a flowchart of the overall pipeline of data processing.
156	
156 157	Participants
156 157 158	Participants Two publicly available datasets were used in this study: the Human Connectome
156 157 158 159	Participants Two publicly available datasets were used in this study: the Human Connectome Project (HCP) S900 dataset (www.humanconnectome.org) (Van Essen et al., 2013)
156 157 158 159 160	Participants Two publicly available datasets were used in this study: the Human Connectome Project (HCP) S900 dataset (www.humanconnectome.org) (Van Essen et al., 2013) and the Beijing Normal University (BNU) TRT dataset
156 157 158 159 160 161	Participants Two publicly available datasets were used in this study: the Human Connectome Project (HCP) S900 dataset (www.humanconnectome.org) (Van Essen et al., 2013) and the Beijing Normal University (BNU) TRT dataset (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html). The former was
156 157 158 159 160 161 162	Participants Two publicly available datasets were used in this study: the Human Connectome Project (HCP) S900 dataset (www.humanconnectome.org) (Van Essen et al., 2013) and the Beijing Normal University (BNU) TRT dataset (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html). The former was used to characterize the topological organization of morphological similarity networks
156 157 158 159 160 161 162 163	ParticipantsTwo publicly available datasets were used in this study: the Human ConnectomeProject (HCP) S900 dataset (www.humanconnectome.org) (Van Essen et al., 2013)and the Beijing Normal University (BNU) TRT dataset(http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html). The former wasused to characterize the topological organization of morphological similarity networksunder different analytical strategies and effects of different sample sizes, and the latter
156 157 158 159 160 161 162 163 164	Participants Two publicly available datasets were used in this study: the Human Connectome Project (HCP) S900 dataset (www.humanconnectome.org) (Van Essen et al., 2013) and the Beijing Normal University (BNU) TRT dataset (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html). The former was used to characterize the topological organization of morphological similarity networks under different analytical strategies and effects of different sample sizes, and the latter was used to evaluate TRT reliabilities of morphological similarity networks.
156 157 158 159 160 161 162 163 164 165	Participants Two publicly available datasets were used in this study: the Human Connectome Project (HCP) S900 dataset (www.humanconnectome.org) (Van Essen et al., 2013) and the Beijing Normal University (BNU) TRT dataset (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html). The former was used to characterize the topological organization of morphological similarity networks under different analytical strategies and effects of different sample sizes, and the latter was used to evaluate TRT reliabilities of morphological similarity networks. HCP S900 dataset. The HCP S900 dataset includes a total of 897 healthy adult

167	excluded according to our quality control procedures (see below), resulting in 876
168	participants in the final analyses (male/female: 386/490; main age: 22-35 years).
169	BNU TRT dataset. The BNU TRT dataset contains a total of 57 healthy young
170	participants (male/female: 30/27; age: 19-30 years) who each completed two MRI
171	scan sessions within an interval of approximately 6-weeks (40.94 \pm 4.51 days). All
172	participants were right-handed and had no history of neurological or psychiatric
173	disorders.
174	
175	MRI data acquisition
176	HCP S900 dataset. T1w images from the HCP S900 dataset were obtained using
177	a customized 3T Siemens Magnetom Connectome scanner with a 32-channel head
178	coil. Main imaging parameters were: repetition time $(TR) = 2400$ ms, echo time (TE)
179	= 2.14 ms, inversion time (TI) = 1000 ms, flip angle (FA) = 8° , field of view (FOV) =
180	224×224 mm ² , matrix = 320×320 , thickness = 0.7 mm with no gap, and 256 sagittal
181	slices.
182	BNU TRT dataset. T1w images from the BNU TRT dataset were obtained using
183	a 3T Siemens Tim Trio scanner with a 12-channel head coil. Main imaging
184	parameters were: TR = 2530 ms, TE = 3.39 ms, TI = 1100 ms, FA = 7°, FOV = $256 \times$
185	256 mm ² , matrix = 256 ×192, slice thickness = 1.33 mm; interslice gap = 0.65 mm,
186	and 144 sagittal slices.
187	

188 Quality control procedures

189	The HCP S900 dataset underwent multiple levels of quality control, ranging from
190	real-time oversight during acquisition to post-acquisition manual and automated
191	image review. Each of these procedures is specified in a formal standard operating
192	procedure and integrated into the internal database system (Marcus et al., 2013). For
193	the BNU TRT dataset, the quality control procedures included visual inspection of
194	severe motion artefacts or any other apparent artefacts, followed by calculation of a
195	series of quality evaluation metrics, such as signal-to-noise ratio, foreground to
196	background energy ratio, ghost to signal ratio and artifact detection (Lin et al., 2015).
197	In addition to the dataset specific quality control procedures, in this study we further
198	visually checked the results of image segmentation via the modules "Slice Display"
199	and "Surface Data Homogeneity" in the CAT12 toolbox. Twenty-one participants
200	were excluded due to failed segmentation or poor image quality for the HCP S900
201	dataset.
202	
203	MRI data preprocessing
204	All structural images underwent standard processes using Computation Anatomy
205	Toolbox 12 (CAT12, version r1113, http://www.neuro.uni-jena.de/cat/), based on
206	Statistical Parametric Mapping 12 (SPM12, version 6685,

207 https://www.fil.ion.ucl.ac.uk/spm/software/spm12). The CAT12 offers a

- volume-based approach for estimating cerebral surface morphology without extensive
- reconstruction of cortical surface and thus is timesaving. Specifically, the CAT12
- 210 contains a processing pipeline for computing four morphological indices, including

211 FD, GI, SD and CT. All image preprocessing and morphological parameter

212	computation described below were conducted in subject native space. After obtaining
213	individual morphological maps of FD, GI, SD and CT, they were finally resampled
214	into the common fsaverage template and smoothed using a Gaussian kernel.
215	Specifically, individual CT maps were smoothed using a Gaussian kernel with 15-mm
216	full width at half maximum, while individual FD, GI and SD maps were smoothed
217	using a Gaussian kernel with 25-mm full width at half maximum. Based on the
218	recommendations of the CAT12 manual, the usage of larger filter sizes for FD, GI and
219	SD is due to the underlying nature of these folding measures that reflect contributions
220	from both sulci and gyri. Therefore, the filter size should exceed the distance between
221	a gyral crown and a sulcal fundus.
222	CT calculation. CT was estimated using a fast and reliable projection-based
223	
	thickness (PB1) method, which requires no extensive reconstruction of the cortical
224	surface. First, following tissue segmentation, a white matter (WM) distance map was
224 225	surface. First, following tissue segmentation, a white matter (WM) distance map was derived by estimating the distance from the inner gray matter (GM) boundary for each
224 225 226	surface. First, following tissue segmentation, a white matter (WM) distance map was derived by estimating the distance from the inner gray matter (GM) boundary for each GM voxel (Dahnke et al., 2013). Values at the outer GM boundary in the WM
224 225 226 227	thickness (PB1) method, which requires no extensive reconstruction of the cortical surface. First, following tissue segmentation, a white matter (WM) distance map was derived by estimating the distance from the inner gray matter (GM) boundary for each GM voxel (Dahnke et al., 2013). Values at the outer GM boundary in the WM distance map (i.e., GM thickness) were then projected back to the inner GM boundary
224 225 226 227 228	thickness (PBT) method, which requires no extensive reconstruction of the cortical surface. First, following tissue segmentation, a white matter (WM) distance map was derived by estimating the distance from the inner gray matter (GM) boundary for each GM voxel (Dahnke et al., 2013). Values at the outer GM boundary in the WM distance map (i.e., GM thickness) were then projected back to the inner GM boundary to generate a GM thickness map. Subsequently, a central surface was created at the 50%
224 225 226 227 228 229	thickness (PB1) method, which requires no extensive reconstruction of the cortical surface. First, following tissue segmentation, a white matter (WM) distance map was derived by estimating the distance from the inner gray matter (GM) boundary for each GM voxel (Dahnke et al., 2013). Values at the outer GM boundary in the WM distance map (i.e., GM thickness) were then projected back to the inner GM boundary to generate a GM thickness map. Subsequently, a central surface was created at the 50% level of the percentage position between the WM distance and GM thickness maps.
224 225 226 227 228 229 230	thickness (PB1) method, which requires no extensive reconstruction of the cortical surface. First, following tissue segmentation, a white matter (WM) distance map was derived by estimating the distance from the inner gray matter (GM) boundary for each GM voxel (Dahnke et al., 2013). Values at the outer GM boundary in the WM distance map (i.e., GM thickness) were then projected back to the inner GM boundary to generate a GM thickness map. Subsequently, a central surface was created at the 50% level of the percentage position between the WM distance and GM thickness maps. For the resultant central surface, a topology correction based on spherical harmonics
224 225 226 227 228 229 230 231	thickness (PBT) method, which requires no extensive reconstruction of the cortical surface. First, following tissue segmentation, a white matter (WM) distance map was derived by estimating the distance from the inner gray matter (GM) boundary for each GM voxel (Dahnke et al., 2013). Values at the outer GM boundary in the WM distance map (i.e., GM thickness) were then projected back to the inner GM boundary to generate a GM thickness map. Subsequently, a central surface was created at the 50% level of the percentage position between the WM distance and GM thickness maps. For the resultant central surface, a topology correction based on spherical harmonics was used to account for topological defects (Yotter et al., 2011a). Furthermore, the

233	mapping (Yotter et al., 2011c), and spherical registration adopted the volume-based
234	diffeomorphic DARTEL algorithm (Ashburner, 2007) to the surface.
235	FD calculation. FD reflects cortical surface folding complexity. It was estimated
236	based on spherical harmonic reconstructions and calculated as the slope of a
237	logarithmic plot of surface area versus the maximum l-value, where the maximum
238	l-value is a measure of the bandwidth of frequencies used to reconstruct the surface
239	shape (Yotter et al., 2011b).
240	GI calculation. GI is an indicator of cortical folding. Based on the spherical
241	harmonic reconstructions, GI was calculated as absolute mean curvature (Luders et al.,
242	2006). Mean curvature is an extrinsic surface measure, which provides information
243	about the change in normal direction along the surface.
244	SD calculation. SD measures the depth of sulci and was calculated as the
245	Euclidean distance between the central surface and its convex hull based on the
246	spherical harmonic reconstructions.
247	
248	Construction of individual morphological similarity networks
249	A network is made up of nodes and edges between the nodes. In this study, we
250	constructed large-scale morphological similarity networks with nodes denoting brain
251	regions and edges denoting interregional similarity in intraregional distributions of
252	morphological indices.
253	Definition of network nodes. To define network nodes, we employed two widely
254	used surface atlases, the a2009s atlas (Destrieux et al., 2010) and the DK40 atlas

(termed a2005s atlas in this study) (Desikan et al., 2006), which divided the cerebral
cortex into 148 and 68 regions of interest (ROIs), respectively.

257	Definition of network edges. To estimate interregional morphological similarity,
258	we utilized two measures, the KLDs and its variant, the JSDs, to estimate the
259	similarity in intraregional distribution of morphological indices between regions. In
260	mathematical statistics, the KLD is a measure of how one probability distribution is
261	different from a second, reference probability distribution (Kullback and Leibler,
262	1951). This measure has been widely used in the fields of image processing and
263	machine learning. First, we extracted values of all vertices within each ROI for each
264	morphological index. Then, a probability density estimate was computed for each
265	ROI and each morphological index based on a normal kernel function (MATLAB
266	function, ksdensity). The resultant probability density functions (four per region) were
267	further converted to probability distribution functions (PDFs). The KLDs between two
268	PDFs P and Q is computed as:
269	$KLDs(P,Q) = e^{-D_{KL}(P,Q)},$
270	where <i>e</i> is the natural base and $D_{KL}(P,Q) = KLD(P Q) + KLD(Q P) =$

271 $\sum_{i=1}^{n} P(i) \log \frac{P(i)}{Q(i)} + \sum_{i=1}^{n} Q(i) \log \frac{Q(i)}{P(i)}$, with *n* being the number of sample points (2⁸)

in this study) (Wang et al., 2016). For the *JSDs* between *P* and *Q*, the formula is:

273
$$JSDs = 1 - D_{JS} = 1 - \sqrt{JSD(P||Q)},$$

274 where $JSD(P||Q) = \frac{1}{2}KLD(P||\frac{1}{2}(P+Q)) + \frac{1}{2}KLD(Q||\frac{1}{2}(P+Q))$. The value range

for both *KLDs* and *JSDs* is [0, 1], with 0 and 1 denoting that two PDFs are absolutely

276 different or exactly the same, respectively.

