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ABSTRACT

Deep learning frameworks for disease classification using neuroimaging and non-imaging information
require the capability of capturing individual features as well as associative information among
subjects. Graphs represent the interactions among nodes, which contain the individual features,
through the edges in order to incorporate the inter-relatedness among heterogeneous data. Previous
graph-based approaches for disease classification have focused on the similarities among subjects
by establishing customized functions or solely based on imaging features. The purpose of this
paper is to propose a novel graph-based deep learning architecture for classifying Alzheimer’s
disease (AD) by combining the resting-state functional magnetic resonance imaging and demographic
measures without defining any study-specific function. We used the neuroimaging data from the
ADNI and OASIS databases to test the robustness of our proposed model. We combined imaging-
based and non-imaging information of individuals by categorizing them into distinctive nodes to
construct a subject–demographic bipartite graph. The approximate personalized propagation of
neural predictions, a recently developed graph neural network model, was used to classify the AD
continuum from cognitively unimpaired individuals. The results showed that our model successfully
captures the heterogeneous relations among subjects and improves the quality of classification when
compared with other classical and deep learning models, thus outperforming the other models.

Keywords Alzheimer’s disease · Classification · Resting state functional connectivity · Deep learning · Graph neural
network

1 Introduction

Alzheimer’s disease (AD) is the most common type of dementia worldwide, and is characterized by initial memory
impairment and additional cognitive dysfunction as the disease progresses [1]. In the past, the diagnosis of AD was
based on eliminating the possibility of other potential diseases rather than on pathological proof. Moreover, AD is
usually identified with other types of neurodegenerative diseases; thus, the definitive confirmation of clinical AD was
not available unless neuropathology was evaluated post-mortem. Clinical AD diagnosis is even harder during a long
period of preclinical asymptomatic phase because cognitively unimpaired individuals can also have the disease [2].

Although AD is becoming more common in an aging society, developing treatments for it is challenging. The rate
of failure in drug development is high and, therefore, no new drugs have been approved since 2003 and no disease-
modifying treatments have been approved [3]. Therefore, early risk-reducing interventions based on biomarkers to
delay the progression or to prevent the onset of AD are regarded as important issues [4]. Neuroimaging biomarkers,
such as structural magnetic resonance imaging (sMRI), positron emission tomography (PET), and functional MRI
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(fMRI) have been developed and used clinically to identify AD. These approaches have advantages over fluid-based
approaches because they are non-invasive and can be used to distinguish the different phases of AD [5].

fMRI is associated with neuronal activity and detects the blood-oxygenation-level-dependent (BOLD) signal. Although
it can be examined with or without the application of a task, the latter strategy, which is also called resting-state
fMRI (rs-fMRI), has advantages in clinical conditions [6, 7, 8, 9]. Task-fMRI is difficult to apply to cognitively
impaired individuals because it often requires a longer time than rs-fMRI for data acquisition, and the result highly
depends on task performance. On the other hand, rs-fMRI offers a better signal-to-noise ratio while efficiently
representing brain metabolism with a relatively simple data acquisition process. It has also been shown that abnormal
functional connectivity assessed using rs-fMRI is related to regions of early brain atrophy and hypometabolism in AD
[10, 11, 12, 13, 14].

Progress in neuroimaging technologies has accelerated the development of computer-aided approaches to produce
reliable diagnosis from large-scale and high-dimensional brain imaging data. Techniques such as support vector
machines, linear discriminant analysis, and linear regression have been used for AD classification [15]. The deep
learning approach, which automatically learns discriminative features through a hierarchical learning process, requires
little or no pre-processing steps and can select features in an end-to-end manner without human intervention [16]. All
steps are simultaneously optimized, which, in turn, leads to enhanced performance by detecting unbiased features
from complex data. Therefore, it has been successfully applied to AD classification using several different imaging
modalities, such as sMRI [17], PET [18, 19], and rs-fMRI [20].

