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Abstract  

Introduction:  

Neuroimaging measurements of brain structural integrity are thought to be surrogates for brain 
health, but precise assessments require dedicated advanced image acquisitions. By means of 
describing the texture of conventional images beyond what meets the naked eye, radiomic 
analyses hold potential for evaluating brain health. We sought to: 1) evaluate this novel approach 
to assess brain structural integrity by predicting white matter hyperintensities burdens (WMH) 
and 2) uncover associations between predictive radiomic features and patients’ clinical 
phenotypes. 

Methods:  

Our analyses were based on a multi-site cohort of 4,163 acute ischemic strokes (AIS) patients 
with T2-FLAIR MR images and corresponding deep-learning-generated total brain and WMH 
segmentation. Radiomic features were extracted from normal-appearing brain tissue (brain 
mask–WMH mask). Radiomics-based prediction of personalized WMH burden was done using 
ElasticNet linear regression. We built a radiomic signature of WMH with the most stable 
selected features predictive of WMH burden and then related this signature to clinical variables 
(age, sex, hypertension (HTN), atrial fibrillation (AF), diabetes mellitus (DM), coronary artery 
disease (CAD), and history of smoking) using canonical correlation analysis. 

Results:  

Radiomic features were highly predictive of WMH burden (R2=0.855±0.011). Seven pairs of 
canonical variates (CV) significantly correlated the radiomics signature of WMH and clinical 
traits with respective canonical correlations of 0.81, 0.65, 0.42, 0.24, 0.20, 0.15, and 0.15 (FDR-
corrected p-valuesCV1-6<.001, p-valueCV7=.012). The clinical CV1 was mainly influenced by age, 
CV2 by sex, CV3 by history of smoking and DM, CV4 by HTN, CV5 by AF and DM, CV6 by 
CAD, and CV7 by CAD and DM. 

Conclusion:  

Radiomics extracted from T2-FLAIR images of AIS patients capture microstructural damage of 
the cerebral parenchyma and correlate with clinical phenotypes. Further research could evaluate 
radiomics to predict the progression of WMH. 
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Research in context 

Evidence before this study 

We did a systematic review on PubMed until December 1, 2020, for original articles and reviews 

in which radiomics were used to characterize stroke or cerebrovascular diseases. Radiomic 

analyses cover a broad ensemble of high-throughput quantification methods applicable to 

digitalized medical images that extract high-dimensional data by describing a given region of 

interest by its size, shape, histogram, and relationship between voxels. We used the search terms 

“radiomics” or “texture analysis”, and “stroke”, “cerebrovascular disease”, “small vessel 

disease”, or “white matter hyperintensities”. Our research identified 24 studies, 18 studying 

radiomics of stroke lesions and 6 studying cerebrovascular diseases. All the latter six studies 

were based on MRI (T1-FLAIR, dynamic contrast-enhanced imaging, T1 & T2-FLAIR, T2-

FLAIR post-contrast, T2-FLAIR, and T2-TSE images). Four studies were describing small 

vessel disease, and two were predicting longitudinal progression of WMH. The average sample 

size was small with 96 patients included (maximum: 204). One study on 141 patients identified 7 

T1-FLAIR radiomic features correlated with cardiovascular risk factors (age and hyperlipidemia) 

using univariate correlations. All studies were monocentric and performed on a single MRI 

scanner.  

Added value of this study 

To date and to the best of our knowledge, this is the largest radiomics study performed on 

cerebrovascular disease or any topic, and one of the very few to include a great diversity of 

participating sites with diverse clinical MRI scanners. This study is the first one to establish a 

radiomic signature of WMH and to interpret its relationship with common cardiovascular risk 

factors. Our findings add to the body of evidence that damage caused by small vessel disease 
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extend beyond the visible white matter hyperintensities, but the added value resides in the 

detection of that subvisible damage on routinely acquired T2-FLAIR imaging. It also suggests 

that cardiovascular phenotypes might manifest in distinct textural patterns detectable on 

conventional clinical-grade T2-FLAIR images.  

