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One Sentence Summary: The non-structural proteins observed in scalp hair from preschool 

children show evidence for heritability, reflect biological functions such as brain development, or 

immune function and regulation of stress responses, and exhibit age- and sex-related differences 

across periods of early childhood development. 
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ABSTRACT 

Early childhood experiences have long-lasting effects on subsequent mental and physical 

health, education, and employment. Measurement of these effects relies on insensitive behavioral 

signs, subjective assessments by adult observers, neuroimaging and neurophysiological studies, 

or remote epidemiologic outcomes. Despite intensive search, no biomarkers for developmental 

changes in the brain have been identified. We analyzed scalp hair from healthy children and their 

mothers using an unbiased proteomics platform to reveal 1368 hair proteins commonly observed 

in children, 1438 proteins commonly observed in mothers, and 1288 proteins observed 

sporadically in individual subjects. Mothers showed higher numbers of peptide spectral matches 

and hair proteins compared to children, with important age-related differences between mothers 

and children. Age-related differences were also observed in children, with differential protein 

expression patterns between younger (2 years and below) and older children (3-5 years). Boolean 

analyses showed greater conservation of hair protein patterns between mothers and their 

biological children as compared to mothers and unrelated children. The top 5% proteins driving 

population variability represent biological pathways associated with brain development, immune 

signaling, and stress response regulation. Non-structural proteins observed in scalp hair may 

include promising biomarkers to investigate the developmental changes associated with early 

childhood experiences. 

(196 words) 
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INTRODUCTION 

Early human development remains exquisitely sensitive to parental, environmental, and 

societal influences that multiplex the history of each individual (via genetic and epigenetic 

factors) with their daily experiences. Variations in these factors, such as the social determinants 

of health, can singly or collectively introduce differences in their developmental outcomes(1, 2). 

Such differences are then magnified in the higher-order cognitive and behavioral capacities of 

humans, which are built on a series of sequential or staggered developmental epochs that can 

enable or constrain their future role(s) in society, as well as their mental and physical health(3-5).  

Although the outcomes of early childhood are easily assessed, but objectively assessing 

their social, emotional, or other environmental inputs across multiple timescales is challenging. 

These challenges result from most subjects being pre-verbal, coming from unknown 

environments, or accompanied by unreliable historians(1, 6). Developmental timescales can also 

range from milliseconds to minutes (e.g., affecting acute neuromodulatory tone, neuronal 

oscillations, neuroendocrine changes), days to weeks (e.g., affecting circadian rhythms, 

metabolic functions, memory and learning), or months to years (e.g., affecting brain growth and 

brain plasticity, or emerging cognitive, behavioral, or social capacities)(7). Neurophysiological, 

neuroimaging, and observational studies have attempted to describe and quantify these early 

developmental changes, but there remains a need for non-invasive, objective biomarkers that can 

be measured serially across the months and years required for childhood development(8-10). 

Human scalp hair, derived from the neuroectoderm and mesoderm, grows constantly at 

about 1 cm/month and evolves via prenatal lanugo, postnatal vellus, intermediate medullary, and 

terminal hair stages. Hair contains 65-85% proteins, 15-35% water, 1-9% lipids, and 0.1-5% 

pigments like melanin and trace elements(11). Constantly growing scalp hair incorporates both 
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endogenous and exogenous proteins in a time-averaged chronological manner(12), unlike any 

other biospecimens(13). Therefore it is used for monitoring drug exposures, heavy metals, or 

other environmental toxins(14). Developmentally regulated hair proteins could offer biomarker 

candidates for brain development in early childhood.  

However, all published data on hair proteins are limited to adult subjects, include 

relatively small sample sizes, and focus mainly on structural hair proteins. Lee et al. reported 343 

hair proteins from three adults, showing evidence for post-translational modifications(15). 

Laatsch et al. analyzed hair from 18 males and 3 females, reporting ethnic differences in keratins 

and keratin-associated proteins (KAPs)(16). Carlson et al. characterized hair proteins from one 

adult with limited sample availability(17), whereas Wu et al. used hierarchical protein clustering 

to match 10 monozygotic twin pairs and differentiate them from unrelated individuals(18). 

Parker et al. reported quantifiable measures of identity discrimination and racial ancestry by 

detecting genetically variant peptides in the structural hair proteins for forensic purposes(19).  

To fill the extant gaps in knowledge, we analyzed non-structural hair proteins using ultra-

performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in preschool 

children and their mothers. Our subjects were not exposed to early life adversity, as evidenced by 

parental income, household structure, health insurance, and parent education(4); all children 

were developmentally appropriate, healthy, and belonged to stable nuclear families (Table S1).  

RESULTS  

Features of hair proteins 

Pooled hair samples from 40 children and 43 mothers were processed initially to identify 

non-structural hair shaft proteins, using protein purification to remove keratins. We subsequently 

analyzed individual hair samples from 8 mothers with 16 related children and 16 unrelated 
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children, to create a master library of hair proteins with 3,124 proteoforms, representing the gene 

products of 2,278 genes. Expression of protein isoforms, alternative splicing of messenger RNA 

(mRNA), and post-translation modifications resulted in a higher number of hair proteins than 

their associated genes(15, 20). These data were deposited through the PRIDE repository(21) into 

the ProteomeXchange Consortium(22, 23). 