277

278 Network analysis

	D '	1 1 1	. 1			c	1 1 .	1 * *1 *.
270	Prior to	granh_hased	tonolog	ical char	acterization	ot mor	mhologica	I cimilarity
215	1 1101 10	graph-based	topolog	ical chai	acterization	I OI IIIOI	photogica	1 Sminarity

networks derived above, a thresholding procedure was used to convert each network

to a series of binary graphs. All topological analyses were performed with the

282 GRETNA toolbox (Wang et al., 2015).

283 *Threshold selection*. Consistent with our previous study (Wang et al., 2016), we 284 employed a sparsity-based thresholding procedure, where sparsity was defined as the 285 ratio of the number of actual edges divided by the maximum possible number of 286 edges in a graph. Given the lack of a conclusive method for selecting a single sparsity, 287 a consecutive sparsity range was used in this study: [0.034 0.4] for the a2009s atlas 288 and $[0.063 \ 0.4]$ for the a2005s atlas (interval = 0.02). The lower limits of the sparsity 289 ranges were chosen to ensure that the resultant graphs would be estimable for the 290 small-world attributes (Watts and Strogatz, 1998), that is, the average nodal degree 291 (nodal degree is defined as the number of edges linked to a node) over all nodes of 292 each thresholded graph is larger than $2 \times \log(N)$, with N denoting the number of nodes 293 (i.e., 68 or 148 in this study). This criterion guarantees that the generated random 294 networks are connected and thus the small world parameters can be successfully 295 calculated (Watts and Strogatz, 1998). For the upper limits of the sparsity ranges, they 296 were determined to guarantee that the thresholded graphs have sparse properties (He 297 et al., 2007; Wang et al., 2009). All subsequent topological analyses were conducted 298 at each sparsity level, and thus each network measure calculated below is a function

299	or curve of sparsity. To provide sparsity-independent summary scalars, we computed
300	the area under the curve (AUC; i.e., the integral over the entire sparsity range) for
301	each network measure (Zhang et al., 2011), which were used to simplify the TRT
302	reliability and statistical analyses.
303	Global and nodal network measures. For each graph, we calculated both global
304	(clustering coefficient, C_p ; characteristic path length, L_p ; local efficiency, E_{loc} ; global
305	efficiency, E_{glob} ; and modularity, Q) and nodal (nodal degree, k_i ; nodal efficiency, e_i ;
306	and nodal betweenness, b_i) measures. Detailed formulas and interpretations of these
307	measures can be found elsewhere (Rubinov and Sporns, 2010; Wang et al., 2011) and
308	are summarized in Table S1. To test whether the morphological similarity networks
309	were non-randomly organized, all global measures were further normalized by
310	dividing them by corresponding measures averaged over 100 matched random
311	networks. The random networks were generated using a topological rewiring method
312	(Maslov and Sneppen, 2002), which guaranteed the same degree distributions
313	between real and random networks. Typically, a small-world, highly efficient and
314	modular network should fulfill the following conditions: normalized $C_p > 1$ and
315	normalized $L_{\rm p} \sim 1$, normalized $E_{\rm loc} > 1$ and normalized $E_{\rm glob} \sim 1$ and normalized $Q >$
316	1.
317	

318 TRT reliability

We calculated the intraclass correlation coefficient (*ICC*) (Shrout and Fleiss, 1979) to
quantify TRT reliability of morphological similarity networks. Formally, for a given

321 measure repeatedly observed *k* times, the *ICC* was calculated as:

$$ICC = \frac{MS_b - MS_w}{MS_b + (k-1)MS_w},$$

323 where MS_b is the between-subject sum of squares and MS_w is the within-subject

sum of squares. ICC is close to 1 for reliable measures and 0 (negative) otherwise. In

- accordance with our previous studies (Wang et al., 2016; Wang et al., 2011), the TRT
- reliability scores were categorized as poor (ICC < 0.25), low (0.25 < ICC < 0.4), fair

327 (0.4 < ICC < 0.6), good (0.6 < ICC < 0.75) and excellent (0.75 < ICC < 1).

328 In this study, the *ICC* was calculated for each interregional morphological

similarity and each network measure (global and nodal) under all possible

combinations of 4 morphological indices, 2 atlases and 2 similarity measures. This

resulted in a total of 16 *ICC* matrices $(148 \times 148 \text{ or } 68 \times 68)$ for interregional

morphological similarity, 160 *ICC* values for global network measures and 48 *ICC*

vectors (148 or 68) for nodal network measures.

334

335 Statistical analysis

337 We explored effects of different choices of morphological index, brain parcellation

atlas and similarity measure on morphological similarity networks at multiple levels.

- 339 First, at the level of interregional morphological similarity, we first examined
- 340 differences in the mean morphological similarity over all possible pairs of regions
- 341 between the two parcellation atlases regardless of morphological indices and
- 342 similarity measures (t-test). Then, for each brain parcellation atlas, we performed

343	two-way repeated ANOVA on the morphological similarity between any pair of
344	regions (10,878 ANOVA under the a2009s parcellation atlas and 2,278 ANOVA under
345	the a2005s parcellation atlas). Second, at the level of global network organization, we
346	performed three-way repeated ANOVA on each global network measure (10 ANOVA).
347	Finally, at the level of local network organization, we first compared differences in the
348	mean nodal centrality across all regions for each nodal centrality measure between the
349	two parcellation atlases regardless of morphological indices and similarity measures
350	(2 t-tests; nodal degree was excluded from this analysis because the mean nodal
351	degree was equal among all participants in terms of the sparsity-based thresholding
352	procedure). Then, under each brain parcellation atlas, we performed two-way repeated
353	ANOVA on each nodal measure of each region (444 ANOVA under the a2009s
354	parcellation atlas and 204 ANOVA under the a2005s parcellation atlas). For
355	significant effects, simple effects were further examined (paired t-test). All results
356	were corrected for multiple comparisons using the false discovery rate (FDR)
357	procedure at the level of $q < 0.05$, when applicable.
358	Effects of different analytical strategies on TRT reliability of morphological
359	similarity networks. Effects of different analytical strategies on the TRT reliability of
360	morphological similarity networks were also examined at multiple levels. First, at the
361	level of interregional morphological similarity, we first tested differences in the mean
362	connectional ICC over all possible pairs of regions between the two parcellation
363	atlases regardless of morphological indices and similarity measures (t-test). Then,

364 under each brain parcellation atlas, we performed two-way repeated ANOVA on all

365	connectional <i>ICC</i> values (2 ANOVA). Second, at the level of global network
366	organization, we performed three-way repeated ANOVA on ICC values for all global
367	network measures. Finally, at the level of local network organization, we first
368	examined differences in the mean nodal ICC over all regions between the two
369	parcellation atlases regardless of morphological indices and similarity measures (3
370	t-tests). Then, under each brain parcellation atlas, we performed two-way repeated
371	ANOVA on all nodal ICC values for each nodal measure (6 ANOVA). For significant
372	effects, simple effects were further examined (paired t-test). All results were corrected
373	for multiple comparisons using the FDR procedure at the level of $q < 0.05$, when
374	applicable.
375	In addition, we utilized Z-tests (McGraw and Wong, 1996) to locate edges,
376	global measures and regions, whose ICC values were significantly affected by
377	different analytical strategies. Specifically, for two given ICC values ICC_1 and ICC_2 ,
378	we first transformed the difference between ICC_1 and ICC_2 into z:
	$z = \frac{1}{2} \ln \frac{1 + (k+1)(ICC_1 - ICC_2)}{1 - (ICC_1 - ICC_2)},$
379	where k is the number of repeated observations (2 in this study). The z statistic has a
380	mean of 0 with variance (McGraw and Wong, 1996):
381	$\sigma^2 = \frac{k}{2(N-2)(k-1)},$
382	where N is the number of participants. Then, we transformed the z into a Z score with
383	standard normal distribution:

$$Z = \frac{z - 0}{\sqrt{\frac{k}{2(N - 2)(k - 1)}}} = \frac{\sqrt{N - 2}}{2} \ln \frac{1 + (ICC_1 - ICC_2)}{1 - (ICC_1 - ICC_2)}$$
$$= \sqrt{N - 2} \tanh^{-1}(ICC_1 - ICC_2).$$

384 The Z-test was performed for each interregional morphological similarity and each

nodal centrality measure for each region (FD/GI/SD/CT: *KLDs* versus *JSDs*;

386 KLDs/JSDs: FD versus GI, FD versus SD, FD versus CT, GI versus SD, GI versus CT

and SD versus CT), and each global network measure (FD/GI/SD/CT - a2005s/a2009s:

388 *KLDs* versus *JSDs*; FD/GI/SD/CT - *KLDs/JSDs*: a2005s versus a2009s;

a2005s/a2009s - *KLDs/JSDs*: FD versus GI, FD versus SD, FD versus CT, GI versus

390 SD, GI versus CT and SD versus CT). All results were corrected for multiple

comparisons using the FDR procedure at the level of q < 0.05, when applicable.

392

Effects of sample size on morphological similarity networks

To test effects of different sample sizes on morphological similarity networks, we

395 correlated the cross-subject mean nodal centrality map (concatenated across the three

nodal measures) from a subgroup of participants with that from all participants. The

397 subgroup of participants was randomly selected from all participants with sample size

varying from 10 to 870 (interval = 10). This subgroup sampling procedure was

repeated 1,000 times to generate 1,000 correlation coefficients at any fixed sample

400 size, whose means and standard errors were calculated.

401

402 Validation analysis

403	Twin subjects. The HCP S900 dataset includes twin subjects, which may yield
404	bias for our results. Thus, we re-analyzed the HCP S900 data to estimate the
405	reproducibility of our results by excluding twin subjects (338).
406	High-resolution parcellation atlas. In this study, we utilized the a2005s atlas and
407	a2009s atlas for network node definition because they are two of the most commonly
408	used surface parcelllation schemes in previous brain network studies (e.g., Buchanan
409	et al., 2020; Rodríguez-Cruces et al., 2020; Seibert et al., 2011; Zhang et al., 2019).
410	However, these two atlases are relatively coarser (68 and 148 regions, respectively),
411	which may be insufficient to represent local characteristics of finer-level brain regions.
412	Thus, we further re-analyzed the data by constructing individual morphological
413	similarity networks with a high-resolution atlas, which divides the cerebral surface
414	into 360 regions (termed MMP atlas; Glasser et al., 2016). It should be noted that we
415	mainly focused on a more practical question in guiding studies of morphological
416	similarity networks: whether brain parcellation atlases with higher resolutions will
417	give rise to higher test-retest reliabilities. We did not re-analyzed the HCP S900
418	dataset because of the huge amount of computation, exponentially increased
419	computing time with the number of network nodes and a growing body of evidence
420	for parcellation-dependent human brain networks (Arslan et al., 2018).
421	Smoothing size of CT maps. In this study, individual CT maps were smoothed
422	using a Gaussian kernel with 15-mm full width at half maximum, which was smaller
423	than those for the other three morphological indices (Gaussian kernel with 25-mm full
424	width at half maximum). To test whether the differences in smoothing size could lead

425	to relatively poor performance in TRT reliability for CT-based morphological
426	similarity networks (see Results), we smoothed individual CT maps again (BNU TRT
427	dataset) using a Gaussian kernel with 25-mm full width at half maximum, followed by
428	network parameter and ICC calculation.
429	Brain size and regional size. Brain size is an important confounding factor for
430	analysis of brain morphology. In addition, previous functional (Wang et al., 2009) and
431	morphological (Seidlitz et al., 2018) brain network studies showed the existence of
432	relationships between regional size and nodal centrality. Thus, in this study we
433	calculated cross-subject Pearson correlation between each global network measure
434	and global morphological values, and cross-node, person-level Pearson correlation
435	between each nodal centrality measure and regional size (defined as the number of
436	vertex in a region) for each type of morphological similarity networks.
437	
438	Results
439	Interregional similarities of morphological similarity networks
440	Similarity matrices. Unless stated otherwise, all results reported are exemplified
441	using the a2009s atlas for brain parcellation and the JSDs for interregional similarity
442	estimation.