Implications of all the available evidence 

Assessing brain structural integrity has implications for treatment selection, follow-up, 

prognosis, and recovery prediction in stroke patients but also other neurological disease 

populations. Measuring cerebral parenchymal structural integrity usually requires advanced 

imaging such as diffusion tensor imaging or functional MRI. Translation of those neuroimaging 

biomarkers remains uncommon in clinical practice mainly because of their time-consuming and 

costly acquisition. Our study provides a potential novel solution to assess brains’ structural 

integrity applicable to standard, routinely acquired T2-FLAIR imaging.  

Future research could, for instance, benchmark this radiomics approach against diffusion or 

functional MRI metrics in the prediction of cognitive or functional outcomes after stroke. 
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Introduction  

White matter hyperintensities (WMH) are a cardinal manifestation of small vessel disease 

(SVD).1 Increased WMH burden is associated with incident ischemic stroke and worse clinical 

outcome.2 Beyond ischemic stroke, WMH are also associated with vascular cognitive 

impairment and dementia.3 WMH prevalence increases with age but is also directly influenced 

by individual small vessel risk factors: the aggregation of cardiovascular risk factors leads to an 

increased WMH burden.4 Hence, WMH are an imaging biomarker of brain health suggestive of 

neurodegeneration beyond normal brain aging.5 

Structural injury of the brain has been shown to occur at the macrostructural level, in the 

form of WMH, but also at the microstructural level. Advanced diffusion tensor imaging (DTI) 

studies have shown an age-related loss of parenchymal microstructural integrity in normal-

appearing white matter (NAWM).6 Furthermore, perfusion-weighted imaging (PWI)-based 

research has also revealed age-related alterations of the blood-brain barrier with increased 

contrast agents' leakage.7 However, such microstructural injuries are not visualized with 

conventional structural MRI sequences, and as DTI and PWI require special acquisition times, 

the outlined imaging biomarkers are not currently used in clinical routine for SVD patients. 

Consequently, we are in need of conventional MRI-based methodologies that better quantify 

SVD and brain health to ensure a widespread application and translation to clinical practice. 

Radiomic analyses cover a broad ensemble of high-throughput quantification methods 

applicable to digitalized medical images.8 These methods automatically extract high-dimensional 

data, called radiomic features, by describing a given region of interest by its size, shape, 

histogram, and relationship between voxels. Because these techniques can capture slight 

differences in intensities and patterns that would remain undetected to a human reader, radiomics 
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bear the potential to describe neuroimaging beyond what meets the naked eye, and thus might 

help to phenotype SVD.9 Conceivably, they may identify early underlying brain injury at the 

individual level with rapid clinical translatability and thus enhance personalized care in stroke 

and SVD. 

The aim of the current study was to assess the structural integrity of the brain using a 

texture analysis approach and to understand the infra-radiological footprint of WMH by 

exploring its relationship with cardiovascular risk profiles. To do so, we analyzed 4,163 T2 

FLAIR images from a large multi-site international collaborative effort studying stroke and 

WMH. We sought to (a) build a robust radiomic signature of the subvisible manifestations of 

WMH and (b) to apply canonical correlation analysis (CCA) to investigate the relation between 

this latent textural expression in relation to sociodemographic information and cardiovascular 

risk factors, providing a potentially novel approach to improve SVD and stroke care. 

Method 

Participants 

We reviewed all stroke patients included in the MRI-GENetics Interface Exploration (MRI-

GENIE) study, a large international multi-site collaboration of 20 sites gathering clinical, MRI 

imaging, and genetic data, built on top of the NINDS Stroke Genetics Network (SiGN) study. 

Both study design, data collection protocols, and populations have been previously described.10 

Ethics 

The MRI-GENIE project has been approved by the MGH Institutional Review Board (IRB, 

Protocol #: 2001P001186 and Protocol #: 2003P000836), as well as ethics boards of the 
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collaborating institutions. All participants or health care proxy provided signed informed 

consent. 