Graph neural network (GNN) was introduced to efficiently process data that are presented in a graphical format [21, 22].
Graphs are composed of nodes and edges, which characterize objects and their relationships, respectively. In other
words, assigning edges can represent the associations or similarities between nodes. It has been applied in various
areas such as natural science (physics, chemistry, biology), social science, and finance. GNN was also applied in
neuroimaging studies to predict autism spectrum disorder, brain tumor, and bipolar disorder. Ktena et al. (2018)
classified the autism spectrum disorder and sex by granting structural and functional information to the edges in a
graph [23]. Similarity between the nodes in the constructed graph was learned through the spectral graph convolutional
network (GCN). Moreover, Parisot et al. (2018) tested the influence of the graph structure on spectral GCN when
classifying autism spectrum disorder and Alzheimer’s disease [24] .

Because GCN averages the information from neighboring nodes during the learning processes of similar properties
among adjacent nodes, the ‘over-smoothing’ issue occurs during the propagation of multiple layers [25, 26]. Loss of
useful information will prevent the model from considering higher-order information and eventually limits the perfor-
mance. Moreover, previous studies applying graph-based classification approaches [27, 24] and subject–subject graph
based on handcrafted patient similarity functions have been widely reported. Nevertheless, such graph construction
methods have difficulties in expanding the number and types of subject features; it is not only difficult to manually
determine the precise importance weight of each feature, but the scalar-valued similarity (i.e., the weight of an edge)
restricts the representation power of the model. Furthermore, similarity functions cannot compute the weight if the
dataset contains missing features, which commonly occurs in real-world applications.

To resolve the aforementioned limitations, we developed a graph-based deep learning framework for classifying the
AD continuum. First, we constructed a subject–demographics graph to incorporate all the information. Because it
is not necessary to use study-specific functions to incorporate distinct information, potential bias will be relieved. In
addition, this approach can readily incorporate heterogeneous data, which increases its generalizability. Second, the
implementation of approximate personalized propagation of neural predictions (APPNP) ameliorates the over-smoothing
problem by introducing a propagation scheme of personalized PageRank [28]. Moreover, APPNP does not contain
learnable parameters in the propagation stages, which in turn helps the model to avoid overfitting.

To evaluate the performance of the proposed method, it was implemented on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets. We used functional connectivity from
rs-fMRI and additional relevant information (e.g., age, sex, and APOE genotype) as the inputs in this work. Features
from imaging and non-imaging data were automatically estimated using multilayer perceptron (MLP). This information
was then propagated along the edges in the subject–demographics graph. The overall results show that our proposed
formulation for integrating the features to construct a graph and learning through APPNP improves the classification
performance.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.21.427712doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427712
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - JANUARY 22, 2021

(a) Age (b) Sex (c) APOE4

Figure 1: Ratio of each demographic measure in ADNI dataset.

(a) Age (b) Sex (c) APOE

Figure 2: Ratio of each demographic measure in OASIS dataset.

2 Methods

2.1 Neuroimaging data

The first dataset was obtained from phase 2 of the ADNI dataset (http://adni.loni.usc.edu/). The aim of ADNI
is to detect and track AD progression at the earlier stages with identified biomarkers based on MRI, PET, and clinical and
neuropsychological assessment. In this study, we used sMRI (T1- weighted MPRAGE sequence) for preprocessing and
rs-fMRI scans from the ADNI2 dataset for classification. Among subjects who were initially diagnosed as cognitively
unimpaired (CU) or AD, we excluded those who did not undergo rs-fMRI scanning or the scan was of problematic
quality. Thus, a total of 62 subjects were included (CU, n = 31; AD, n = 31).

To assess the applicability of our proposed model to different datasets, we also used the OASIS phase 3 dataset
(https://www.oasis-brains.org) [29], which is a longitudinal clinical neuroimaging dataset for normal aging and
AD. A total of randomly selected 240 subjects who were initially diagnosed as cognitively unimpaired (CU, n = 120)
or AD (n = 120) were included. A detailed protocol for data acquisition can be found in the official webpage of each
dataset.

2.2 Image preprocessing

Preprocessing of rs-fMRI was conducted using Statistical Parametric Mapping (SPM12; Wellcome Trust Centre for
Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm12) [30] in MATLAB 2019a.
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Figure 3: APPNP architecture of the proposed deep-learning based classification framework.