Figure 2 shows the mean morphological similarity matrices derived from the four morphological indices of FD, GI, SD and CT. In general, the cross-subject mean interregional similarity was large with relatively small variance for each edge of each type of morphological similarity networks (FD: 0.725 ± 0.074 ; GI: 0.724 ± 0.069 ; SD:

447	$0.717 \pm 0.121;$ CT: 0.737 \pm 0.072). Nonetheless, morphological index-dependent
448	similarity patterns were evident. For example, the SD-based morphological similarity
449	networks were clearly different from the others by visual inspection. This was further
450	confirmed by the relatively low Spearman's rank correlations in the mean similarity
451	matrix between any pair of morphological similarity networks ($r_{\text{FD-GI}} = 0.213$; $r_{\text{FD-SD}} =$
452	0.136; $r_{\text{FD-CT}} = 0.156$; $r_{\text{GI-SD}} = 0.156$; $r_{\text{GI-CT}} = 0.304$; $r_{\text{SD-CT}} = 0.289$). Interestingly, we
453	consistently found that the mean interregional similarity for edges linking
454	geometrically corresponding regions between two hemispheres (i.e., homotopic
455	connections) was significantly higher than that for edges linking nonhomotopic
456	regions (i.e., heterotopic connections) regardless of the types of morphological
457	similarity networks (t-test; FD: $P \approx 0$; GI: $P \approx 0$; SD: $P \approx 0$; CT: $P \approx 0$).
458	Both descriptive and inferential statistical results mentioned above were
459	consistently observed regardless choices of brain parcellation atlas and similarity
460	measure.
461	Effects of morphological index, brain parcellation and similarity measure.
462	Significant differences were observed in the mean interregional morphological

similarity across all edges when using either the a2009s or the a2005s atlases for brain

464 parcellation ($P \approx 0$). Further analyses of the interregional morphological similarity of

- each edge under both atlases consistently revealed that all edges were significantly
- 466 affected by choices of at least one factor of morphological index or similarity measure
- 467 (P < 0.05, FDR corrected). These findings jointly suggest widespread influence of
- 468 different analytical strategies on interregional similarity patterns of morphological

469	similarity networl	ks. Notably, c	consistent with	ith our previous	study (W	'ang et al., 2016),
-----	--------------------	----------------	-----------------	------------------	----------	---------------------

- 470 no post hoc analyses were conducted since comparisons of numerical values have no
- 471 utility with respect to the selection of optimal analytical strategies.
- 472

473 Global organization of morphological similarity networks

- 474 *Small-worldness, efficiency and modularity*. Each individual morphological
- similarity network exhibited small-world organization, high parallel efficiency and
- 476 modular structure over the entire sparsity range regardless of the morphological
- 477 indices. That is, compared with matched random networks, individual morphological

478 similarity networks had higher C_p and approximately equal L_p , higher E_{loc} and

- 479 approximately equal E_{glob} , and higher Q (Fig. 2). These organizational principles were
- 480 consistently observed under other combinations of brain parcellation atlases and
- 481 similarity measures.

482 *Effects of morphological index, brain parcellation and similarity measure.*

- 483 Despite the common organizational principles, three-way repeated ANOVA revealed 484 that quantitative values of all global network measures were significantly affected by 485 choices of morphological index, brain parcellation atlas and/or similarity measure (P486 < 0.05, FDR corrected). Again, no post hoc analyses were further conducted, as
- 487 explained above.

488

489 Local organization of morphological similarity networks

490 *Hubs*. Visual inspection indicated that the overall patterns of nodal centrality

491	measures were spatially heterogeneous and depended on different analytical strategies.
492	Thus, we first calculated Pearson correlation coefficients between each pair of nodal
493	centrality maps (4 morphological indices \times 2 similarity measures \times 3 nodal centrality
494	measures) averaged across all participants under each parcellation atlas. The
495	significance level for each correlation coefficient was estimated using a recently
496	proposed approach that corrects for spatial autocorrelation of brain maps (Burt et al.,
497	2020). Specifically, for each pair of nodal centrality maps used in the correlation
498	analysis, one of them was randomly selected as a target map and 10,000 surrogate
499	maps were generated that matched with the target map with respect to spatial
500	autocorrelation. Each of the surrogate maps was then used to re-compute the Pearson
501	correlation coefficient with the other map, yielding a null distribution for the expected
502	value of Pearson correlation by chance. Subsequently, a P-value was estimated as the
503	fraction of surrogate maps which generated a Pearson correlation equal to or greater
504	than the real Pearson correlation. Of note, variability into the estimate of the <i>P</i> -value
505	introduced by finite sampling size was accounted for by using a binomial distribution
506	to estimate the size of sampling fluctuations. As shown in Figure 3, we found that
507	under each parcellation atlas different nodal centrality measures exhibited highly
508	similar spatial patterns regardless of the choices of similarity measure (a2009s: $r =$
509	0.891 \pm 0.087; a2005s: $r = 0.714 \pm 0.214$), while the spatial similarities became
510	dramatically low when the correlations were calculated between different
511	morphological indices (a2009s: $r = 0.306 \pm 0.053$; a2005s: $r = 0.312 \pm 0.134$). These
512	findings indicate that the factor of morphological index dominates spatial distributions

513	of nodal centrality measures. Notably, the correlation pattern in regional centrality
514	profiles was obviously different from the correlation pattern in regional mean
515	morphological values (Table S2). For example, compared with the moderate negative
516	correlations in regional mean values between GI and CT (a2009s: $r = -0.476 \pm 0.083$;
517	a2005s: $r = -0.501 \pm 0.083$), low positive correlations were observed in regional
518	centrality profiles between GI-based and CT-based morphological similarity networks
519	(a2009s/JSDs: $r = 0.363 \pm 0.048$; a2009s/KLDs: $r = 0.366 \pm 0.047$; a2005s/JSDs: $r = 0.363 \pm 0.048$; a2009s/KLDs: $r = 0.366 \pm 0.047$; a2005s/JSDs: $r = 0.363 \pm 0.048$; a2009s/KLDs: $r = 0.366 \pm 0.047$; a2005s/JSDs: $r = 0.363 \pm 0.048$; a2009s/KLDs: $r = 0.366 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.366 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.368 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.368 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.368 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.368 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.368 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.368 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.368 \pm 0.047$; a2005s/JSDs: $r = 0.368 \pm 0.048$; a2009s/KLDs: $r = 0.048$; a2009s
520	0.276 \pm 0.087; a2005s/KLDs: $r = 0.278 \pm 0.087$). The discrepancies suggest that our
521	findings are not affected by the existence of some spatial correlations in regional
522	mean values between different morphological indices.
523	Furthermore, given central roles of highly connected regions (i.e., hubs), we
524	identified hubs, which were defined as regions with values in the top 10% of each
525	nodal centrality measure. We found several common features of the identified hubs,
526	despite differential spatial distributions across different morphological indices and
527	nodal centrality measures (Fig.S1). First, the majority of hubs was located at
528	bilaterally homologous regions, with the ratio of such hubs to all hubs varying
529	between 40.0% and 80.0% (mean = 62.2%) among different morphological indices
530	and nodal centrality measures. Second, most hubs were located at brain sulci,
531	especially at the junction between different lobes, with the ratio of such hubs to all
532	hubs varying between 60.0% and 86.7% (mean = 75.0%) among different
533	morphological indices and nodal measures. Finally, several regions were consistently
534	identified hubs that were independent of choices of morphological index and nodal

535	centrality measure. These features also existed under other combinations of brain
536	parcellation atlases and similarity measures (except for the second feature when
537	regional parcellation was based on the a2005s atlas, which was composed of only
538	gyral-based regions).
539	Finally, we defined a consistent hub score (CHs), which was calculated as the
540	number of times a region was identified as a hub under all combinations of
541	morphological index, similarity measure and nodal centrality measure under each
542	parcellation atlas. Figure 4 shows regions with the top 10% highest values of CHs.
543	Effects of morphological index, brain parcellation and similarity measure.
544	Between-atlas comparisons of the mean centrality value across all regions revealed
545	significant differences in nodal efficiency and betweenness ($P \approx 0$). Further two-way
546	repeated ANOVA revealed that all nodal centrality measures of all regions were
547	significantly affected by choices of morphological index and/or similarity measure
548	under both the a2009s and a2005s atlases ($P < 0.05$, FDR corrected).
549	
550	TRT reliability of interregional similarities of morphological similarity networks
551	ICC of similarity matrices. Based on the BNU TRT dataset, extremely high
552	correlations across edges were observed in the mean similarity matrices between the
553	two sessions regardless of different morphological indices (all $r > 0.966$, Fig. S2).
554	Further TRT reliability analysis on the interregional similarity of each edge revealed
555	that 99.8%, 88.8%, 96.6% and 80.6% of all edges exhibited good or above TRT
556	reliability (i.e., $ICC > 0.6$) for the FD-, GI-, SD- and CT-based morphological

similarity networks, respectively. The high TRT reliability was also observed under

558 other combinations of brain parcellation atlases and similarity measures.

559 Effects of morphological index, brain parcellation and similarity measure. 560 First, between-atlas comparison of all connectional *ICC* values (concatenated across 561 different morphological indices and similarity measures) revealed that the TRT 562 reliabilities were significantly higher for the a2009s than a2005s atlas ($ICC_{a2009s} =$ 563 0.801 ± 0.135 , $ICC_{a2005s} = 0.782 \pm 0.149$; $t_{102902} = 17.378$, P < 0.001). Then, under 564 each brain parcellation atlas, two-way repeated ANOVA consistently revealed that the 565 mean ICC values across all edges were significantly modulated by choices of 566 morphological index and similarity measure with a significant interaction (all $P \approx 0$). 567 Post hoc analyses revealed that: 1) the *ICC* differed significantly among brain 568 networks constructed using different morphological indices no matter the choices of 569 brain parcellation atlas and similarity measure (FD > SD > GI > CT; all P < 0.05, 570 FDR corrected across 24 t-tests in total); and 2) the *ICC* differed significantly among 571 morphological similarity networks constructed using different similarity measures 572 regardless of choices of brain parcellation atlases (JSDs > KLDs for FD-, GI- and 573 SD-based morphological similarity networks, and *KLDs* > *JSDs* for CT-based 574 morphological similarity networks; all P < 0.05, FDR corrected across 8 t-tests in 575 total). Finally, we located edges whose TRT reliabilities were affected by choices of 576 morphological index and similarity measure. The results showed that: 1) no edges 577 exhibited significant differences in TRT reliabilities when morphological similarity 578 networks were constructed using JSDs or KLDs for interregional similarity estimation

579	(P > 0.05, FDR corrected); and 2) the TRT reliabilities of up to 7.3% of the edges for
580	the a2009s atlas and of up to 19.2% of the edges for the a2005s atlas were
581	significantly different when morphological similarity networks were constructed
582	using different morphological indices ($P < 0.05$, FDR corrected). Interestingly, the
583	TRT reliabilities of the identified edges exhibited a common pattern of $FD > SD > GI >$
584	CT (Fig. S3).
585	
586	TRT reliability of global network measures of morphological similarity networks
587	ICC of global network measures. Individual morphological similarity networks
588	exhibited small-world organization, high parallel efficiency and modular structure
589	regardless of the data sessions (Fig. S4). The ICC analysis further revealed that most
590	global network measures exhibited fair to excellent TRT reliabilities (Fig. S5).
591	Effects of morphological index, brain parcellation and similarity measure.
592	Three-way repeated ANOVA revealed that the ICC of global measures were
593	significantly modulated by the factors of morphological index ($F_{3,159} = 105.728, P \approx 0$)
594	and similarity measure ($F_{1,159} = 5.296$, $P = 0.047$), and the modulation depended on
595	choices of brain parcellation atlas ($F_{3,159} = 8.349$, $P < 0.001$ for the interaction
596	between morphological index and brain parcellation atlas, and $F_{1,159} = 15.351$, $P =$
597	0.004 for the interaction between similarity measure and brain parcellation atlas) (Fig.
598	5). Further post hoc analyses revealed that: 1) the TRT reliabilities of global network
599	measures were significantly higher for JSDs-based than for KLDs-based
600	morphological similarity networks under the a2005s ($t_{39} = 2.834$, $P = 0.007$) but not

601	the a2009s ($t_{39} = 0.093$, $P = 0.926$) atlas; and 2) the TRT reliabilities of global
602	network measures differed significantly between any pair of morphological indices
603	with a pattern of SD > FD > CT > GI under the a2005s atlas (all $P < 0.05$, FDR
604	corrected), while they were significantly higher for the FD- and SD- than for the GI-
605	and CT-based morphological similarity networks under the a2009s atlas ($P < 0.05$,
606	FDR corrected). Finally, we identified specific global measures whose TRT
607	reliabilities were affected by choices of morphological index, brain parcellation atlas
608	and similarity measure. The results showed that: 1) no global measures exhibited
609	significant differences in TRT reliabilities when morphological similarity networks
610	were constructed using the a2009s or a2005s atlas for brain parcellation ($P > 0.05$,
611	FDR corrected); 2) no global measures exhibited significant differences in TRT
612	reliabilities when morphological similarity networks were constructed using JSDs or
613	<i>KLDs</i> for interregional similarity estimation ($P > 0.05$, FDR corrected); and 3) the
614	TRT reliabilities of many global measures were significantly affected by choices of
615	morphological index ($P > 0.05$, FDR corrected) with a common pattern of FD- and
616	SD- > GI- and CT-based morphological similarity networks (Fig. S6).
617	
618	TRT reliability of nodal network measures of morphological similarity networks