Data Collection and neuroimaging pre-processing 

Clinical data were acquired within the SiGN study and comprised information on age, sex, 

hypertension (HTN), history of smoking, diabetes mellitus (DM), atrial fibrillation (AF).  Among 

the 6,627 patients included across 20 sites, FLAIR images were available for 6,389 patients. 

Axial T2-FLAIR images were acquired between 2003 and 2011 within 48 hours of the initial 

stroke. They had a mean in-plane resolution of 0.7 mm (range: 0.3 mm-1.0mm) and a through-

plane resolution of 6.2 mm (range: 3.0 mm-30.0 mm). Total brain, ventricle, and WMH 

segmentations were accomplished using deep learning methods described in detail 

previously.11,12 Briefly, total brain segmentation was done using a tailored 2D-convolutional 

neural network for clinical T2-FLAIR data.  T2-FLAIR image intensities were normalized and 

scaled. Successively, WMH and ventricles were automatically segmented using distinct 

convolutional neural network frameworks. A total of 1,353 patients was excluded after final 

quality control of all T2-FLAIR images and respective segmentations; this control process is 

described in great detail in a previous publication.11 To capture the underlying processes of SVD 

in brain parenchyma not overtly affected by WMH, we computed masks for normal-appearing 

brain parenchyma by subtracting ventricles and WMH masks from total brain masks, resulting in 

5,031 masks. Among those 5,031 patients, 868 were excluded for missing clinical data. As a 

result, a total of 4,163 patients were included across 17 different sites. 
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Radiomic feature extraction 

Radiomic features were extracted using the open-source toolbox PyRadiomics V2.2.0.  The full 

list of the radiomics extraction parameters can be found online at 

https://github.com/MBretzner/WMH_radiomicSign 

Briefly, to account for the discrepancy in voxel sizes and to reduce unwanted variance 

that could be originating from differences between centers and scanners, all features were 

extracted in-plane from down-sampled 1x1x6 mm T2-FLAIR images. Quantization was set to a 

fixed bin width of 5. Features extraction was performed outside of WMH on native and pre-

filtered images. Filters included Laplacian of Gaussian (LoG) filters (with sigmas of 1, 2, 3 mm), 

wavelet decompositions, and 2D Local Binary Patterns (2D-LBD). For each patient, 118 features 

were computed including mask statistics, shape features, first-order histogram statistics, GLCM 

(Gray Level Co-occurrence Matrix) features, GLRLM (Gray Level Run Length Matrix), GLDM 

(Gray Level Dependence Matrix), and NGTDM (Neighboring Gray Tone Difference Matrix) 

features. Exhaustive and didactic descriptions and formulas of every radiomic feature and filter 

can be found online at https://pyradiomics.readthedocs.io/en/latest/features.html. As a result, we 

extracted 763 rotation invariant radiomic features per patient.  

Machine learning approach to build the radiomic signature of the WMH 

To account for cerebral size differences, each WMH volume was divided by the corresponding 

brain volume to obtain a percentage of WMH per total brain volume. As the resultant distribution 

was highly skewed, it was transformed using a Box-Cox transform and is referred to as “WMH 

burden” in the next paragraphs. 
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 To address the high dimensionality of the data, prediction of the WMH burden was done 

using an ElasticNet linear regressor. Since ElasticNet coefficient estimates are not scale-

invariant, we standardized predictors, i.e., radiomics variables, to be 0 centered and have 

variances of the same order. 

Radiomics-based predictions of WMH burden were performed in a 30-times repeated 

nested leave-one-out five-fold stratified cross-validation scheme, resulting in a total of 24,990 

out-of-sample predictions. Predictions were plotted against ground truth values, and R2 values 

were computed with standard deviation.  

To better understand the role of each class of radiomics and to rule out an association 

based solely on the size of the extraction mask, an ancillary prediction of the WMH burden was 

performed using only the radiomics features that only reflected the size and the shape of the 

analyzed brains. 

The shrinkage ability of the ElasticNet regressor was leveraged to select the most 

predictive features of the WMH burden. The radiomic signature of the WMH was built with the 

features that were consistently selected across each of the 30 repetitions and therefore 

represented the most robust and stable predictors of WMH burden. 