Hair proteins observed in individual mothers and children contained 2,269 unique 

‘proteoforms’ or protein isoforms; 1,438 proteins were commonly observed in mothers, 1,368 

proteins were commonly observed in children, whereas 1,288 hair proteins showed individual 

variability among mothers and children. Higher spectral counts (p=0.0004) and higher numbers 

of proteins (p=0.001) were observed in mothers compared to children (Fig.1), perhaps reflecting 

a wider array of biological functions in adult females related to reproduction(24-26), aging(27, 

28), or disease states(29). These age differences are explored further in subsequent analyses. 

The Uniprot database (https://www.uniprot.org/) revealed, for example, that 191 proteins 

observed in hair were regionally enriched in specific brain regions (based on the Allen Brain 

Atlas (https://human.brain-map.org/static/brainexplorer and the Human Brain Protein Atlas 

(https://www.proteinatlas.org/search/brain_category). Observed spectral counts for 2 brain 

proteins were higher in children (Lipocalin-1, Matrix metalloproteinase 7), 47 proteins were 

higher in mothers, 45 proteins lacked age-related differences, and 97 proteins were observed 

sporadically in individuals. Cellular functions and biological processes associated with the 

observed proteins were identified using PANTHER classification systems (Fig.S1, 

www.pantherdb.org).  
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Hair protein profiles in individuals and families 

Peptide spectral matches for each protein were combined to compare protein expression 

for all individuals and assess Spearman rank correlations. Hair proteins from the mothers were 

closely correlated with each other, whereas hair proteins in children showed correlations based 

on age and sex (Fig.2A). Euclidean distances were calculated for pairwise comparisons between 

individuals (Fig.2B) and used for hierarchical clustering to identify subjects with similarities in 

the hair protein patterns (Fig.2C). Consistent with the correlation matrix, all mothers were 

clustered close together, younger children (0-2 years) were mostly located in one cluster, 

whereas older children were clustered with the mothers (Fig.2C). Boolean profiles of the hair 

proteins for each mother and her two children showed significantly shorter intra-family 

Manhattan distances (p<0.0002) as compared to 5000 ‘simulated’ families with mismatched 

mothers and children (Fig.2D), revealing a hereditary conservation of hair protein profiles in 

each family. 

 

Age- and sex-related differences in hair proteins 

Principal Component Analysis (PCA)(30-32) and t-distributed Stochastic Neighbor 

Embedding (tSNE)(33, 34) were used to reduce the dimensionality of our data and to identify the 

major contributors of hair protein variability. Principal components 1-5 accounted for 61.6% of 

hair protein variability for all subjects, 57.5% for all children, 84.0% for all mothers, 60.8% for 

mothers and related children, and 62.3% for mothers and unrelated children.  

Age differences were observed by plotting the first two principal components (PC1, PC2) 

and tSNE dimensions (Fig. 3). We observed clusters of the younger children and mothers, with 

the older children dispersed across these groups (Fig. 3A). Similar clusters were observed from 
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the remaining principal components. The tSNE projections also showed mothers located 

separately from the children (Fig. 3B). Proteins driving these differences showed higher spectral 

counts in mothers vs. children for SERPINB4 (serine protease inhibitor), POF1B (actin filament 

binder), PLEC (cytoskeleton binding protein), A2ML1 (α2-macroglobulin-like proteinase 

inhibitor), HIST1H3A (histone), UQCRQ (electron transfer from ubiquinol to cytochrome C), 

and AHCY (adenosylhomocysteine hydrolase). In contrast, mammaglobin-B (SCGB2A1), a 

heterodimerization protein that binds androgen and other steroids, was observed only in children 

(Table S2).  Older children had higher spectral counts for PLEC (plectin), EIF3A (eukaryotic 

translation initiation factor 3), AHCY (adenosylhomocysteinase), HAL (histidine ammonia-

lyase), and TUBA1C (Tubulin alpha 1c), whereas younger children had higher protein spectral 

counts for SCGB2A1 (secretoglobin 2A member 1) and CSN2 (casein beta) (Table S3).  

Sex differences showed slightly higher spectral counts in girls vs. boys (p=0.038) but no 

difference in the number of proteins (Table S1). PCA analyses and tSNE projections showed 

overlapping clusters of boys and girls (Fig. 3C, 3D). When comparing individual proteins, 

higher spectral counts were observed for CSN2 (Casein beta) in boys and ALMS1 (Alström 

syndrome protein 1) in girls (Table S4).  