623	measures). Again, the significance levels of the resultant correlation coefficients were
624	estimated using the approach from (Burt et al., 2020) to correct for spatial
625	autocorrelation of brain maps. The results showed high correlation coefficients
626	between different nodal centrality measures regardless of the choice of similarity
627	measure (a2009s: $r = 0.869 \pm 0.139$; a2005s: $r = 0.574 \pm 0.326$). However, the
628	correlation coefficients between different morphological indices were dramatically
629	low (a2009s: $r = 0.0000000000000000000000000000000000$
630	We further divided all brain regions into five categories in terms of their ICC
631	values. As shown in Figures 6 and S8, a considerable proportion of brain regions
632	exhibited good to excellent TRT reliabilities for most morphological indices and
633	nodal centrality measures. Nevertheless, it was evident that the proportions were
634	higher for the FD- and SD- than for the GI- and CT-based morphological similarity
635	networks and were higher for nodal degree and efficiency than for nodal betweenness.
636	Finally, we identified regions under each brain parcellation atlas that consistently
637	exhibited high TRT reliabilities regardless of different analytical strategies by
638	defining a consistent excellent reliability score (CERs) as the number of times a
639	region exhibited excellent TRT reliability ($ICC > 0.75$) under all combinations of
640	morphological indices, similarity measures and nodal metrics. Figure 7 shows the
641	regions with the top 10% highest values of CERs.
642	Effects of morphological index, brain parcellation and similarity measure.
643	First, comparison of all nodal ICC values (concatenated across different
644	morphological indices and similarity measures) between the two parcellation atlases

645	showed that the TRT reliabilities were significantly higher for the a2009s than for the
646	a2005s atlas for each nodal measure (k_i : $ICC_{a2009s} = 0.803 \pm 0.135$, $ICC_{a2005s} = 0.778 \pm 0.135$)
647	0.149; $t_{1710} = 3.557$, $P \approx 0$; e_i : $ICC_{a2009s} = 0.803 \pm 0.136$, $ICC_{a2005s} = 0.773 \pm 0.154$;
648	$t_{1710} = 4.081, P \approx 0; b_{\rm i}: ICC_{\rm a2009s} = 0.665 \pm 0.189, ICC_{\rm a2005s} = 0.624 \pm 0.207; t_{1710} = 0.665 \pm 0.189$
649	4.023, $P \approx 0$).
650	Then, under each brain parcellation atlas, two-way repeated ANOVA revealed
651	that choices of morphological index and similarity measure significantly affected the
652	mean <i>ICC</i> of nodal degree (all $P < 0.004$) and nodal efficiency (all $P < 0.006$) with
653	nonsignificant interaction effects (all $P > 0.05$). For nodal betweenness, significant
654	effects were only observed for the factor of morphological index under both the
655	a2009s and a2005s atlases (both $P \approx 0$). Further post hoc analyses revealed that 1) the
656	TRT reliabilities of nodal degree and nodal efficiency were higher for JSDs-based
657	than KLDs-based morphological similarity networks under each brain parcellation
658	atlas (all $P < 0.05$, FDR corrected across 4 t-tests in total); and 2) the TRT reliabilities
659	of nodal degree and efficiency exhibited a pattern of FD- > SD- > GI- > CT-based
660	morphological similarity networks under the a2009s atlas and a pattern of FD- and
661	SD- > GI- > CT-based morphological similarity networks under the a2005s atlas; and
662	nodal betweenness exhibited a pattern of SD- > FD- > GI- > CT-based morphological
663	similarity networks for both atlases (all $P < 0.05$, FDR corrected across 36 t-tests in
664	total).
665	Finally, we identified regions whose TRT reliabilities were affected by choices of

666 morphological index and similarity measure. We found that: 1) no regions exhibited

667	significant differences in TRT reliabilities for any nodal centrality measure when
668	morphological similarity networks were constructed using JSDs or KLDs for
669	interregional similarity estimation ($P > 0.05$, FDR corrected); and 2) the TRT
670	reliabilities of up to 43.2% of the regions under the a2009s atlas and of up to 61.8% of
671	the regions under the a2005s atlas were significantly different when morphological
672	similarity networks were constructed using different morphological indices ($P < 0.05$,
673	FDR corrected). Interestingly, the TRT reliabilities of the identified regions exhibited
674	a common pattern of FD- and SD- > GI- and CT-based morphological similarity
675	networks (Figs. S9-S12).
676	Differences in TRT reliability between hub and non-hub regions. We compared
677	the TRT reliability between hub and non-hub regions under each analytical
678	combination of morphological index, brain parcellation atlas and similarity measure
679	(permutation test, 10,000 times). No significant differences were found regardless of
680	the analytical strategies ($P > 0.05$, FDR corrected).
681	
682	Effects of sample size on individual morphological similarity networks
683	Highly positive correlations were observed between the nodal centrality profiles
684	(concatenated across nodal measures) averaged over 10 randomly selected samples
685	and the mean nodal centrality profile across all participants ($r_{\rm FD} = 0.944 \pm 0.007$; $r_{\rm GI} =$
686	0.936 ± 0.007 ; $r_{SD} = 0.970 \pm 0.005$; $r_{CT} = 0.936 \pm 0.008$). With increasing sample size,
687	the correlations continually increased and the variability naturally decreased, with a
688	tipping point observed when samples exceeded ~70 participants ($r_{FD} = 0.992 \pm 0.001$;

689
$$r_{\text{GI}} = 0.991 \pm 0.001; r_{\text{SD}} = 0.996 \pm 0.001; r_{\text{CT}} = 0.991 \pm 0.001)$$
 (Fig. 8). More

- 691 atlases and similarity measures.
- 692

693 **Reproducibility of our results**

694 Effects of twin subjects. After excluding twin subjects from the HCP S900 dataset, we found that all results reported remained largely unchanged, indicating 695 696 little effects of twin subjects on our results. The new results are briefly summarized 697 below. 698 1) Edge-level analysis. we found: a) relatively low Spearman's rank correlations 699 in the mean similarity matrix between any pair of morphological similarity networks 700 $(r_{\text{FD-GI}} = 0.240; r_{\text{FD-SD}} = 0.154; r_{\text{FD-CT}} = 0.170; r_{\text{GI-SD}} = 0.167; r_{\text{GI-CT}} = 0.304; r_{\text{SD-CT}} = 0.167; r_{\text{SD-CT}} = 0.167; r_{\text{SD-CT}} = 0.304; r_{\text{SD-CT}} = 0.167; r_{\text{SD-CT}} = 0.304; r_{\text{SD-CT}} = 0.167; r_{\text{SD-CT}} = 0.16$ 701 (0.304); b) higher mean interregional similarity for edges linking homotopic regions 702 than edges linking heterotopic regions regardless of the types of morphological 703 similarity networks (FD: t = 13.833, $P \approx 0$; GI: t = 12.321, $P \approx 0$; SD: t = 20.844, $P \approx$ 704 0; CT: t = 15.821, $P \approx 0$); c) significant differences in the mean interregional 705 morphological similarity between the a2005s atlas and a2009s atlas (t = 91.119, $P \approx$ 706 0); and d) significant effects of morphological index and/or similarity measure on the 707 interregional morphological similarity of each edge under the two parcellation atlases 708 (two-way repeated ANOVA; P < 0.05, FDR corrected). 709 2) Global-level analysis. We found that all global network measures were 710 significantly affected by choices of morphological index, brain parcellation atlas

711	and/or similarity measure	(three-way repeated	l ANOVA, P «	< 0.05, FDR corrected	ed).
-----	---------------------------	---------------------	--------------	-----------------------	------

712	3) Nodal-level analysis. We found: a) highly similar spatial patterns among
713	different nodal centrality measures for the same morphological indices (a2009s: $r =$
714	0.869 \pm 0.084; a2005s: $r = 0.844 \pm 0.139$) but dramatically low spatial similarities
715	between different morphological indices (a2009s: $r = 0.305 \pm 0.053$; a2005s: $r =$
716	0.267 ± 0.144); b) significant differences in the mean centrality across all regions
717	between the a2005s atlas and a2009s atlas (nodal efficiency: $t = 230.836$, $P \approx 0$; nodal
718	betweenness: $t = 560.849$, $P \approx 0$); and c) significant effects of morphological index
719	and/or similarity measure on each nodal centrality measure of each region under the
720	two atlases (two-way repeated ANOVA; $P < 0.05$, FDR corrected).
721	4) Analysis of sample size. We found that the correlation of mean nodal centrality
722	profiles between randomly selected samples and all participants continually increased
723	with increasing sample size, with a tipping point observed when samples exceeded
724	~70 participants ($r_{\rm FD} = 0.992 \pm 0.001$; $r_{\rm GI} = 0.991 \pm 0.001$; $r_{\rm SD} = 0.996 \pm 0.001$; $r_{\rm CT} =$
725	0.991 ± 0.001).
726	Effects of high-resolution parcellation atlas. Based on randomly selected 50

participants from the HCP S900 dataset, we found the existence of small-worldness,
high parallel efficiency, modularity and hubs for surface-based single-subject
morphological similarity networks. Moreover, these network measures derived from
the MMP atlas were significantly different from those derived from the a2005s atlas
and a2009s atlas, and were dependent on choices of morphological index and/or
similarity measure. All these findings are as expected and in line with the main

734	Based on the BNU TRT dataset, we found that compared with the a2005s atlas
735	and a2009s atlas, the MMP atlas was associated with significantly higher TRT
736	reliabilities in interregional morphological similarities (a2005s: 0.782±0.149; a2009s:
737	0.801±0.135; MMP: 0.817±0.125), global (a2005s: 0.644±0.208; a2009s:
738	0.644±0.140; MMP: 0.673±0.130) and local (a2005s: 0.725±0.186; a2009s:
739	0.757±0.169; MMP: 0.773±0.152) network measures. It should be noted that this
740	general conclusion does not always hold for global network measures when
741	considering the other two factors of morphological index and similarity measure. All
742	TRT reliability results in this study are summarized in Table 1.
743	Effects of smoothing size. Based on the BNU TRT dataset, we found that the
744	usage of a larger smoothing kernel (25-mm full width at half maximum) resulted in
745	significantly higher TRT reliabilities for interregional morphological similarities and
746	nodal centralities but lower TRT reliabilities for global network measures for the
747	CT-based morphological similarity networks (paired t-test; $P < 0.05$, Bonferroni
748	corrected; Table S3). Nonetheless, the differences did not affect our general findings
749	that CT-based morphological similarity networks performed worse that the other three
750	types of morphological similarity networks with respect to TRT reliability. That is, no
751	matter which smoothing size (15-mm or 25-mm full width at half maximum) was
752	used, significantly lower TRT reliabilities were found for the CT-based than FD-, GI-
753	and SD-based morphological similarity networks for interregional morphological
754	similarities, global network measures and nodal centralities (paired t-test; $P < 0.05$,
755	Bonferroni corrected; Table S3). These findings indicate that differences in smoothing
-----	--
756	kernel among different morphological indices contribute little to the observed
757	differences in TRT reliabilities among different types of morphological similarity
758	networks.
759	Relationships between morphological similarity networks and brain/regional
760	size. Very low correlations were found between each global network measure and
761	global morphological values regardless of the type of morphological similarity
762	networks (Table S4). These findings suggest a lack of relationships between the
763	morphological similarity networks and brain size. For nodal centrality measures,
764	weak-moderate correlations were observed with regional size that were dependent on
765	morphological index, brain parcellation atlas, similarity measure and nodal centrality
766	type (Table S5). These findings indicate obvious effects of regional size on nodal
767	centrality for the surface-based single-subject morphological similarity networks, an
768	issue that should be taken into account in future studies. The findings of brain
769	size-independent but regional size-dependent morphological similarity networks are
770	in accordance to a previous study that constructed single-subject morphological
771	similarity networks with different methods (Seidlitz et al., 2018).
772	
773	Discussion
774	In this study, we constructed and topologically characterized surface-based
775	single-subject morphological similarity networks, and systematically evaluated their

reproducibility with respect to effects of different analytical strategies, sample

777	size-varying stability and test-retest reliability. We found that the morphological
778	similarity networks exhibited nontrivial organizational principles, including
779	small-worldness, high parallel efficiency, modularity and hubs, regardless of the
780	analytical strategies used. Nevertheless, quantitative values of these organizational
781	principles largely depended on the choices of morphological index, brain parcellation
782	atlas and similarity measure. Moreover, the morphological similarity networks varied
783	with the number of participants and approached stability until the sample size
784	exceeded \sim 70. Finally, both interregional similarities and topological properties of the
785	morphological similarity networks presented fair to good, even excellent, TRT
786	reliabilities. Interestingly, significantly higher reliabilities were observed when
787	interregional morphological similarity was estimated with the JSDs than with the
788	KLDs and when the morphological similarity networks were based on the FD and SD
789	rather than the GI and CT. Altogether, these findings suggest that surface-based
790	single-subject morphological similarity networks provide a reliable approach for
791	large-scale brain network studies.
792	

793 Specifically organized and reliable morphological similarity networks

The human brain is powerful in both modular information processing across local

- regions and distributed information processing over the entire brain, allowing
- complicated cognition and behavior. A large number of studies have indicated that
- such powerful features of the human brain benefit from nontrivial wiring layouts of
- both functional and structural brain networks as revealed by graph-based network