Understanding the textural footprint of clinical phenotypes 

Association of clinical variables and the radiomic signature of WMH burden was done via CCA, 

which allows studying two multivariate variable sets concomitantly.13,14 Indeed, traditional 

analyses explore relationships between many to one variable, whereas CCA can study complex 

many-to-many correlations, truly leveraging the power of multivariate datasets.  CCA can be 

conceived as similar to principal component analyses in the way that each side of the data (here 
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clinical and radiomics) undergoes a factorization into a latent representation of the variables, 

called canonical variates. The canonical correlation score of a canonical function represents the 

correlation between the two canonical variates that composes it. To extract each canonical 

function, CCA finds combinations of factors of the two sets so that they are maximally 

correlated. Canonical loadings represent the correlations between variables and their latent 

representation (canonical variates) and can be interpreted as the relative contribution of variables 

to the variates: a variable with a large loading has more impact on a variate than a variable with a 

smaller loading.  

Radiomic features and continuous clinical variable (age) normality was assessed using 

the Shapiro-Wilks test and, if needed, were transformed using the R toolbox BestNormalize.15 

Significance of canonical correlations was determined via permutation testing (1,000 

permutations) and assessed using Wilks’ Lambda computed with Rao’s F-approximation, p-

values were corrected for multiple testing with Benjamini-Hochberg procedure.13,14 Explained 

variances of the canonical functions were calculated and figured in a scree plot. Loadings were 

calculated to discover and characterize the impact of clinical and radiomic features on each 

canonical functions and thus to provide support for the interpretation of the relationship between 

the radiomics and clinical domains. 

Overall, the goal of CCA is to find underlying representations that best describe the 

correlations between the two multi-dimensional datasets. Thus, this technique permits the 

estimation of the sources of maximal covariance between the clinical and the radiomics domains, 

highlighting the subvisible contribution of cardiovascular risk factors to T2 FLAIR imaging. 
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Code availability 

Radiomic features extraction, feature selection, and machine learning analyses were performed 

in python 3.7.6 using the toolbox scikit-learn.16 Canonical correlation analysis was performed in 

R V1.3.1056 using the toolboxes CCA, vegan.17,18 The complete codes used to perform the 

radiomics extraction as well as the extraction parameters and the data analysis are available here: 

https://github.com/MBretzner/WMH_radiomicSign  

Role of the funding source 

Funding sources had no role in the design, execution, analyses, interpretation of the data of this 

study, or decision to submit results. 

Results  

Population 

All patients included in MRI-GENIE have suffered an ischemic stroke. Population demographics 

are shown in table 1. The mean age was 62.8, and there were 42% females, median WMH 

volume was 4.2mL (interquartile range (IQR): 1.4-11.2). Admission NIH stroke scale (NIHSS) 

was available for 2,234 (53.7%) patients; median NIHSS was 3 (IQR: 1-6). 

 

Table 1: Demographic and clinical characteristics of the study population (n=4,163) 

Age mean (SD) 62.8 (15.0) 
Female n (%) 1,748 (42.0 %) 
Hypertension n (%) 2,825 (67.9%) 
Diabetes mellitus n (%) 687 (16.5%) 
Atrial Fibrillation n (%) 595 (14.3%) 
Coronary artery disease n (%) 772 (18.5%) 
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History of smoking n (%) 1,331 (32.0%) 
Prior Stroke n (%) 539 (12.9%) 
WMH volume 
 

median (IQR) 4.2 mL (1.4 - 11.2) 

NIHSS* Median (IQR) 3 (1 - 6) 

Legend: NIHSS, NIH Stroke Scale; *NIHSS was available for 2,234 (53.7%) patients included. 

“Prior stroke” refers to a stroke preceding the one that led to the inclusion in the study. 