Machine learning algorithms using Random Forest regressions(35) were used to predict 

age from their hair protein profiles. This model predicted age differences in mothers and children 

(R2=0.37, Fig.4A), but performance improved (R2=0.45) when predicting age for all children 

(Fig.4B). Random Forest classifier algorithm showed an acceptable mean accuracy for 

classifying mothers and children based on their predicted vs. observed age (mean area under the 

ROC curve = 0.93, Fig.4C; Wilcoxon test p=0.00011, Fig.4D).  
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A Random Forest classifier to predict sex from hair protein profiles in children could not 

reliably differentiate boys from girls (mean area under the ROC curve = 0.6, Fig.4E; Wilcoxon 

test p = 0.1703; Fig.4F), but predictions improved when classifying all participants including 

mothers and children (area under the ROC curve = 0.73, Fig.4G; Wilcoxon test p = 0.0083, 

Fig.4H). The latter result is likely due to the age-based distinction between mothers and children, 

although sample size-related effects cannot be ruled out (25 vs. 17 females).  

 

The top contributors to hair protein variability 

The top 5% proteins were identified as the most prominent contributors based on their 

total loading scores (TLS), explaining 64.3% of hair protein variability in all individuals, 89.5% 

in all mothers, 57.5% in all children, 49.3% in mothers and related children, and 64.6% in 

mothers and unrelated children (Fig.5). Keratins and KAPs are structural components of hair, but 

usually considered contaminants in most proteomics experiments, due to their high abundance in 

common lab contaminants. We therefore performed PCA analyses for all individuals with 

(Fig.5A) and without excluding the keratins and KAPs (Fig.5B). Structural proteins contributed 

to hair protein variability but with no differences in their biological significance. Separate PCA 

analyses performed to characterize the hair proteins observed in subpopulations of mothers 

(Fig.5C), children (Fig.5D), mothers and related children (Fig.5E), and mothers and unrelated 

children (Fig.5F) showed the same proteins ranked in all individuals and all children. Other than 

the histones, no other proteins were common between mothers and children. Tubulin alpha 1c 

(TUBA1C) was the only hair protein ranked within the top 5% in all groups, whereas PLEC, 

SERPINB4, and UQCRQ were observed in multiple groups. 
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Biological role(s) of the strongest contributors to hair protein variability 

Based on experimentally observed human data in the Ingenuity Knowledge Base, log-

fold-change values of the top 5% proteins from our dataset were used to analyze direct and 

indirect relationships between molecules. Protein networks for the top 5% hair proteins 

contributing to age-related differences between mothers and children (Fig.6) and similar analyses 

for sex-related differences between girls and boys were examined (Fig.7).  Using these 

molecular relationships as input for Ingenuity Pathway Analysis, we found proteins involved in 

cellular metabolism including the protein ubiquitination pathway, Sirtuin signaling pathway, 14-

3-3 mediated signaling, Wnt-Ca++ pathway, histidine degradation, mitochondrial function, and 

oxidative phosphorylation (Fig.8). Other proteins were associated with immune responses, 

including phagosome maturation, IL-8 signaling, and regulation of macrophages, fibroblasts, and 

endothelial cells, or involved in the regulation of stress-related pathways, including corticotropin 

releasing hormone signaling, glucocorticoid receptor signaling, prolactin and aldosterone 

signaling.  Finally, hair proteins associated with brain development including axonal guidance 

and gap junction signaling were also identified (Fig.8).  

 

DISCUSSION  

Growing hair provides a time-averaged molecular record unavailable from any other 

tissue or biospecimens(13). The hair follicle includes most cellular processes, including cell 

growth, cell death, interactions of histologically different cell types, cell migration and 

differentiation, and it responds to multiple hormones, microenvironmental and systemic 

changes(36). Structural and functional characteristics of hair follicles also mimic the renal 

tubules, potentially performing unique, distributed excretory functions(37). 
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The chemical composition of hair(11, 38-42) and its structural proteins (keratins, KAPs) 

are well-studied(16-19), but with minimal data on non-structural hair proteins. We found 2,269 

non-structural hair proteins with important differences between mothers and children, age- and 

sex-related differences among preschool children, and conservation of protein profiles within 

families. Hair proteins driving variability in different populations were found to play vital roles 

in functions other than those of trichocytes in the hair follicle, including cellular metabolic 

pathways, brain development, immune signaling, and stress regulation. Thus, unbiased or 

targeted protein profiles from single or serial hair samples (or sequential hair segments) could be 

used as probes for child development(43, 44) or life-course studies(29, 45, 46).  

We observed age-related hair protein profiles in children and mothers, with distinct 

patterns emerging in multiple analyses. Differences between mothers and children were largely 

driven by increased maternal expression of SERPINB4, PLEC, and UQCRQ. SERPINB4 is a 

granzyme inhibitor linked with squamous cell carcinomas and chronic liver disease(47-49), 

Plectin mutations were linked with epidermolysis bullosa simplex, but has also emerged as novel 

susceptibility gene for testicular germ cell tumors(50-52), and UQCRQ is a nuclear protein in the 

mitochondrial respiratory chain complex III essential for normal brain development(53). 

Mammaglobin-B (SCGB2A1), which is linked with familial febrile seizures in preschool 

children(54, 55) and chemoresistant cancers in adults(56), was observed only in children’s hair.  