799	approaches, such as small-worldness, high parallel efficiency, modularity and hubs
800	(Bullmore and Sporns, 2012; Liao et al., 2017; Sporns and Betzel, 2016; van den
801	Heuvel and Sporns, 2013). Therefore, in this study we also utilized graph-based
802	metrics to examine whether the surface-based single-subject morphological similarity
803	networks constructed with our method are governed by nontrivial organizational
804	principles rather than are wired in a random manner. We found that the surface-based
805	single-subject morphological similarity networks also exhibited the optimized
806	organization. That is, compared with matched random networks, the surface-based
807	single-subject morphological similarity networks showed higher clustering coefficient,
808	local efficiency and modularity, approximately equal characteristic path length and
809	global efficiency and the existence of hubs. Moreover, the optimized organization was
810	consistently observed regardless of different choices of morphological index, brain
811	parcellation atlas and similarity measure. The robust and inherent characteristic
812	indicates that the surface-based single-subject morphological similarity networks are
813	specifically organized rather than are wired in a random manner. It should be noted
814	that the interpretation of graph-based network findings largely depends on how
815	network nodes and edges are defined. In this study, network edges were defined as
816	divergence-based similarity in the distribution of intraregional morphological values.
817	This type of similarity is very different from routinely used functional connectivity
818	(i.e., statistical interdependence in functional signal fluctuations between regions) and
819	structural connectivity (i.e., fiber pathways between regions). Thus, our findings are
820	not directly comparable with previous functional and structural brain networks. It is

821	interesting to investigate the relationships between the divergence-based
822	morphological similarity and functional/structural connectivity in the future, which
823	can aid in understanding the extent to which different modalities of brain networks are
824	driven by similar organizational principles.
825	An interesting finding in this study was that consistent hub regions were mainly
826	in cortical sulci under the a2009s atlas. Compared with cortical gyri, cortical sulci
827	have been found to show greater physical strain in various kinds of injuries in studies
828	from animals, computational models and human postmortem data (Cloots et al., 2008;
829	Ghajari et al., 2017; Goldstein et al., 2012). Accordingly, cortical sulci are frequently
830	reported to be more vulnerable to pathological tau protein deposition and associated
831	brain atrophy in patients with traumatic brain injury and chronic traumatic
832	encephalopathy (Cole et al., 2018; Johnson et al., 2012; McKee et al., 2013). On the
833	other hand, brain network hubs are also found to be susceptible to various brain
834	disorders (Crossley et al., 2014). Thus, our results provide a possible bridge to link the
835	two sets of previous findings, although a direct examination is needed on the
836	relationships among brain sulci and gyri, hubs and diseases. Finally, the surface-based
837	single-subject morphological similarity networks presented fair to good, even
838	excellent, reliability in both interregional similarities and network measures under all
839	analytical combinations. This is consistent with previous studies that constructed
840	individual-level morphological similarity networks with similar methods in brain
841	volume space (Kong et al., 2015; Wang et al., 2016) and via different methods (Jiang
842	et al., 2017; Li et al., 2017; Yu et al., 2018).

843	Taken together, our findings suggest that surface-based single-subject
844	morphological similarity networks can provide an important alternative to reliably
845	uncover organizational principles of large-scale brain networks. Nevertheless, it
846	should be pointed out that although optimized topological organizations and high
847	TRT reliabilities were consistently observed for the surface-based single-subject
848	morphological similarity networks regardless of different analytical strategies,
849	quantitative values depended largely on how the morphological similarity networks
850	were constructed, which is discussed below.
851	
852	Effects of different morphological indices on morphological similarity networks
853	We found that different morphological indices resulted in significantly different
854	values for interregional morphological similarities and network measures. This is
855	consistent with previous studies of population-based morphological similarity
856	networks showing morphological index specific topological organization in health
857	and disease (Collantoni et al., 2017; Sanabria-Diaz et al., 2010). Given the highly
858	complex, folded nature of the human cerebral cortex, these findings are not surprising
859	because different indices characterize morphological architecture from different
860	aspects. For example, CT reflects the size, density and arrangement of cells (neurons,
861	neuroglia and nerve fibers), whereas GI measures the ratio between the total area of
862	the cortex and the area that is visible in a circular region of interest. Thus, the
863	observed differences may indicate that different morphological indices capture
864	distinct processes of interregional interactions or different aspects of the same

865	interactive process (e.g., mechanical, neurochemical, and/or axonal connections).
866	Currently, understanding mechanisms behind different morphological indices and
867	their interrelationships is an ongoing research field. Evidence from genetic and
868	developmental studies has shown that different morphological indices are associated
869	with distinct genetic influences (Panizzon et al., 2009; Strike et al., 2019; Winkler et
870	al., 2010) and exhibit differential developmental/aging trajectories (Hogstrom et al.,
871	2013; Raznahan et al., 2011; Wierenga et al., 2014). Accordingly, it is plausible to
872	speculate that genetic, developmental/aging, and environmental factors may partly
873	contribute to the distinct network topology among different morphological indices. It
874	should be noted that the explanations above are speculative and more studies are
875	needed to provide direct empirical evidence for mechanistic understanding of network
876	differences among different morphological indices.
877	Furthermore, different morphological indices were associated with significantly
878	different values of TRT reliability of the morphological similarity networks.
879	Specifically, TRT reliability was significantly higher for FD- and SD- than for GI-
880	and CT-based morphological similarity networks. The discrepancy may be due to
881	differences in computational complexity, sensitivity to noise, and/or developmental
882	rates among the morphological indices. For example, in contrast with the intuitional
883	CT, FD is an extremely obscure and compact measure of shape complexity, which
884	condenses all details into a single numeric value. Such summary measures may be
885	more resistant to noise than those that are dominated by a single aspect of brain
886	morphology. In addition, given distinct age-related trajectories among different

887	morphological indices (Raznahan et al., 2011; Wierenga et al., 2014), those indices
888	showing faster age-related changes are typically related to lower values of TRT
889	reliability due to greater within-subject variance. Overall, our findings suggest that
890	future studies should consider utilizing different morphological indices, in particular
891	SD and FD from the perspective of TRT reliability, to provide a finer-grained
892	characterization of surface-based single-subject morphological similarity networks in
893	typical and atypical populations.
894	
895	Effects of different brain parcellation atlases on morphological similarity
896	networks
897	We found that different choices of the a2009s and a2005s atlases resulted in
898	significantly different surface-based single-subject morphological similarity networks
899	in terms of the values of interregional morphological similarities and network
900	measures. This is consistent with numerous previous studies showing brain
901	parcellation-dependent functional (Ren et al., 2019; Wang et al., 2009), structural
902	(Wei et al., 2017; Zalesky et al., 2010) and morphological (Sanabria-Diaz et al., 2010;
903	Wang et al., 2016) brain networks (for recent reviews, see (Arslan et al., 2018; Qi et
904	al., 2015; Yao et al., 2015)). Accordingly, our findings together with previous studies
905	collectively suggest that the dependence on regional brain parcellation atlases is a
906	universal characteristic of large-scale brain networks, and future studies must consider
907	the influence of this factor regardless of the data modalities from which the brain
908	networks are obtained. Several potential sources may account for the observed

909	differences. First, the composition is different between the two atlases: the a2009s
910	atlas is composed of sulco-gyral structures, while the a2005s atlas is made up of
911	gyral-based neuroanatomical regions (Desikan et al., 2006; Destrieux et al., 2010).
912	Given substantial differences between cerebral sulci and gyri in genetics, morphology,
913	axonal pathways and function (Ge et al., 2018; Hilgetag and Barbas, 2005; Li et al.,
914	2015; Liu et al., 2017; Zeng et al., 2015; Zhang et al., 2018), it is not surprising to
915	observe differential network organization between the two atlases. Second, the
916	number of regions is different between the two atlases: 148 in the a2009s atlas versus
917	68 in the a2005s atlas. Previous studies have shown that differences in network size
918	(i.e., the number of nodes) significantly affect the topological organization of
919	functional and structural brain networks (Wang et al., 2009; Zalesky et al., 2010).
920	Finally, the two atlases differ in regional size, which is thought to be associated with
921	nodal centralities of functional and structural brain networks (Hagmann et al., 2008;
922	Wang et al., 2009). Together, all these factors may at least partially account for the
923	observed brain parcellation-related differences in surface-based single-subject
924	morphological similarity networks.
925	Further TRT reliability analyses revealed that the a2009s atlas was associated
926	with higher reliability than the a2005s atlas for the surface-based single-subject
927	morphological similarity networks. When using the high-resolution MMP atlas, even
928	higher TRT reliability was observed. These findings indicate that brain parcellation
929	atlases with higher resolutions may give rise to more reliable morphological similarity

930 networks. The discrepancy may be attributable to the more sophisticated methods

931	used to generate higher-resolution atlases: most structures in the a2005s atlas were
932	defined using a relatively coarse 'sulcal' approach (manual tracing from the depth of
933	one sulcus to another, thus incorporating the gyrus within) (Desikan et al., 2006); the
934	entire cortical surface of the a2009s atlas was classified as gyral or sulcal at a vertex
935	level during the generation (Destrieux et al., 2010); and the MMP atlas is based on a
936	multi-modal method that integrates multidimensional information from different
937	imaging modalities (e.g., architectural measures derived from T1-weighted and
938	T2-weighted structural images, cortical function measured using task functional MRI,
939	and functional connectivity estimated from resting-state functional MRI). Currently,
940	obtaining accurate and reliable parcellation atlases of the human brain is an important
941	goal for brain science. In this regard, individualized, multidimensional information
942	guided and phylogeny and ontogeny inspired parcellation methods may be promising
943	directions in the future (Eickhoff et al., 2018). Overall, our findings suggest that
944	relative to the a2005s atlas and a2009s atlas, the MMP atlas may be a better choice for
945	surface-based single-subject morphological similarity network studies from the
946	perspective of TRT reliability.
947	

948 Effects of different similarity measures on morphological similarity networks

Although the morphological similarity networks constructed via *KLDs* and *JSDs*

950 exhibited largely similar patterns, quantitative values differed significantly between

- 951 the two sets of networks. This is consistent with numerous previous studies showing
- that functional and structural brain networks depend on the means to estimate

953	interregional connectivity (Liang et al., 2012; Sarwar et al., 2019; Zalesky et al.,
954	2012). Accordingly, it seems that the dependence on interregional connectivity
955	estimation methods in addition to regional brain parcellation atlases is another
956	universal characteristic of large-scale brain networks, and thus future studies should
957	carefully choose suitable measures and methods for estimating interregional
958	connectivity in terms of their research themes, purposes and contents. The observed
959	differences may be attributable to different mathematical properties between the KLD
960	and JSD, although the latter is based on the former. First, the KLD and JSD have
961	different value ranges: the KLD is nonnegative without an upper limit, while the JSD
962	is bounded by 0 and 1. Second, the <i>KLD</i> is not symmetric, while the <i>JSD</i> is symmetric.
963	Thus, compared with the JSD, the KLD undergoes additional processing steps (e.g.,
964	exponential transform) to generate symmetric and bounded surface-based
965	single-subject morphological similarity networks. This may introduce extra noise or
966	unknown disturbance in estimating interregional morphological similarities. This
967	might also be the reason why the JSDs-based morphological similarity networks
968	showed higher reliability for interregional morphological similarities and network
969	measures. Overall, given the mathematical advantages of the JSD relative to the KLD
970	and higher TRT reliability of the JSDs-based than KLDs-based morphological
971	similarity networks, we recommend using the JSDs as a measure for estimating
972	interregional morphological similarity in future studies. In the future, it will be
973	necessary to systematically compare the JSDs with other similarity measures and
974	methods for a possible better choice, such as multivariate Euclidean distance (Yu et

975 al., 2018) and Fréchet distance.

976

977 Effects of different sample sizes on morphological similarity networks

978	We found that surface-based single-subject morphological similarity networks varied
979	along with the number of participants and approached stability until the sample size
980	exceeded ~70. Moreover, the critical value was largely independent of different
981	analytical strategies. Thus, we recommend at least 70 participants for future studies of
982	surface-based single-subject morphological similarity networks. However, such a
983	sample size may be challenging to attain for innovative clinical and translational
984	research due to cost and feasibility concerns. Although small sample size undermines
985	the reliability (Button et al., 2013), it can produce more projected scientific value per
986	dollar spent than larger sample size for studies of new ideas (Bacchetti et al., 2011).
987	Interestingly, we found that even when the sample size was only 10, the mean nodal
988	centrality profile of the surface-based single-subject morphological similarity
989	networks was largely similar to that from all 876 participants. This suggests limited
990	effects of sample size on surface-based single-subject morphological similarity
991	networks. This feature makes the approach proposed here a potential tradeoff between
992	sample size and research cost and feasibility for future brain network studies.
993	Presumably, the weak influence of sample size may reflect small interindividual
994	differences in surface-based single-subject morphological similarity networks. An
995	interesting topic for future exploration is the association of interindividual differences
996	in surface-based single-subject morphological similarity networks with interindividual

997 differences in cognition and behavior.