 

Building the latent radiomic signature of the WMH burden 

The coefficient of determination of the repeated out-of-sample cross-validated predictions of the 

WMH burden was R2= 0.855 ± 0.011 (figure 1). The average (SD) number of selected features 

per repetition was 150.3 (5.6). These features represented the most relevant ones in the 

prediction of WMH burden. To reduce the redundancy and multicollinearity of radiomic 

features, we built a signature of the WMH burden by only including the features that were 

systematically selected in every repetition. This step resulted in the automatic selection of 68 

features, which are referred to as the “radiomic signature of WMH”. These features are listed in 

supplementary table 1.  

 

Figure 1: Repeated out-of-sample cross-validated predictions of WMH burden 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.24.427986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.24.427986
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

 
Legend: a. Predictions of the WMH burden resulted in a coefficient of determination of R2= 

0.855 ± 0.011. Predicted and true WMH burdens show negative values due to the Box-Cox 

transformation of the WMH burden distribution. The right panels provide an illustrative example 

of a radiomics extraction mask (b.) and a WMH mask (c.).  

 

Prediction performance of the WMH burden using radiomics that only describe the shape and 

size of the extraction mask but not voxel intensities was substantially lower with an R2 of 0.41 ± 

0.03. 

Clinical phenotypes captured by radiomics 

Aiming to discover possible links between clinical phenotypes and textural features of the 

radiomic signature of WMH burden, we performed a canonical correlation analysis.  
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The CCA could identify seven canonical functions (CF 1-7) correlating the radiomics with 

clinical variates. All 7 canonical functions were significant (False discovery rate corrected p-

values CF1-6 <10-3; CF7 = 0.012) with respective canonical correlations of 0.81, 0.65, 0.42, 0.24, 

0.20, 0.15, and 0.15. Figure 2 contains the scree plot of the explained variance of each CF and 

the correlation plot of the clinical and radiomic variates of the first canonical function with 

patients points colored according to their age. Loadings of the clinical and the five most 

impactful radiomic variables (highest loadings) of the first two canonical functions are reported 

in table 2. The bi-loading plot in figure 3 provides a graphical interpretation relationship 

between the most impactful variables of the first two canonical functions. Loadings of the 

clinical variate of all canonical functions are shown in table 3, loadings of the radiomics variate 

are presented in supplementary table 1. Variables that share the same direction along a given 

function have a positive covariance, whereas variables that show opposing directions have 

negative covariance. The magnitude of the loading reflects the strength of the association. 
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Figure 2: Scree plot of the explained variance per canonical function and correlation plot 

between the first clinical and radiomic variates. 

 

Legend: A Scree plot of the explained variance by canonical function. B Correlation plot of the 

first clinical and radiomics canonical variates. Each dot represents a patient and is colored 

according to age. The first canonical function mainly represented age. There was a very strong 

correlation between the clinical and the radiomics variates of r=0.81. 
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Figure 3: Bi-loading plot of the first two canonical variates. 

 

Legend: Clinical variables (red dot) and radiomic features (blue triangle) are positively 

correlated if close or negatively correlated if diagonally opposed. Blue tags were added next to 

correlated radiomic features representing shared textural concepts. On T2 FLAIR images, 

younger patients had larger brains and more homogeneous brain tissue than older patients. 
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Table 2: Clinical and most impactful radiomic loadings of the first two canonical functions 
 

CLINICAL  LOADINGS RADIOMICS LOADINGS 
  CF 1 CF 2  CF 1 CF 2 
Af 0.310 0.005 LoG-1mm Histogram 10Percentile -0.254 -0.128 
Age 0.990 0.008 LoG-1mm GLSZM 

LargeAreaHighGrayLevelEmphasis 
-0.747 -0.008 

Cad 0.260 0.097 LoG-1mm GLSZM 
LargeAreaLowGrayLevelEmphasis 

-0.743 -0.005 

Dm 0.127 0.009 LoG-2mm GLDM 
GrayLevelNonUniformity 

-0.514 0.671 

Hypertension 0.381 -0.057 LoG-2mm GLRLM RunVariance -0.241 -0.124 
Female sex 0.089 -0.993 LoG-2mm GLRLM 