Our analyses showed minimal sex differences in early childhood, confirmed by Random 

Forest predictive models. Biological pathways for cellular metabolism and innate immunity 

appeared more prominent in girls, whereas brain development and regulation of stress responses 

appeared more prominent in boys. Perhaps sex differences in hair proteins may be accentuated 

following the onset of puberty(57). Although hair protein profiles were conserved in mothers and 
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their biological children, future studies in mother-child dyads and monozygotic vs. dizygotic 

twins are required to quantify the heritability of hair proteins(58).  

Experimental human data from the Ingenuity Pathway Analysis identified hair proteins 

associated with axon guidance(59) and gap junction signaling(60). For example, Tubulin alpha 

1C was identified from all sub-populations in our dataset. TUBA1C (on chromosome 12) is 

amongst the most over-expressed brain-specific genes, forming a major component of the 

microtubules that determine neuronal shape and function, and is typically used as a marker of 

neural differentiation(61). We observed 191 hair proteins regionally enriched in the brain and 

speculate that hair proteomics could complement neuroimaging and neurophysiological data on 

early brain development(8). For example, specific plasma proteins were associated with higher 

non-verbal intelligence and pro-inflammatory proteins associated with lower intelligence in 

children from Nepal(62). That study used an FDR of 5%, whereas our FDR threshold was set at 

1% or lower.  

Future developmental studies with larger sample sizes could correlate hair proteins with 

cognitive or behavioral outcomes, thus investigating their role in normal and altered brain 

development(63). Clinical trials of novel therapeutics to enhance brain recovery, in stroke or 

traumatic brain injury for example, would also benefit from brain-region specific biomarkers. 

“Despite intensive search, there is no such biomarker in brain imaging or serum”(64) and 

therefore, clinical trials of neural repair therapeutics have suffered from reliance on insensitive 

behavioral outcomes(64).  

These findings must be interpreted in the light of three limitations. First, our sample size 

of 32 children was insufficient to examine developmental differences at each age in the 

preschool period. We selected healthy children from homogenous socioeconomic environments; 
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they did not experience any adverse conditions and therefore, our data may not represent the full 

range of hair protein profiles present in the general population. Our sample size, however, is 

larger than most other studies of hair proteomics in adults and it is the first to include mothers 

and children. Our study design also allowed us to investigate differences in hair protein profiles 

between related and unrelated individuals, as well as differences between adults and children. 

Second, our proteomics platform relied on peptide spectral matches, which presented only semi-

quantitative data on the abundance of hair proteins between individuals. Since this was the first-

ever study investigating non-structural proteins from hair in humans, we chose a ‘shot-gun’ 

proteomics approach rather than targeted and more quantitative approaches. Now that we have 

established large libraries of hair proteins for mothers and children, future studies can be 

designed for the quantitation of specific protein targets or protein groups. Lastly, we did not 

correlate hair proteins with the child’s developmental milestones or their cognitive and 

behavioral data. We feel that the sample size limitations at each age would preclude any 

generalizable conclusions from such analyses.  

Despite these limitations, our initial findings reveal the potential role of non-structural 

hair proteins as biomarkers for brain development, metabolic, immune, or stress-regulatory 

pathways, providing a rich source of chronologically-ordered information for life-course studies 

and early childhood development.  
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MATERIALS AND METHODS 

After IRB approval and parental consent, mothers and children aged 1-6 years were 

enrolled from local preschool facilities. We excluded children with tinea capitis, alopecia areata, 

eczema, or other scalp conditions; those receiving any prescription or over-the-counter drugs; or 

steroid therapy in the past 3 months; or those with chronic medical conditions, developmental 

delay, or chemical exposures to hair prior to study entry. Hair samples from the posterior vertex 

area were trimmed at 0.1mm from the scalp, weighed, and stored in Ziploc® bags at 4oC. 

 

Hair extraction: Finely chopped hair (10 mg) was incubated in 500μl Tri-Reagent® (Molecular 

Research Center, Inc; Fisher Scientific) at room temperature (RT) for 10min, followed by 100μl 

chloroform (shaken vigorously for 15sec, stored for 10min). Samples were centrifuged at 

12000g, 4oC for 10 min to separate the aqueous RNA fraction. Samples were incubated with 

1.5ml acetone at –30oC for 1 hour, followed by centrifugation at 8000g for 5 min to sediment 

protein. The supernatant was removed, the sediment suspended in 1ml, 0.3 M guanidine 

hydrochloride/95% ethanol/2.5% glycerol, stored for 10min at RT, followed by centrifugation at 

8000g for 5 min. The supernatant was decanted and the wash repeated twice. The protein pellet 

was washed twice in 95% ethanol (without glycerol), centrifuged for 5min, 8000g at 4oC and the 

pellet stored frozen under fresh 95% ethanol at –20oC.  

 

Proteomics methods: Samples were brought to RT, centrifuged at 8000g for 5 min, the ethanol 

decanted and dried under vacuum. Protein pellets were resuspended in 50mM ammonium 

bicarbonate in the presence of 0.0015% ProteaseMAX (Promega) and total protein amount was 

estimated with Pierce BCA assays (Thermo Fisher Scientific). Proteins were digested with 
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0.25µg of Trypsin/LysC (Promega) at a 1:100 enzyme/substrate ratio overnight at 37°C. 