998

999 Limitations and Future Directions

1000 First, consistent with numerous functional and structural brain network studies
--

1001 surface-based single-subject morphological similarity networks were largely

1002 dependent on choices of regional brain parcellation atlases and similarity estimation

1003 methods. Thus, systematic research on different processing pipelines is warranted in

the future for establishing a "better" methodological framework in the construction of

surface-based single-subject morphological similarity networks. Second, although the

1006 surface-based single-subject morphological similarity networks exhibited high TRT

1007 reliability under different analytical strategies, their repeatability across multiple sites,

scanners, scanning parameters and magnetic fields should be further examined. Third,

similar to functional and structural brain networks, surface-based single-subject

1010 morphological similarity networks constructed here also exhibited optimized

1011 topological organizations (e.g., small-worldness and hubs). It will be interesting in the

1012 future to quantify the similarities and differences in organizational principles between

1013 morphological and functional/structural brain networks. Fourth, this study extended

1014 our previous work of single-subject morphological similarity networks from volume

1015 space to cerebral cortical surface. A previous functional MRI study showed that

1016 surface-based computation can increase TRT reliability of local short-range functional

1017 connectivity (Zuo et al., 2013). Whether surface-based morphological similarity

1018 networks outperform volume-based morphological similarity networks in TRT

1019	reliability is thus an interesting topic in the future. Fifth, only four surface-based
1020	morphological indices that were computationally available for the CAT12 toolbox
1021	were used to construct morphological similarity networks in this study. Future studies
1022	can examine the feasibility of our method on the basis of other morphological indices,
1023	such as surface area and surface normal. Sixth, in this study, we found that different
1024	morphological indices were associated with distinct interregional similarity patterns
1025	and topological organization of surface-based single-subject morphological similarity
1026	networks. It is important to develop network models to integrate the complementary
1027	information for a holistic view of morphological similarity networks. At the current
1028	stage, multilayer network methods may be a good solution for such a requirement (De
1029	Domenico, 2017; Vaiana and Muldoon, 2018). Seventh, we utilized binary rather than
1030	weighted network model to characterize morphological similarity networks in this
1031	study because weighted networks are computationally expensive. This is particularly
1032	important for this study because of the huge amount of computation. It's essential for
1033	future studies to employ weighted network model, which can provide more
1034	information on the topological organization of morphological similarity networks, and
1035	may be more sensitive to capture morphological network alterations under conditions
1036	where interregional morphological similarities alter profoundly, such as diseases,
1037	development and aging. Finally, after demonstrating the reliable, nonrandom
1038	organization of the divergence-based single-subject morphological similarity
1039	networks, the next important thing is to uncover biological meaning of the networks.
1040	For example, to what extent are the morphological similarity networks under genetic

1041	control and to what extent do the morphological similarity networks determine
1042	individual behavioral and cognitive performance? Such studies are crucial to speed up
1043	future application of the divergence-based single-subject morphological similarity
1044	networks in health and disease.
1045	
1046	Conclusion
1047	In conclusion, this study constructed and evaluated surface-based single-subject
1048	morphological similarity networks and demonstrated that the morphological similarity
1049	networks possessed nontrivial topological organization, were affected by different
1050	analytical strategies but largely independent of sample size, and exhibited high TRT
1051	reliability. Based on these findings, we conclude that the surface-based single-subject
1052	morphological similarity networks can serve as a reliable way to characterize
1053	large-scale brain networks in future studies.
1054	
1055	Conflict of Interests
1056	The authors declare no competing interests.
1057	
1058	Data Availability Statement
1059	All data that support the findings of this study are from publicly available datasets.
1060	
1061	Acknowledgements
1062	This work was supported by the National Natural Science Foundation of China (Nos.

- 1063 81922036 and 81671764), Key Realm R&D Program of Guangdong Province (No.
- 1064 2019B030335001) and Key Realm R&D Program of Guangzhou (No.
- 1065 202007030005). Data were provided [in part] by the Human Connectome Project,
- 1066 WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
- 1067 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH
- 1068 Blueprint for Neuroscience Research; and by the McDonnell Center for Systems
- 1069 Neuroscience at Washington University.

1070 **References**

- 1071 Alexander-Bloch, A., Giedd, J.N., Bullmore, E., 2013a. Imaging structural
- 1072 co-variance between human brain regions. Nature Reviews Neuroscience 14, 322.
- Alexander-Bloch, A., Raznahan, A., Bullmore, E., Giedd, J., 2013b. The convergence
 of maturational change and structural covariance in human cortical networks. Journal
 of Neuroscience 33, 2889-2899.
- 1075 of Neuroscience 33, 2889-2899.
- 1076 Arslan, S., Ktena, S., Makropoulos, A., Robinson, E., Rueckert, D., Parisot, S., 2018.
- Human brain mapping: A systematic comparison of parcellation methods for thehuman cerebral cortex. Neuroimage 170, 5-30.
- Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. Neuroimage38, 95-113.
- Bacchetti, P., Deeks, S.G., McCune, J.M., 2011. Breaking free of sample size dogma
 to perform innovative translational research. Science translational medicine 3,
 87ps24-87ps24.
- 1084 Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R.,
- Meyer-Lindenberg, A., 2008. Hierarchical organization of human cortical networks in
 health and schizophrenia. Journal of Neuroscience 28, 9239-9248.
- nearth and semzophiema. Journal of Neuroscience 26, 9239-9246.
- 1087 Buchanan, C.R., Bastin, M.E., Ritchie, S.J., Liewald, D.C., Madole, J.W.,
- 1088 Tucker-Drob, E.M., Deary, I.J. and Cox, S.R., 2020. The effect of network
- 1089 thresholding and weighting on structural brain networks in the UK Biobank.
- 1090 Neuroimage 211, 116443.
- Bullmore, E., Sporns, O., 2012. The economy of brain network organization. NatureReviews Neuroscience 13, 336-349.
- Burt, J.B., Helmer, M., Shinn, M., Anticevic, A. and Murray, J.D., 2020. Generative
 modeling of brain maps with spatial autocorrelation. NeuroImage 220, 117038.
- 1095 Button, K.S., Ioannidis, J.P., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.,
- Munafò, M.R., 2013. Power failure: why small sample size undermines the reliabilityof neuroscience. Nature Reviews Neuroscience 14, 365-376.
- Cloots, R., Gervaise, H., Van Dommelen, J., Geers, M., 2008. Biomechanics of
 traumatic brain injury: influences of the morphologic heterogeneities of the cerebral
 cortex. Annals of biomedical engineering 36, 1203.
- Cole, J.H., Jolly, A., de Simoni, S., Bourke, N., Patel, M.C., Scott, G., Sharp, D.J.,
 2018. Spatial patterns of progressive brain volume loss after moderate-severe

- traumatic brain injury. Brain 141, 822-836.
- 1104 Collantoni, E., Meneguzzo, P., Tenconi, E., Manara, R., Santonastaso, P., Favaro, A,.
- 1105 2017. Structural Covariance Networks in Anorexia Nervosa (AN): A Multimodal
- 1106 Graph Theoretical Analysis. European Psychiatry 41, S282-S282.
- 1107 Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., Bullmore,
- 1108 E.T., 2014. The hubs of the human connectome are generally implicated in the
- anatomy of brain disorders. Brain 137, 2382-2395.
- Dahnke, R., Yotter, R.A., Gaser, C., 2013. Cortical thickness and central surfaceestimation. Neuroimage 65, 336-348.
- De Domenico, M., 2017. Multilayer modeling and analysis of human brain networks.Giga Science 6, gix004.

Desai, R., Liebenthal, E., Possing, E.T., Waldron, E., Binder, J.R., 2005. Volumetric
vs. surface-based alignment for localization of auditory cortex activation. Neuroimage
26, 1019-1029.

- 1117 Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D.,
- 1118 Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., 2006. An automated labeling
- system for subdividing the human cerebral cortex on MRI scans into gyral based
- regions of interest. Neuroimage 31, 968-980.
- Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of
 human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage
 53, 1-15.
- Eickhoff, S.B., Yeo, B.T. and Genon, S., 2018. Imaging-based parcellations of thehuman brain. Nature Reviews Neuroscience 19, 672-686.
- 1126 Evans, A.C., 2013. Networks of anatomical covariance. Neuroimage 80, 489-504.
- 1127 Ge, F., Li, X., Razavi, M.J., Chen, H., Zhang, T., Zhang, S., Guo, L., Hu, X., Wang,
- 1128 X., Liu, T., 2018. Denser growing fiber connections induce 3-hinge gyral folding.
- 1129 Cerebral cortex 28, 1064-1075.
- 1130 Ghajari, M., Hellyer, P.J., Sharp, D.J., 2017. Computational modelling of traumatic
- brain injury predicts the location of chronic traumatic encephalopathy pathology.
- 1132 Brain 140, 333-343.
- 1133 Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E.,
- 1134 Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M. and Smith, S.M., 2016. A
- 1135 multi-modal parcellation of human cerebral cortex. Nature 536, 171-178.

1136 1137 1138 1139	Goldstein, L.E., Fisher, A.M., Tagge, C.A., Zhang, XL., Velisek, L., Sullivan, J.A., Upreti, C., Kracht, J.M., Ericsson, M., Wojnarowicz, M.W., 2012. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Science translational medicine 4, 134ra160-134ra160.
1140 1141 1142	Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O., 2008. Mapping the structural core of human cerebral cortex. PLoS biology 6.
1143 1144	He, Y., Chen, Z.J., Evans, A.C., 2007. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral cortex 17, 2407-2419.
1145 1146	Hilgetag, C.C., Barbas, H., 2005. Developmental mechanics of the primate cerebral cortex. Anatomy and embryology 210, 411.
1147 1148 1149	Hogstrom, L.J., Westlye, L.T., Walhovd, K.B., Fjell, A.M., 2013. The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cerebral cortex 23, 2521-2530.
1150 1151 1152	Jiang, J., Zhou, H., Duan, H., Liu, X., Zuo, C., Huang, Z., Yu, Z., Yan, Z., Initiative, A.s.D.N., 2017. A novel individual-level morphological brain networks constructing method and its evaluation in PET and MR images. Heliyon 3, e00475.
1153 1154 1155	Johnson, V.E., Stewart, W., Smith, D.H., 2012. Widespread tau and amyloid Deta pathology many years after a single traumatic brain injury in humans. Brain pathology 22, 142-149.
1156 1157 1158	Kong, X., Liu, Z., Huang, L., Wang, X., Yang, Z., Zhou, G., Zhen, Z., Liu, J., 2015. Mapping individual brain networks using statistical similarity in regional morphology from MRI. PloS one 10, e0141840.
1159 1160	Kullback, S., Leibler, R.A., 1951. On information and sufficiency. The annals of mathematical statistics 22(1), 79-86.
1161 1162 1163	Li, G., Liu, T., Ni, D., Lin, W., Gilmore, J.H., Shen, D., 2015. Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness. Human brain mapping 36, 5183-5195.
1164 1165 1166	Li, W., Yang, C., Shi, F., Wu, S., Wang, Q., Nie, Y., Zhang, X., 2017. Construction of individual morphological brain networks with multiple morphometric features. Frontiers in Neuroanatomy 11, 34.
1167 1168	Liang, X., Wang, J., Yan, C., Shu, N., Xu, K., Gong, G., He, Y., 2012. Effects of different correlation metrics and preprocessing factors on small-world brain

1169 functional networks: a resting-state functional MRI study. PloS one 7.

- 1170 Liao, X., Vasilakos, A.V., He, Y., 2017. Small-world human brain networks: perspectives and challenges. Neuroscience & Biobehavioral Reviews 77, 286-300. 1171 Lin, Q., Dai, Z., Xia, M., Han, Z., Huang, R., Gong, G., Liu, C., Bi, Y., He, Y., 2015. 1172 A connectivity-based test-retest dataset of multi-modal magnetic resonance imaging 1173 in young healthy adults. Scientific data 2, 1-10. 1174 1175 Liu, H., Jiang, X., Zhang, T., Ren, Y., Hu, X., Guo, L., Han, J., Liu, T., 2017. 1176 Elucidating functional differences between cortical gyri and sulci via sparse 1177 representation HCP grayordinate fMRI data. Brain research 1672, 81-90. 1178 Luders, E., Thompson, P.M., Narr, K., Toga, A.W., Jancke, L., Gaser, C., 2006. A 1179 curvature-based approach to estimate local gyrification on the cortical surface. 1180 Neuroimage 29, 1224-1230. 1181 Marcus, D.S., Harms, M.P., Snyder, A.Z., Jenkinson, M., Wilson, J.A., Glasser, M.F., 1182 Barch, D.M., Archie, K.A., Burgess, G.C., Ramaratnam, M., Hodge, M., Horton, W., Herrick, R., Olsen, T., McKay, M., House, M., Hileman, M., Reid, E., Harwell, 1183 J., Coalson, T., Schindler, J., Elam, J.S., Curtiss, S.W., Van Essen, D.C., WU-Minn 1184 1185 HCP Consortium, 2013. Human Connectome Project informatics: quality control, 1186 database services, and data visualization. Neuroimage 80, 202-219. 1187 Maslov, S., Sneppen, K., 2002. Specificity and stability in topology of protein 1188 networks. Science 296, 910-913. 1189 McGraw, K.O., Wong, S.P., 1996. Forming inferences about some intraclass correlation coefficients. Psychological methods 1, 30. 1190 1191 McKee, A.C., Stein, T.D., Nowinski, C.J., Stern, R.A., Daneshvar, D.H., Alvarez, V.E., Lee, H.-S., Hall, G., Wojtowicz, S.M., Baugh, C.M., 2013. The spectrum of disease in 1192 1193 chronic traumatic encephalopathy. Brain 136, 43-64. Panizzon, M.S., Fennema-Notestine, C., Eyler, L.T., Jernigan, T.L., Prom-Wormley, 1194 E., Neale, M., Jacobson, K., Lyons, M.J., Grant, M.D., Franz, C.E., 2009. Distinct 1195 genetic influences on cortical surface area and cortical thickness. Cerebral cortex 19, 1196 2728-2735. 1197 Qi, S., Meesters, S., Nicolay, K., ter Haar Romeny, B.M., Ossenblok, P., 2015. The 1198 influence of construction methodology on structural brain network measures: A 1199 review. Journal of neuroscience methods 253, 170-182. 1200 Raznahan, A., Lerch, J.P., Lee, N., Greenstein, D., Wallace, G.L., Stockman, M., 1201 1202 Clasen, L., Shaw, P.W., Giedd, J.N., 2011. Patterns of coordinated anatomical change 1203 in human cortical development: a longitudinal neuroimaging study of maturational
- 1204 coupling. Neuron 72, 873-884.