ShortRunLowGrayLevelEmphasis 
0.734 0.097 

Smoking 0.069 0.180 LoG-3mm GLRLM 
GrayLevelNonUniformityNormalized 

0.300 -0.167 

   LoG-3mm GLRLM 
ShortRunLowGrayLevelEmphasis 

0.767 0.073 

   Original Histogram 10Percentile -0.733 -0.071 
   Original GLRLM 

RunLengthNonUniformity 
0.662 0.221 

   Original GLRLM 
RunLengthNonUniformityNormalized 

0.658 0.051 

   Original GLRLM RunVariance -0.801 -0.013 
   Original Shape MajorAxisLength -0.263 0.696 
   Original Shape 

Maximum2DDiameterColumn 
-0.162 0.745 

   Original Shape MeshVolume -0.608 0.581 
   Original Shape MinorAxisLength 0.046 0.709 
   Original Shape Sphericity -0.759 -0.172 
   Original Shape SurfaceVolumeRatio 0.778 0.044 
   Wavelet-LH GLSZM 

SmallAreaHighGrayLevelEmphasis 
-0.413 -0.161 

Legend: AF, atrial fibrillation; CAD, coronary artery disease; CF, canonical function; DM, 

diabetes mellitus; LoG, Laplacian of gaussian; GLCM, Gray Level Co-occurrence matrix; 

GLRLM, Gray Level Run Length Matrix; GLDM, Gray Level Dependence Matrix; NGTDM, 

Neighboring Gray Tone Difference Matrix. Loadings assess the contribution of a variable to a 

canonical function. 
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Table 3: Clinical loadings for all seven canonical functions 

 Clinical loadings 
Canonical function 1 2 3 4 5 6 7 

Af 0.310 0.005 0.102 0.020 0.313 -0.596 0.663 

Age 0.990 0.008 0.096 0.080 -0.045 0.034 0.017 

Cad 0.260 0.097 0.169 -0.157 -0.214 -0.744 -0.521 

Dm 0.127 0.009 -0.443 -0.117 0.781 -0.050 -0.401 

Hypertension 0.381 -0.057 0.067 -0.916 0.055 0.058 0.030 

Female sex 0.089 -0.993 -0.015 0.056 -0.004 -0.030 0.039 

Smoking 0.069 0.180 -0.903 -0.055 -0.347 -0.132 0.081 

Legend: AF, atrial fibrillation; CAD, coronary artery disease; DM, diabetes mellitus. A high 

loading coefficient implies a higher contribution to a canonical function. For instance, age was 

the most important variable when establishing the clinical variate of the first canonical function. 

 

Discussion 

Radiomic features, extracted outside of the visible WMH, captured latent characteristics 

of WMH and could accurately predict WMH burden. Upon further analysis, these radiomics 

were associated with clinical traits relevant to WMH, such as age, sex, hypertension, history of 

smoking, diabetes mellitus, and coronary artery disease. Therefore, the methods presented here 

provide new tools to help to understand and quantify the microstructural portion of the 

parenchymal deterioration due to SVD in stroke and give a radiological snapshot of brain health. 

Importantly, our analyses relied on basic T2-FLAIR images, as commonly acquired in clinical 

routine and thus do not require any advanced, more costly additional imaging sequences. 

 WMH represent a cardinal feature among radiological manifestations of brain aging and 

SVD. However, DTI-19 and PWI-based studies suggested20 that WMH represent an end-stage 
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macrostructural injury, embodying a surreptitious disease altering brain parenchyma. Our results 

support the hypothesis of WMH penumbra in cerebral SVD with a continuum between visible 

and invisible parenchymal damage.1,21 A major caveat of traditional advanced imaging 

biomarkers is their acquisition. Indeed, DTI sequences are rarely acquired routinely because of 

long scanning times, and PWI necessitates the injection of Gadolinium-based contrast agents. In 

contrast, our method can capture parenchymal microstructural integrity and hence, promises to 

replace additional dedicated imaging as a candidate approach to follow-up SVD progression in 

the clinic.  