Proteolytic digestion was quenched with 1% formic acid; peptides were dried by speed vac 

before dissolving in 30µl of reconstitution buffer (2% acetonitrile + 0.1% Formic acid) to a 

concentration of 1 µg/µl; 2µl of this solution was injected into the MS instrument. 

Experiments were performed on the Orbitrap Fusion Tribrid mass spectrometer (Thermo 

Scientific) coupled with ACQUITY M-Class ultra-performance liquid chromatography (UPLC, 

Waters Corporation). For a typical LCMS experiment (Liquid Chromatography/Mass 

Spectrometry), a flow rate of 450 nL/min was used, where mobile phase A is 0.2% formic acid in 

water and mobile phase B is 0.2% formic acid in acetonitrile. Analytical columns were pulled 

using fused silica (I.D. 100 microns) and packed with Magic 1.8-micron 120Å UChrom C18 

stationary phase (nanoLCMS Solutions) to a length of ~25 cm. Peptides were directly injected 

onto the analytical column using a gradient (2-45% B, followed by a high-B wash) of 80 

minutes. The MS was operated in data-dependent fashion using CID (collision induced 

dissociation) for generating MS/MS spectra, collected in the ion trap with collisional energy set 

at 35. 

The *.RAW data files were processed using Byonic v3.2.0 (ProteinMetrics) to infer 

protein isoforms using the Uniprot homo sapiens database. Proteolysis with Trypsin/LysC was 

assumed to be semi-specific allowing for N-ragged cleavage with up to 2 missed cleavage sites. 

Precursor mass accuracies were held within 12 ppm and 0.4 Da for MS/MS fragments. Proteins 

were held to a false discovery rate (FDR) of 1% or lower, using standard target-decoy 

approaches(65), and only the proteins with >3 spectral counts were selected for further data 

processing; keratins and KAPs were removed at this stage.  
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Statistical analysis:  Spectral counts were used to calculate Euclidean distances between 

individuals; Euclidean distances were used for hierarchical clustering. A correlation matrix with 

Spearman’s coefficient was also used for rank-based depiction of similarities between the 

individual hair proteomes.  

Principal Component Analysis (PCA) was used to reduce dimensionality of the dataset. 

PCA is a widely used technique for data analysis and modeling(30) of linear combinations of the 

original dimensions called principal components(32). The largest proportion of data variance is 

captured by the first principal component, the second largest proportion of variance falls along 

the second principal component, and so on(31). For the first five principal components from each 

PCA, we multiplied the loading scores for each protein by the percent variance explained by that 

corresponding principal component; the weighted scores were summed for each protein to give 

its Total Loading Score (TLS).  

Weighted Score = Loading Score * Proportion of Variance 

	

Based on their TLS values, top 5% proteins were selected as the main drivers of variability in 

hair protein expression.  

Additionally, we used t-distributed stochastic neighboring embedding (tSNE), a non-

linear probabilistic approach(33, 34), to visualize proteins with non-linear similarity in high-

dimensional space as neighbors in low-dimensional linear depictions. Unlike the reproducible 

PCA results, the probabilistic nature of tSNE can result in somewhat different results with each 

computation. To avoid serendipitous results, we ran each computation at least 10 times to ensure 

reproducibility. For each computation, the maximum number of iterations to converge was set to 
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1000, and perplexity set to the maximum permitted value. Statistical significance of tSNE 

clusterings was calculated by how often a given statistic was reproduced in 1000 simulations of 

permuted versions of the dataset. 

Boolean profiles of the hair proteins were also compared between the original dataset 

(each mother with her own children) and 5000 simulated datasets, created by swapping mothers 

between families such that no mother was paired with her own children, but the two siblings 

remained together in all simulated datasets. Observed conservation in pairwise intra-family 

Manhattan distances from the original dataset could then be attributed to the similarities in hair 

protein expression between each mother and her children. 

For the top 5% proteins in children (n=32), we averaged spectral counts for girls and boys 

separately, and divided the girls’ average by the boys’ average. Resulting values were converted 

to log-base 2. The same process was followed for spectral counts from mothers and children. 

Log fold-change values of the top 5% proteins were used as input for Ingenuity Pathway 

Analysis (Qiagen: https://digitalinsights.qiagen.com/products/features/). We analyzed direct and 

indirect relationships between molecules based on experimentally observed data, restricted to 

human databases in the Ingenuity Knowledge Base.  

We used Random Forest (RF) models for both the classification (boy vs. girl, mother vs. 

child) and regression (age prediction) tasks, with protein concentrations as model features and 

individuals as samples(35). In classification, the model output was the probability of an 

individual being female (sex classification), or being a mother (person classification). For 

regression (age prediction), the model output was the individual’s predicted age.  