The first 5 echo planar imaging volumes were discarded for signal stabilization. After obtaining the images of each
participant, different signal acquisition times were corrected for the rest by shifting the signals of each slice to the
midpoint of TR. The sMRI of each participant was co-registered to the mean fMRI to segment it into gray matter, white
matter, and CSF. Nuisance covariate regression for 6 parameters was conducted to eliminate head motion effects, which
are known to cause interference when measuring functional connectivity. The detrended time series was calculated by
subtracting the linear trend. Spatially normalized images to the MNI template were smoothed at 6 mm FWHM. Lastly,
all preprocessed rs-fMRI were band-pass filtered (0.01 -– 0.1 Hz.)

2.3 Brain functional connectivity construction

For constructing the brain functional connectivity, we used R = 300 network liberal mask as the region of interest
(ROI). It is a widely used parcellation of the cerebral cortex based on the resting-state functional connectivity [31].
The preprocessed rs-fMRI time series was extracted and averaged in each ROI. We utilized the available function (i.e.,
correlation) in Nilearn [32], which is a Python module for efficient statistical learning of neuroimaging data. The raw
values of the calculated resting state functional connectivity (RSFC) were provided as inputs to our proposed framework.
Further information regarding each measure is available at the Nilearn official website (https://nilearn.github.
io/#).

2.4 Graph neural network-based classification

This paper proposes a deep learning-based classification approach, which is composed of two stages: (1) feature
extraction using MLP and (2) graph propagation using a GNN. In short, stage (1) takes the input of the RSFC matrix
calculated from rs-fMRI and non-imaging demographic measures such as the APOE genotype, age, and sex. Based on
the given raw features, the model extracts informative feature vectors, which are used for the initial node representation.
Stage (2) integrates the extracted features and propagates the information along the edges in the subject–demographics
graph. The obtained graph representation is utilized for disease classification via a fully connected sigmoid layer. The
proposed architecture is fully differentiable, and it is trained in an end-to-end manner. Fig. 3 is the graphical illustration
of our model.
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Algorithm 1 Subject–Demographics Graph Construction

Require: V = Vs
⋃
Vd,1

⋃
· · ·
⋃
Vd,M

Initialize: E ← { } . a set of edges
for n ∈ {1, · · · , N} do

for i ∈ {1, · · · ,M} do
if i-th feature of n-th subject is missing then

continue
end if
for j ∈ {1, · · · , Fi} do

if n-th subject is relevant to the j-th category of i-th features then
E ← E

⋃{
(v

(n)
s , v

(j)
d,i ), (v

(j)
d,i , v

(n)
s )

}
end if

end for
end for

end for
Return: subject–demographics graph, G = (V,E)

2.4.1 Subject-demographics graph construction

Considering a dataset with N subjects and M different categorical demographic features, we first define the graph G,
which consists of a set of N subject nodes Vs and M sets of demographic measure nodes Vd:

Vs =
{
v(n)s

}N

n=1

Vd =

M⋃
i=1

Vd,i , Vd,i =
{
v
(j)
d,i

}Fi

j=1
, (1)

where v(n)s is a node of the n-th subject, v(j)d,i is a node of the j-th category of the i-th feature, and Fi is the cardinality of

the i-th feature. For example, in the case of the gender feature (e.g., let i=1), the first and second gender nodes (v(1)d,1 and

v
(2)
d,1) represent the male and female nodes, respectively, and the cardinality of gender is two (F1=2). The total number

of nodes in the graph is N +
∑M

i=1 Fi. For each subject and demographic feature, we connected the corresponding
subject node to the relevant feature node. We do not insert an edge for a missing demographic feature. The detailed
graph construction process is provided in Algorithm 1. Because the components of the demographic features in the
subject–demographics graph would influence the performance of the proposed model, we evaluated the classification
accuracy depending on the demographic measures in section 3.3.