 By means of our canonical correlation analysis, we estimated the associations between 

the radiomic signature of WMH and SVD risk factors. The influence of cardiovascular risk 

factors on brain tissue was previously investigated in neuropathology and advanced imaging 

studies yet was rarely described by analyzing the texture of conventional imaging.1,22 Our work 

complement and support previous studies on MRI textural analysis applied to SVD by Valdes 

Hernandez et al.23 on gadolinium-enhanced T2-FLAIR, Bernal et al.24 on dynamic spectral 

gadolinium-enhanced T1 weighted imaging, Tozer and al.25 on T1 and T2-FLAIR cognitive 

textural biomarkers, and Shu and al.26 and Shao and al.27  who could predict the progression of 

WMH using radiomics extracted from respectively T1-FLAIR and T2-FLAIR images. Our 

analyses were based on a large collection of clinical T2-FLAIR images, a routine MRI sequences 

acquired during both acute screening and follow-up of patients with stroke and cerebrovascular 

disease. Therefore, it argues for the overall clinical relevance of radiomics in stroke and SVD. 

Age was the clinical aspect correlating most strongly with the radiomic signature of 

WMH burden and is a well-established predictor of WMH.10,28 Similarly, blood-brain barrier 

studies using PWI highlight an age-associated increased leakage of contrast agents within WMH, 
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but also beyond, in NAWM, showcasing a possible preclinical pathogenic step leading to 

cognitive decline.29 Our findings also suggest the presence of age-related subvisible 

abnormalities that can notably be quantified on structural T2-FLAIR images. Radiomic features 

interpretation showed that decreased brain size and lower sphericity, both affected by cerebral 

atrophy, alongside with T2-FLAIR higher intensities and heterogeneity, were the most strongly 

correlated with age. On the first canonical function, age was the main variable, however, HTN, 

AF, and CAD were also moderately represented, painting the picture of vascular pathological 

brain aging. The heterogeneity and hyperintensities of the parenchyma could have maybe 

captured lacunes, enlarged perivascular spaces, or microbleed, which are, along with WMH, 

radiological hallmarks of SVD.1 Radiomics presented here could therefore portray a 

representation of a pathological brain aging process in stroke patients, depicting atrophic and 

heterogeneous parenchyma. 

The second canonical function illustrated sex differences in tissue aspects in T2-FLAIR. 

The association of the radiomic signature with sex was mainly driven by shape radiomics 

capturing differences in brain size. This finding remains, however, independent from age-related 

atrophy since canonical functions analyze the unexplained variance from the previous function. 

Nevertheless, the female sex was also associated with greater linear edge density (GLRLM after 

Laplacian of Gaussian filtering), which might indicate some sex-specific textural differences in 

the loss of microstructural integrity, as suggested in DTI with previous findings reporting sex-

specific fractional anisotropy values.30 

The third canonical function captured a profile representing mainly patients with a history 

of smoking, and, to a lesser extent, diabetes, which shared common textural features describing 
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more high spatial frequency changes in intensities which could represent diffuse and fine 

heterogeneity throughout the brain. 

The fourth canonical function characterized a specific relation between hypertension and 

some textural features highlighting inhomogeneity on a lower spatial frequency after wavelet 

decomposition, thus describing a patchy texture. Since no other cardiovascular risk factor was 

represented on this dimension, it describes an age-independent specific textural manifestation of 

hypertension on T2-FLAIR. 

Diabetes mellitus was mainly represented in the fifth dimension, correlating with textural 

features that illustrated overall less hyperintense parenchyma and especially those obtained after 

filtering with Laplacian Of Gaussian filters. Since those filters are known to act as blob 

detectors, they potentially captured isolated islets of damage.  

The sixth canonical function related the presence of CAD and AF to a more 

homogeneous texture, which was, however, combined with a high impulse response to the 

Laplacian Of Gaussian filters of 1, 2, and 3mm sigma that could signify the presence of spots of 

subvisible damage of varying size of presupposed embolic origin. On the contrary, the seventh 

canonical function pictured the differences separating AF from CAD and DM patients, where AF 

patients seemed to exhibit more patches of high spatial frequency intensity changes, which could 

represent zones of subtly lesioned brain. 