Results were based on a 10-fold cross-validation repeated 100 times. Members of the 

same family were included in the same set, i.e. either training or test sets, to avoid information 
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leak due to familial similarities. For the age prediction, we evaluated results using the R2 

coefficient of determination and the linear model p-value fitted on the predicted and observed 

data. For the classification tasks, we used area under the ROC curve (AUC) and the Wilcoxon-

Mann-Whitney-test, testing the null-hypothesis that one distribution is not stochastically greater 

than the other. 
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FIGURES 

 
Figure 1: Hair proteins in mothers and children. (A) Protein spectral counts (p=0.0004) and (B) the 

numbers of proteins observed (with spectral counts >3) were consistently higher (p=0.001, Wilcoxon tests) 

in the mothers (M; Cyan) as compared to children (C; Pink).  Mothers and their children (family labels: 

F107, F123, F134, F142, F183, F218, F271, F288) and Unrelated children (U) are identified on the X-

axis: every mother except F134 and F218 had higher spectral counts and more hair proteins than her 

children.  
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Figure 2: Similarities in hair protein profiles of individuals and families. (A) Spearman rank 

correlation matrix, with high (purple) to low (orange) correlation coefficients*; (B) Euclidean distances 

based on protein spectral counts, showing individuals more closely related (red) or more distant (grey) 

from each other*; (C) Hierarchical cluster dendrogram based on log spectral counts showing 7/8 mothers 

grouped in one cluster (mustard) with one mother in an adjacent cluster (pink); younger children (0-2 

years) in one cluster (green) whereas older children dispersed in the other clusters*; (D) Intra-family 

Manhattan distances from Boolean hair protein profiles were shorter in mothers matched with their own 

children (p<0.0002) vs. 5000 simulated datasets created with mismatched mothers and children.  

*Note: Individuals are listed on the X- and Y-axes with their family identifier, with Mo for mother, C1 

for younger child, C2 for older children in each family. 
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Figure 3: Age and sex-related differences in hair proteins. (A) First two principal components showing 

spatial separations by age, with children above 2 years (pink) located in between the children 0-2 years 

(blue, upper right) and the mothers (green, lower left).  (B) The first two tSNE dimensions by age, showing 

mothers in the left upper quadrant separate from the children. Higher spectral counts for 7/17 hair proteins 

were observed in mothers (SERPINB4, POF1B, PLEC, A2ML1, HIST1H3A, UQCRQ, AHCY) and one 

protein (SCGB2A1) in children (Kruskal-Wallis and post hoc Benjamini-Hochberg corrections; see Table 

S2). (C) PCA analyses of all children showing overlapping circles for girls (blue) and boys (pink).  (D) 

tSNE dimensions by sex, showing overlap between boys and girls. Higher spectral counts were observed 

only for CSN2 (Casein beta) in boys (p=0.0184) and ALMS1 (Alström syndrome protein 1) in girls 

(p=0.0214) (see Table S3). 
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Figure 4: Machine learning algorithms predict age and sex from hair proteins.  Mean scatterplot 

from 100 runs of Random Forest regression showing (A) observed vs. predicted age for mothers and 

children (R2 0.37, p=0.00005) and (B) for all children (R2 0.45, p=0.00004). (C, D) Random Forest plot 

showing mean accuracy for classifying mothers and children based on hair proteins (mean area under the 

ROC curve = 0.93, Wilcoxon test p=0.00011). (E, F) Random Forest plot showing mean accuracy for 

classifying by sex based on hair proteins for children (mean area under the ROC curve = 0.60, Wilcoxon 

test p=0.1703). (G, H) Random Forest plot improved when classifying all participants including mothers 

and children (area under the ROC curve = 0.73, Wilcoxon test p = 0.00831). 
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Figure 5: Top 5% proteins contributing to hair protein variability. The loading scores for each protein 

were weighted by the percent variance explained by each corresponding PC and then summed to give the 

Total Loading Score (TLS) for each protein. The top 5% proteins based on their TLS were identified as 

the most prominent contributors in each group. (A) All individuals (N=40, 49% of hair protein variability), 

(B) All individuals including keratins and KAPs (N=40, 64.3% variability); (C) All mothers (n=8, 89.5% 

variability); (D) All children (n=32, 57.5% variability); (E) Mothers (n=8) and their biological children 

(n=16) (49.3% variability), and (F) Mothers (n=8) and unrelated children (n=16) (64.6% variability). 
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Figure 6: Protein network for the top 5% hair proteins contributing to age-related differences between 

mothers and children.  Some hair proteins had higher spectral counts in children (Orange) and others had 

higher spectral counts in mothers (Blue); continuous and interrupted lines show direct and indirect 

relationships, respectively. Mothers show higher protein spectral counts mostly for the ‘enzymes’ and 

‘peptidases’ involved in cellular and metabolic processes, while proteins with higher spectral counts in 

children belong to ‘other’ group involved in growth and biological regulation.   
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Figure 7: Protein network for top 5% hair proteins contributing to sex differences between boys and girls.  