1205 1206	Ren, Y., Guo, L., Guo, C.C., 2019. A connectivity-based parcellation improved functional representation of the human cerebellum. Scientific reports 9, 1-12.
1207 1208 1209	Rodríguez-Cruces, R., Bernhardt, B.C., Concha, L., 2020. Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy. Neuroimage 213, 116706.
1210 1211	Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059-1069.
1212 1213 1214 1215	Sanabria-Diaz, G., Melie-García, L., Iturria-Medina, Y., Alemán-Gómez, Y., Hernández-González, G., Valdés-Urrutia, L., Galán, L., Valdés-Sosa, P., 2010. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage 50, 1497-1510.
1216 1217 1218	Sarwar, T., Ramamohanarao, K., Zalesky, A., 2019. Mapping connectomes with diffusion MRI: deterministic or probabilistic tractography? Magnetic resonance in medicine 81, 1368-1384.
1219 1220	Seibert, T.M., Brewer, J.B., 2011. Default network correlations analyzed on native surfaces. Journal of neuroscience methods 198, 301-311.
1221 1222 1223 1224	Seidlitz, J., Váša, F., Shinn, M., Romero-Garcia, R., Whitaker, K.J., Vértes, P.E., Wagstyl, K., Reardon, P.K., Clasen, L., Liu, S., 2018. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97, 231-247.
1225 1226	Shrout, P.E., Fleiss, J.L., 1979. Intraclass correlations: uses in assessing rater reliability. Psychological bulletin 86, 420.
1227 1228	Sporns, O., Betzel, R.F., 2016. Modular brain networks. Annual review of psychology 67, 613-640.
1229 1230 1231 1232	Strike, L.T., Hansell, N.K., Couvy-Duchesne, B., Thompson, P.M., de Zubicaray, G.I., McMahon, K.L., Wright, M.J., 2019. Genetic complexity of cortical structure: differences in genetic and environmental factors influencing cortical surface area and thickness. Cerebral cortex 29, 952-962.
1233 1234 1235	Tijms, B.M., Seriès, P., Willshaw, D.J., Lawrie, S.M., 2012. Similarity-based extraction of individual networks from gray matter MRI scans. Cerebral cortex 22, 1530-1541.
1236	Tijms, B.M., ten Kate, M., Gouw, A.A., Borta, A., Verfaillie, S., Teunissen, C.E.,

- 1237 Scheltens, P., Barkhof, F. and van der Flier, W.M., 2018. Gray matter networks and
- 1238 clinical progression in subjects with predementia Alzheimer's disease. Neurobiology

1239 of Aging 61, 75-81

- 1240 Tijms, B.M., Yeung, H.M., Sikkes, S.A., Möller, C., Smits, L.L., Stam, C.J., Scheltens,
- 1241 P., van der Flier, W.M. and Barkhof, F., 2014. Single-Subject Gray Matter Graph
- 1242 Properties and Their Relationship with Cognitive Impairment in Early- and
- 1243 Late-Onset Alzheimer's Disease. Brain Connectivity 4, 337-346.
- Vaiana, M., Muldoon, S.F., 2018. Multilayer brain networks. Journal of NonlinearScience, 1-23.
- van den Heuvel, M.P., Sporns, O., 2013. Network hubs in the human brain. Trends incognitive sciences 17, 683-696.
- 1248 Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.,
- 1249 Consortium, W.-M.H., 2013. The WU-Minn human connectome project: an overview.1250 Neuroimage 80, 62-79.
- 1251 Wang, H., Jin, X., Zhang, Y., Wang, J., 2016. Single Subject morphological brain
- networks: connectivity mapping, topological characterization and test–retest reliability.Brain and behavior 6, e00448.
- 1254 Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., He, Y.,
- 1255 2009. Parcellation dependent small world brain functional networks: A
- resting state fMRI study. Human brain mapping 30, 1511-1523.
- Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., He, Y., 2015. GRETNA: a graph
 theoretical network analysis toolbox for imaging connectomics. Frontiers in human
 neuroscience 9, 386.
- 1260 Wang, J., Zuo, X., Gohel, S., Milham, M.P., Biswal, B.B., He, Y., 2011. Graph
- theoretical analysis of functional brain networks: test-retest evaluation on short-andlong-term resting-state functional MRI data. PloS one 6.
- Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of 'small-world'networks.nature 393, 440.
- Wei, K., Cieslak, M., Greene, C., Grafton, S.T., Carlson, J.M., 2017. Sensitivity
 analysis of human brain structural network construction. Network Neuroscience 1,
 446-467.
- Wierenga, L.M., Langen, M., Oranje, B., Durston, S., 2014. Unique developmental
 trajectories of cortical thickness and surface area. Neuroimage 87, 120-126.
- 1270 Winkler, A.M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P.T., Duggirala,
- 1271 R., Glahn, D.C., 2010. Cortical thickness or grey matter volume? The importance of
- selecting the phenotype for imaging genetics studies. Neuroimage 53, 1135-1146.

1273 1274	Yao, Z., Hu, B., Xie, Y., Moore, P., Zheng, J., 2015. A review of structural and functional brain networks: small world and atlas. Brain informatics 2, 45-52.
1275 1276 1277	Yotter, R.A., Dahnke, R., Thompson, P.M., Gaser, C., 2011a. Topological correction of brain surface meshes using spherical harmonics. Human brain mapping 32, 1109-1124.
1278 1279 1280	Yotter, R.A., Nenadic, I., Ziegler, G., Thompson, P.M., Gaser, C., 2011b. Local cortical surface complexity maps from spherical harmonic reconstructions. Neuroimage 56, 961-973.
1281 1282 1283	Yotter, R.A., Thompson, P.M., Gaser, C., 2011c. Algorithms to improve the reparameterization of spherical mappings of brain surface meshes. Journal of Neuroimaging 21, e134-e147.
1284 1285 1286	Yu, K., Wang, X., Li, Q., Zhang, X., Li, X., Li, S., 2018. Individual morphological brain network construction based on multivariate euclidean distances between brain regions. Frontiers in human neuroscience 12.
1287 1288	Zalesky, A., Cocchi, L., Fornito, A., Murray, M.M., Bullmore, E., 2012. Connectivity differences in brain networks. Neuroimage 60, 1055-1062.
1289 1290 1291	Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., Bullmore, E.T., 2010. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50, 970-983.
1292 1293 1294	Zeng, T., Chen, H., Fakhry, A., Hu, X., Liu, T., Ji, S., 2015. Allen mouse brain atlases reveal different neural connection and gene expression patterns in cerebellum gyri and sulci. Brain Structure and Function 220, 2691-2703.
1295 1296 1297	Zhao, W., Guo, S., Linli, Z., Yang, A., Lin, C., Tsai, S., 2020. Functional, Anatomical, and Morphological Networks Highlight the Role of Basal Ganglia-Thalamus-Cortex Circuits in Schizophrenia. Schizophrenia Bulletin 46, 422-443.
1298 1299 1300	Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., Gong, Q., 2011. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biological psychiatry 70, 334-342.
1301 1302 1303	Zhang, T., Chen, H., Razavi, M.J., Li, Y., Ge, F., Guo, L., Wang, X., Liu, T., 2018. Exploring 3 hinge gyral folding patterns among HCP Q3 868 human subjects. Human brain mapping 39, 4134-4149.

<sup>Zhang, Z., Allen, G.I., Zhu, H., Dunson, D., 2019. Tensor network factorizations:
Relationships between brain structural connectomes and traits. Neuroimage 197,
330-343.</sup>

- 1307 Zuo, X., Xu, T., Jiang, L., Yang, Z., Cao, X., He, Y., Zang, Y., Castellanos, F.X.,
- 1308 Milham M.P., 2013. Toward reliable characterization of functional homogeneity in the
- 1309 human brain: preprocessing, scan duration, imaging resolution and computational
- 1310 space. Neuroimage 65, 374-386.

1311 Figure Legends

1312	Figure 1. Flow chart of imaging processing, network construction, topological
1313	characterization and statistical analysis in this study. ① For each structural image
1314	from the HCP and BNU datasets, four vertexwise morphological maps (FD, GI, SD
1315	and CT) were first extracted. ② Each morphological map was then divided into
1316	different numbers of regions according to two brain atlases (a2009s and a2005s). ③
1317	Subsequently, the probability distribution function was estimated for each region in
1318	terms of signal distribution of each morphological index and was used to estimate
1319	interregional similarity with JSDs and KLDs, respectively. ④ This formed a total of
1320	16 similarity matrices for each image (4 morphological indices \times 2 brain parcellation
1321	atlases \times 2 similarity measures). (5) Before topological characterization of the
1322	resultant similarity matrices, a sparsity-based procedure was further used to threshold
1323	each of them into a series of binary networks. (6) Finally, 10 global and 3 nodal
1324	graph theory-based network metrics were calculated to characterize topological
1325	organization of each binary network. FD, fractal dimension; GI, gyrification index;
1326	SD, sulcal depth; CT, cortical thickness; JSDs, Jensen-Shannon divergence-based
1327	similarity; KLDs, Kullback-Leibler divergence-based similarity; TRT, test-retest.
1328	
1329	Figure 2. Mean similarity matrices and global network measures of morphological
1330	similarity networks. Upper panel: mean similarity matrices of morphological
1331	similarity networks (brain parcellation: a2009s; similarity estimation: JSDs).
1332	Although the similarity strength was large for each connection regardless of the

1333	choice of morphological index, differential similarity patterns were evident. Lower
1334	panel: global organization of morphological similarity networks (brain parcellation:
1335	a2009s; similarity estimation: JSDs). Compared with matched random networks,
1336	individual morphological similarity networks exhibited higher clustering coefficient
1337	(i.e., normalized $C_p > 1$) and approximately equal characteristic path length (i.e.,
1338	normalized $L_p \sim 1$), higher local efficiency (i.e., normalized $E_{loc} > 1$) and
1339	approximately equal global efficiency (i.e., normalized $E_{\text{glob}} \sim 1$), and higher
1340	modularity (i.e., normalized $Q > 1$), indicating small-world, highly efficient and
1341	modular organization. FD, fractal dimension; GI, gyrification index; SD, sulcal depth;
1342	CT, cortical thickness.
1343	
1344	Figure 3. Spatial correlations of mean nodal centrality maps under different analytical
1345	strategies. Under each parcellation atlas, high correlations were observed between
1346	different nodal metrics and between different similarity measures; however,
1347	dramatically low correlations were observed between different morphological indices.
1348	JSDs, Jensen-Shannon divergence-based similarity; KLDs, Kullback-Leibler
1349	divergence-based similarity; FD, fractal dimension; GI, gyrification index; SD, sulcal
1349 1350	divergence-based similarity; FD, fractal dimension; GI, gyrification index; SD, sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i , nodal efficiency; b_i , nodal
1349 1350 1351	divergence-based similarity; FD, fractal dimension; GI, gyrification index; SD, sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i , nodal efficiency; b_i , nodal betweenness; *, $P < 0.05$, Bonferroni corrected.
1349 1350 1351 1352	divergence-based similarity; FD, fractal dimension; GI, gyrification index; SD, sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i , nodal efficiency; b_i , nodal betweenness; *, $P < 0.05$, Bonferroni corrected.

regions were consistently identified as hubs, among which regions with the top 10%

1355 of *CHs* were listed under each parcellation atlas. *CHs*, consistent hub scores.