Diabetes and atrial fibrillation were represented by several dimensions meaning that the 

diseases in question could manifest in several distinctive aspects or stages in our data. 

Conditional factors that could influence such diversity in presentations include the relative 

control of disease by treatment or lifestyle, the patient’s stage of disease severity, genetic 

predispositions, and endophenotypes of varying severity. 
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As with any work on radiomics, the main pitfall remains the curse of dimensionality, which 

refers to a very high number of variables. Consequently, one of the strengths of our study was 

the available sample size, allowing us to truly leverage both machine learning methodologies and 

multivariate modeling to select and characterize relevant radiomic variables in a data-driven 

fashion. In fact, to date and to the best of our knowledge, this is the largest radiomics study 

performed on any topic. Previous work on radiomics of SVD studied smaller datasets (<250 

participants) and thus did not permit powerful unsupervised feature selections.23–25 Another 

added value of the present study is its multicentric design. Our study is the first to explore 

radiomics of SVD in a large and multicentric cohort. By implementing multiple measures, such 

as down-sampling and intensity normalization, to prevent differences originating from 

acquisition parameters discrepancies, we could reach homogeneous results across all centers 

while capturing relevant sources of variance, as depicted by the low error of our WMH burden 

predictions. Another source of unwanted variance in radiomics analyses is segmentation, 

however, we here built upon previous results obtained with state-of-the-art deep learning-based, 

fully automated segmentation methods that could produce consistent outlines of brains, WMH, 

and ventricles from T2-FLAIR.11,12 Preventive measures we implemented, especially down-

sampling and intensity normalization, may have come at the cost of losing pertinent information. 

However, that impact might have been mitigated thanks to our large sample size. We thus 

emphasize the capital importance of international collaborations, such as the MRI-GENIE 

consortium, to gather large datasets, especially in the era of quantitative imaging and 

personalized medicine. 
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Limitations and future directions 

We acknowledge several limitations; first, stroke lesion outlines were not available and thus not 

accounted for. Therefore, they could have been measured by radiomics and biased WMH 

predictions, e.g., caused the overestimation in predictions we observed in both the lower and 

upper tails of the predicted WMH burden distribution. Overall, the median size of ischemic 

stroke lesions in this cohort is expected to be small, as the median NIHSS was 3. Moreover, the 

radiomic analysis conducted here provides a single value per radiomic variable per patient, 

averaging the textural presentation over the whole extraction zone and thus largely decreasing 

the impact of small lesions. Regarding large lesions, the corresponding perturbated radiomic 

value could have been assimilated to an outlier and then mitigated by the ElasticNet model, 

which includes an L1 regularization that improves its robustness to extreme values. Other SVD 

imaging features were also not accounted for, such as microbleeds or enlarged perivascular 

space, which have been previously linked to radiomic features.23,25 

Secondly, radiomics were extracted outside of the WMH but not specifically within the 

white matter. Future research could evaluate the impact of co-registration and resampling on 

radiomics of SVD, then benchmark radiomics of NAWM against more traditional DTI metrics in 

the prediction of clinical outcomes and therefore provide a more straightforward method to 

quantify microstructural integrity. 

Conclusion 

In a large cohort of ischemic stroke patients, we demonstrated that radiomic features predicted 

WMH burden and were associated with clinical factors. By applying machine learning methods 

to radiomics analyses of T2-FLAIR images from a large multi-site ischemic stroke cohort, we 
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could characterize the latent expression of small vessel disease that extends beyond the visible 

WMH and subsequently uncover links associating cardiovascular risk factors to distinct textural 

patterns. Radiomics analysis may hold promise to become a cost-effective tool to quantify 

microstructural damage on routinely acquired images in the follow-up of SVD and stroke 

patients, once externally validated.  

 

Data sharing: 

Upon reasonable request to the corresponding author and pending approval from local IRBs, data 

will be made available to replicate results presented in this manuscript. 
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