Some proteins had higher spectral counts in girls (Orange) and others had higher spectral counts in boys 

(Blue); continuous lines show direct relationships and interrupted lines denote indirect relationships. Girls 

show higher protein spectral counts mostly for ‘enzymes’ or ‘transporters’ associated with cellular 

localization and metabolic processes. Proteins with higher spectral count in boys are ‘enzymes’ like 

‘kinases’ or ‘peptidases’ associated with cellular and metabolic processes and biological regulation.  
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Figure 8: Canonical pathways associated with biologically significant proteins from the top 5% variables 

in all individuals (n = 40) contributing to age- and sex-related differences were identified with Ingenuity 

Pathway Analysis. Most of these proteins are involved in cellular metabolism, immune responses, brain 

development, and regulation of stress-related pathways. 
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SUPPLEMENTARY MATERIALS 

Table S1: Demographic Characteristics and Hair Protein Data for Mothers and Children 
 

Family 
Code 

Subject Age 
(months) 

Age 
(years) 

Gender Race Ethnicity # of hair 
proteins 

Peptide Spectral 
Matches (PSMs) 

F107 

Mother 450.6 37.6 F White Non-Hispanic 819 6533 
Child1 27.6 2.3 F White Non-Hispanic 568 3949 
Child2 58.0 4.8 M White Other 464 2873 

F123 

Mother 447.1 37.3 F White Non-Hispanic 809 10370 
Child1 24.0 2 F White Non-Hispanic 499 3728 
Child2 52.4 4.4 M White Non-Hispanic 573 5078 

F134 

Mother 431.8 35.9 F White Missing 684 5445 
Child1 20.9 1.74 M Mixed Missing 387 2760 
Child2 67.6 5.6 F Mixed Missing 759 6872 

F142 
Mother 447.3 37.3 F Asian Missing 650 8370 
Child1 20.1 1.7 M Mixed Missing 581 6208 
Child2 50.6 4.2 M Mixed Missing 226 2353 

F183 
Mother 530.0 44.2 F Asian Non-Hispanic 1090 10527 
Child1 8.5 0.7 M Asian Non-Hispanic 314 2331 
Child2 44.0 3.7 M Asian Non-Hispanic 1010 8065 

F218 
Mother 504 42 F White Hispanic 609 4144 
Child1 35.2 2.9 F White Hispanic 631 4475 
Child2 58.5 4.9 F White Hispanic 524 3107 

F271 

Mother 402.6 33.6 F White Non-Hispanic 769 7525 
Child1 15.1 1.3 F White Non-Hispanic 557 7161 
Child2 42.5 3.5 F White Non-Hispanic 600 5615 

F286 

Mother 489.8 40.8 F White Non-Hispanic 616 9209 
Child1 22.0 1.8 M White Non-Hispanic 403 4727 
Child2 52.5 4.4 F White Non-Hispanic 614 6061 

F346 Child 50.3 4.2 M White Missing 475 3429 
F192 Child 38.1 3.2 F Other Hispanic 283 1731 
F132 Child 51.4 4.3 F White Missing 272 1892 
F363 Child 56.6 4.7 M Mixed Non-Hispanic 270 1914 
F281 Child 53.5 4.5 M Mixed Mixed 406 3192 
F173 Child 51.3 4.3 F Other  Other 835 7168 
F380 Child 14.8 1.2 M Asian Missing 237 1814 
F159 Child 62.7 5.2 F White Non-Hispanic 485 3830 
F179 Child 53.0 4.4 F Asian Other 494 2926 
F149 Child 61.3 5.1 F Mixed Non-Hispanic 698 5733 
F106 Child 56.7 4.7 F Asian Non-Hispanic 668 6390 
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F153 Child 57.1 4.8 M Asian Missing 275 2549 
F256 Child 55.8 4.7 M Mixed Mixed 638 7016 
F190 Child 31.5 2.6 F Asian Other 527 7460 
F104 Child 50.2 4.2 M White Non-Hispanic 672 8084 

F113 Child 17.9 1.5 F White Non-Hispanic 441 3640 

Demographic data, total number of proteins, and peptide spectral matches observed in all 40 
individuals. Mothers’ hair (n=8) had significantly higher number of proteins (p=0.001) and 
protein spectral matches (p=0.0004) compared to children’s hair (n=32).  Related children (n=16, 
Cyan) are grouped with their mothers and unrelated children are listed below (n=16, Orange). 
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Table S2: Hair Proteins mediating differences between Mothers and Children 
 
Entrez Gene Name Gene 

Symbol: 
human 

Expr 
Log 
Ratio 

P-value Location Type(s) 

Involucrin IVL -2.85 0.0576 Cytoplasm other 
Serpin family B member 4 SERPINB4 -2.452 0.0009*** Cytoplasm other 
POF1B actin binding protein POF1B -2.097 0.0151* Plasma Membrane other 
Plectin PLEC -1.886 0.0004*** Cytoplasm other 
Alpha-2-macroglobulin like 1 A2ML1 -1.858 0.0042** Cytoplasm other 
H3 clustered histone 1 HIST1H3A -1.743 0.0038** Nucleus other 
Ubiquinol-cytochrome c 
reductase complex III subunit 
VII 

UQCRQ -1.716 0.0007*** Cytoplasm enzyme 

Adenosylhomocysteinase AHCY -1.472 0.0040** Cytoplasm enzyme 
Heat shock protein family A 
(Hsp70) member 1A 