1356

1357	Figure 5. TRT reliability values for global metrics under different analytical strategies.
1358	TRT reliability of global network metrics was significantly affected by choices of
1359	morphological index, brain parcellation atlas and similarity measure, with a general
1360	pattern of FD and SD > GI and CT and JSDs > KLDs. ICC, intraclass correlation;
1361	JSDs, Jensen-Shannon divergence-based similarity; KLDs, Kullback-Leibler
1362	divergence-based similarity; FD, fractal dimension; GI, gyrification index; SD, sulcal
1363	depth; CT, cortical thickness.
1364	
1365	Figure 6. Proportions of regions at different levels of nodal TRT reliability (brain
1366	parcellation: a2009s; similarity estimation: JSDs). The proportions of regions showing
1367	excellent TRT reliability were significantly higher for nodal degree and efficiency
1368	than for nodal betweenness, and for FD- and SD-based than for GI- and CT-based
1369	morphological similarity networks. FD, fractal dimension; GI, gyrification index; SD,
1370	sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i , nodal efficiency; b_i , nodal
1371	betweenness.
1372	
1373	Figure 7. Regions consistently showing excellent TRT reliability under different
1374	analytical strategies. A specific set of regions were consistently identified to show
1375	excellent TRT reliability, among which regions with the top 10% of CERs are listed

1376 under each parcellation atlas. *CERs*, consistent excellent reliability scores.

1377

1378	Figure 8. Effect of different sample sizes on morphological similarity networks (brain						
1379	parcellation: a2009s; similarity estimation: JSDs). With increasing sample size, a						
1380	continuous increase was observed in the Pearson correlation coefficients between						
1381	nodal centrality profiles that were separately averaged for 1000 subgroups of						
1382	participants and nodal centrality profiles that were averaged over all participants,						
1383	while the variability naturally decreased, with a tipping point observed when samples						
1384	exceeded ~70 participants. FD, fractal dimension; GI, gyrification index; SD, sulcal						
1385	depth; CT, cortical thickness.						
1386							
1387	Figure S1. Hubs with the top 10% of nodal centrality of morphological similarity						
1388	networks (brain parcellation: a2009s; similarity estimation: JSDs). FD, fractal						
1389	dimension; GI, gyrification index; SD, sulcal depth; CT, cortical thickness; k_i , nodal						
1390	degree; e_i , nodal efficiency; b_i , nodal betweenness.						
1391							
1392	Figure S2. Mean similarity matrices and their intersession correlations and TRT						
1393	reliability values for morphological similarity networks (brain parcellation: a2009s;						
1394	similarity estimation: JSDs). No matter the choices of morphological index, the mean						
1395	similarity matrices derived from session 1 (first row) and session 2 (second row) were						
1396	highly correlated with each other (third row), with most connections showing good to						
1397	excellent TRT reliability (i.e., <i>ICC</i> > 0.6, last row). <i>JSDs</i> , Jensen-Shannon						
1398	divergence-based similarity; S1, session 1; S2, session 2; ICC, intraclass correlation;						

1399 FD, fractal dimension; GI, gyrification index; SD, sulcal depth; CT, cortical thickness.

1400

1401	Figure S3.	Connections	showing	significantly	different	values of	f TRT reliabilit	v
								_/

- 1402 between different morphological indices. Varied proportions of edges (numbers in
- 1403 white) showed morphological index-dependent TRT reliability, with a general pattern

1404 of FD > SD > GI > CT. *JSDs*, Jensen-Shannon divergence-based similarity; *KLDs*,

1405 Kullback-Leibler divergence-based similarity; FD, fractal dimension; GI, gyrification

1406 index; SD, sulcal depth; CT, cortical thickness.

1407

1408 **Figure S4**. Global organization of morphological similarity networks derived from

the BNU TRT dataset (brain parcellation: a2009s; similarity estimation: *JSDs*). For

1410 both sessions, individual morphological similarity networks exhibited small-world,

- 1411 highly efficient and modular organization. FD, fractal dimension; GI, gyrification
- 1412 index; SD, sulcal depth; CT, cortical thickness.
- 1413

1414 Figure S5. TRT reliability values for global network metrics of morphological

similarity networks (brain parcellation: a2009s; similarity estimation: *JSDs*). Most

- 1416 global metrics exhibited fair to excellent TRT reliability (i.e., ICC > 0.6) regardless of
- 1417 choices of morphological index. FD, fractal dimension; GI, gyrification index; SD,
- 1418 sulcal depth; CT, cortical thickness.

1419

1420 Figure S6. Global network measures showing significantly different TRT reliability

1421	values between different morphological indices. The TRT reliability of many global
1422	network measures depended on the choices of morphological index, with a general
1423	pattern of FD and SD > GI and CT. Squares/circles indicate
1424	significant/non-significant differences, and color bars indicate t-statistics. JSDs,
1425	Jensen-Shannon divergence-based similarity; KLDs, Kullback-Leibler
1426	divergence-based similarity; FD, fractal dimension; GI, gyrification index; SD, sulcal
1427	depth; CT, cortical thickness.
1428	
1429	Figure S7. Spatial correlations of nodal TRT reliability maps under different
1430	analytical strategies. Under each parcellation atlas, high correlations were observed
1431	between nodal degree and efficiency and between different similarity measures;
1432	however, dramatically low correlations were observed between nodal betweenness
1433	and the other two nodal metrics and between different morphological indices. ICC,
1434	intraclass correlation; JSDs, Jensen-Shannon divergence-based similarity; KLDs,
1435	Kullback-Leibler divergence-based similarity; FD, fractal dimension; GI, gyrification
1436	index; SD, sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i , nodal efficiency;
1437	$b_{\rm i}$, nodal betweenness; *, $P < 0.05$, Bonferroni corrected.
1438	
1439	Figure S8. Regional maps at different levels of nodal TRT reliability (brain
1440	parcellation: a2009s; similarity estimation: JSDs). Most regions exhibited excellent

- 1441 TRT reliability for FD- and SD-based morphological similarity networks regardless of
- 1442 nodal measures. FD, fractal dimension; GI, gyrification index; SD, sulcal depth; CT,

1443 cortical thickness; k_i , nodal degree; e_i , nodal efficiency; b_i , nodal betweenness.

1444

1445	Figure S9.	Regions sh	owing signif	ficantly different	TRT reliabilit	v values between
		0	00	2		2

- 1446 different morphological indices (brain parcellation: a2009s; similarity estimation:
- 1447 *JSDs*). Varied proportions of regions (numbers in white) were identified to show
- 1448 morphological index-dependent TRT reliability, with a general pattern of FD > SD >
- 1449 GI > CT. Similar patterns were also found under other combinations of brain
- 1450 parcellation atlas and similarity measure (Figure 18, 19 and 20). *JSDs*,
- 1451 Jensen-Shannon divergence-based similarity; FD, fractal dimension; GI, gyrification
- index; SD, sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i , nodal efficiency;
- 1453 $b_{\rm i}$, nodal betweenness.
- 1454
- 1455 **Figure S10**. Regions showing significantly different TRT reliability values between

different morphological indices (brain parcellation: a2009s; similarity estimation:

1457 *KLDs*). *KLDs*, Kullback-Leibler divergence-based similarity; FD, fractal dimension;

1458 GI, gyrification index; SD, sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i ,

1459 nodal efficiency; b_i , nodal betweenness.

1460

1461 **Figure S11**. Regions showing significantly different TRT reliability values between

- 1462 different morphological indices (brain parcellation: a2005s; similarity estimation:
- 1463 JSDs). JSDs, Jensen-Shannon divergence-based similarity; FD, fractal dimension; GI,

- 1464 gyrification index; SD, sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i , nodal
- 1465 efficiency; b_i , nodal betweenness.

- 1467 **Figure S12**. Regions showing significantly different TRT reliability values between
- 1468 different morphological indices (brain parcellation: a2005s; similarity estimation:
- 1469 *KLDs*). *KLDs*, Kullback-Leibler divergence-based similarity; FD, fractal dimension;
- 1470 GI, gyrification index; SD, sulcal depth; CT, cortical thickness; k_i , nodal degree; e_i ,
- 1471 nodal efficiency; b_i , nodal betweenness.

Parcellation	Similarity	Morphological	Interregional	Global	Local
atlas	measure	index	similarity	organization	organization
a2005s	KLDs	FD	0.876±0.128	0.768±0.064	0.830±0.111
		GI	0.734±0.141	0.413±0.093	0.663±0.166
		SD	0.830±0.167	0.873±0.050	0.834 ± 0.135
		СТ	0.636±0.161	0.514±0.152	0.572 ± 0.174
	JSDs	FD	0.877±0.127	0.772 ± 0.060	0.829 ± 0.112
		GI	0.735±0.141	0.418 ± 0.087	0.664 ± 0.166
		SD	0.842±0.153	0.877±0.045	0.835±0.135
		СТ	0.634 ± 0.161	0.519±0.146	0.572 ± 0.174
a2009s	KLDs	FD	0.883 ± 0.098	0.766 ± 0.086	0.842 ± 0.115
		GI	0.749 ± 0.132	0.520 ± 0.087	0.704 ± 0.159
		SD	0.853 ± 0.150	0.766 ± 0.037	0.840 ± 0.145
		СТ	0.695 ± 0.134	0.525 ± 0.064	0.641 ± 0.154
	JSDs	FD	0.883±0.098	0.770±0.084	0.842 ± 0.114
		GI	0.749 ± 0.133	0.516 ± 0.087	0.705 ± 0.158
		SD	0.863±0.132	0.761±0.037	0.841 ± 0.144
		СТ	0.693 ± 0.136	0.531 ± 0.067	0.641 ± 0.155
MMP	KLDs	FD	0.892 ± 0.077	0.743±0.073	0.852 ± 0.101
		GI	0.767±0.111	0.606±0.073	0.728 ± 0.140
		SD	0.886±0.121	0.807 ± 0.074	0.844±0.130
		СТ	0.711±0.121	0.536±0.079	0.668 ± 0.148
	JSDs	FD	0.891 ± 0.076	0.740±0.076	0.852 ± 0.101
		GI	0.766±0.109	0.605±0.075	0.728 ± 0.140
		SD	0.892±0.106	0.813±0.070	0.844±0.130
		CT	0.709±0.121	0.537±0.078	0.668 ± 0.148

 Table 1. Summary of TRT reliability of morphological brain networks under different

analytical strategies

The highest TRT reliability is highlighted in bold under each brain parcellation atlas and each analytical level. *KLDs*, Kullback-Leibler divergence-based similarity; *JSDs*, Jensen-Shannon divergence-based similarity; FD, fractal dimension; GI, gyrification index; SD, sulcal depth; CT, cortical thickness.

В

	Lef CHs	t hemisphere _{Name}	Rig CHs	ht hemisphere Name
a2005s atlas	14 10 8	Middle temporal gyrus Lateral occipital cortex Inferior temporal gyrus	16 10 8	Paracentral lobule Lateral occipital cortex Inferior temporal gyrus
a2009s atlas	24 11 10 10 10 8	Horizontal ramus of the anterior segment of the lateral sulcus (or fissure) Lateral orbital sulcus Anterior transverse temporal gyrus (of Heschl) Planum temporale or temporal plane of the superior temporal gyrus Vertical ramus of the anterior segment of the lateral sulcus (or fissure) Sulcus intermedius primus (of Jensen) Inferior part of the precentral sulcus	12 12 12 11 10 8 8 8 8	Horizontal ramus of the anterior segment of the lateral sulcus (or fissure) Anterior transverse temporal gyrus (of Heschl) Vertical ramus of the anterior segment of the lateral sulcus (or fissure) Lateral orbital sulcus Posterior transverse collateral sulcus Planum temporale or temporal plane of the superior temporal gyrus Triangular part of the inferior frontal gyrus Orbital sulci (H-shaped sulci) Inferior part of the precentral sulcus Transverse temporal sulcus

a2005s atlas

В

Α

	Left hemisphere		Right hemisphere	
	CERs Name		CERs Name	
a2005s atlas	19 18 18 18 18	Postcentral gyrus Fusiform gyrus Pars orbitalis Supramarginal gyrus Transverse temporal cortex	21 20 18 18	Supramarginal gyrus Inferior parietal cortex Fusiform gyrus Inferior temporal gyrus
a2009s atlas	22 20 20 20 20 20	Inferior frontal sulcus Inferior occipital gyrus (O3) and sulcus Superior occipital gyrus (O1) Middle occipital sulcus and lunatus sulcus Anterior occipital sulcus and preoccipital notch (temporo-occipital incisure) Transverse temporal sulcus	22 21 20 20 20 20 20 20 20 20 20 20 20 20 20	Sulcus intermedius primus (of Jensen) Lateral aspect of the superior temporal gyrus Inferior occipital gyrus (O3) and sulcus Subcentral gyrus (central operculum) and sulci Triangular part of the inferior frontal gyrus Superior rontal gyrus (F1) Superior occipital gyrus (O1) Angular gyrus Planum temporale or temporal plane of the superior temporal gyrus Inferior temporal gyrus (T3) Marginal branch (or part) of the cingulate sulcus Superior occipital sulcus and transverse occipital sulcus Postcentral sulcus Inferior part of the precentral sulcus Superior temporal sulcus (parallel sulcus)