HSPA1A -1.35 0.0569 Cytoplasm enzyme 

H2B clustered histone 9 HIST1H2BH -1.17 0.5070 Nucleus other 
Histidine ammonia-lyase HAL -1.087 0.0851 Cytoplasm enzyme 
COPI coat complex subunit 
zeta 1 

COPZ1 -0.931 0.158 Cytoplasm transporter 

Eukaryotic translation initiation 
factor 3 subunit A 

EIF3A -0.8 0.0567 Cytoplasm other 

Tubulin alpha 1c TUBA1C -0.526 0.262 Cytoplasm other 
Casein beta CSN2 -0.269 0.491 Extracellular Space kinase 
ATP citrate lyase ACLY -0.249 0.0954 Cytoplasm enzyme 
Protein disulfide isomerase 
family A member 3 

PDIA3 -0.051 0.884 Cytoplasm peptidase 

Scinderin SCIN 0.028 0.221 Cytoplasm other 
Alström syndrome protein 1, 
centrosome and basal body 
associated protein 

ALMS1 0.18 0.572 Cytoplasm other 

Histone H3.4 HIST3H3 0.64 0.153 Nucleus other 
Myeloperoxidase MPO 0.925 0.886 Cytoplasm enzyme 
Secretoglobin family 2A 
member 1 

SCGB2A1 5.32 0.0008*** Extracellular Space other 

Note: Mothers showed higher spectral counts than children for 7/17 hair proteins (shaded blue), 
although children had higher spectral counts for SCGB2A1 (shaded orange). Of these, 
SCGB2A1 showed the most prominent results, with >5-fold differences from the mothers. 
Significance was based on Kruskal-Wallis ANOVA with post hoc Benjamini Hochberg 
corrections for multiple comparisons (*p-value ≤ 0.05, **p-value ≤ 0.01, ***p-value ≤ 0.001) 
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Table S3: Hair proteins mediating differences between Boys and Girls 
 
Entrez Gene Name Gene Symbol: 

human 
Expr 
Log 
Ratio 

P-value Location Type(s) 

Casein beta CSN2 -3.046 0.0184* 
Extracellular 
Space kinase 

Serpin family B member 4 SERPINB4 -1.303 0.391 Cytoplasm other 
Secretoglobin family 2A 
member 1 SCGB2A1 -1.036 0.0513 

Extracellular 
Space other 

Protein disulfide isomerase 
family A member 3 PDIA3 -0.78 0.662 Cytoplasm peptidase 
ATP citrate lyase ACLY -0.531 0.585 Cytoplasm enzyme 
Myeloperoxidase MPO -0.493 0.581 Cytoplasm enzyme 
Involucrin IVL -0.476 0.804 Cytoplasm other 
Eukaryotic translation 
initiation factor 3 subunit A EIF3A -0.295 0.226 Cytoplasm other 
Alpha-2-macroglobulin like 1 A2ML1 -0.254 0.923 Cytoplasm other 
Scinderin SCIN -0.187 0.375 Cytoplasm other 
Heat shock protein family A 
(Hsp70) member 1A HSPA1A/HSPA1B -0.122 0.573 Cytoplasm enzyme 

POF1B actin binding protein POF1B 0.094 0.875 
Plasma 
Membrane other 

Histone H3.4  H3-4 0.139 0.938 Nucleus other 
Histidine ammonia-lyase HAL 0.175 0.522 Cytoplasm enzyme 
COPI coat complex subunit 
zeta 1 COPZ1 0.225 0.536 Cytoplasm transporter 
Tubulin alpha 1c TUBA1C 0.245 0.314 Cytoplasm other 
H3 clustered histone 1 H3C1 0.249 0.562 Nucleus other 
Adenosylhomocysteinase AHCY 0.333 0.202 Cytoplasm enzyme 
Plectin PLEC 0.441 0.256 Cytoplasm other 
Ubiquinol-cytochrome c 
reductase complex III subunit 
VII UQCRQ 1.415 0.0976 Cytoplasm enzyme 
H2B clustered histone 9 H2BC9 1.423 0.221 Nucleus other 
Alström syndrome protein 1, 
centrosome and basal body 
associated protein ALMS1 1.754 0.0214* Cytoplasm other 

Note: Girls showed higher spectral counts than boys for several proteins (shaded orange), 
whereas boys had higher spectral counts for other proteins (shaded blue).  CSN2 was 
significantly higher in boys, whereas ALMS1 was significantly higher in girls. Significance was 
based on Kruskal-Wallis ANOVA with post hoc Benjamini Hochberg corrections for multiple 
comparisons (*p-value ≤ 0.05).  
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Figure S1: Number of proteins associated with specific biological processes 
identified by PANTHER classification system.  Most of the proteins are associated 
with cellular functions and metabolic processes.  
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Figure S2: Spatial plots of individuals based on PCA analyses for different population 
combinations by Age (left side) and Sex (right side).  The younger children (aged 0-2) could 
be separated out from older populations in age-based analyses for all 3 populations. 
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