2.4.2 Feature extraction

Following the idea of representation learning, which has achieved remarkable success in various artificial intelligence
research areas [33, 34, 35, 36, 22], this study adopted a shallow MLP for extracting the latent representation of each
patient node from the raw data (i.e., entries of the RSFC).

Primarily, we vectorized all entries of the RSFC for each subject and generated a matrix XC ∈ RN×R2

. To complement
the feature information, one-hot encoded categorical demographic features, XD ∈ RN×(

∑M
i=1 Fi), were also evaluated.

The input matrix X was defined by concatenating two matrices horizontally: X = [XC XD] ∈ RN×(R2+
∑M

i=1 Fi).
This network can be represented as

Z1 = σ(XW1 + b1)

Z2 = σ(Z1W2 + b2)

· · ·
ZL = σ(ZL−1WL + bL), (2)

where Wl is the weight matrix, bl is the bias vector for the l-th layer, and σ(·) is the activation function, which is ReLU
in our model. The output of the last layer, ZL, denotes the H-dimensional feature vectors that function as input vectors
for the graph neural network.
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2.4.3 Graph propagation

As demonstrated in section 2.4.1, our proposed GNN-based classification model is composed of two types of nodes:
subject-specific and demographics nodes. First, the outputs of the MLP, ZL, are taken as input for the subject-specific
nodes. Then, we allocate the vectorized values with the same dimension as that of the subject-specific nodes to the
demographic nodes. These nodes are filled with learnable parameters updated in an end-to-end manner. To elaborate
this, we denote D as the initial feature matrix for the demographic nodes. dji , which represents the j-th category of the
vectorized value of the i-th demographic feature node, is assigned to the (

∑i−1
i′=1 Fi′ + j)-th row of D.

The majority of conventional graph neural network-based disease classification models have used the GCN. Despite
some successes in applying this method, it has limitations related to the shallow learning mechanisms [33, 37]. This
might result in the failure to discover complex patterns beyond the graphs, which affects the performance of the model.
Therefore, we utilized the APPNP scheme for the learning process. This approach not only integrates the information
from the neighboring nodes, it also maintains the locality by adjusting the teleport probability α. Consequently, this
algorithm prevents the over-smoothing issue and allows deeper GNN models [38]. Moreover, APPNP does not have
learnable parameters during the propagation steps; it also alleviates the overfitting issue. In section 3.2, we compared
the accuracy of GCN and APPNP depending on the number of propagations (hops) on both the ADNI and OASIS
datasets. The propagation steps in the APPNP scheme are summarized as follows:

P (0) = H

P (k) = (1− α)ÂP (k−1) + αP (0) ∀k ∈ [1,K], (3)

where H = [ZL;D] is a vertically concatenated matrix and K is defined as the number of propagation steps. Â is a
symmetrically normalized adjacency matrix:

Ã = A+ I

Â = D̃(−1/2)ÃD̃(−1/2), (4)

where A is an adjacency matrix of the graph G, as described in section 2.4.1 and Algorithm 1, and D̃ is a diagonal
degree matrix of Ã.

2.4.4 AD classification

Using the graph representation of the evaluated subject nodes in Eq. 3, we classified the i-th subject, ŷi, as CU or AD
using a fully connected sigmoid layer as follows:

ŷi =
1

1 + exp
(
piwpredict + bpredict

) , (5)

where pi ∈ R1×H is the i-th row of P (K). wpredict ∈ RH×1 and b ∈ R1×1 are learnable parameters in the fully
connected layer. Finally, all learnable parameters in the proposed model were optimized to minimize the loss L using
the adaptive moment estimation (Adam) algorithm [39].

L = − 1

N

N∑
i=1

[
yi log(ŷi) + (1− yi) log(1− ŷi)

]
, (6)

where yi = 1 when the i-th subject is an AD patient and yi = 0 otherwise. The deep-learning-based framework was
implemented in Python using PyTorch [40], a library for machine learning and deep learning, on a single NVIDIA
GPU.

3 Results

3.1 Experimental setup

To test the generalizability of the proposed model, conventional model assessment methods including k-fold cross
validation (CV) were performed. Leave-one-out cross-validation (LOOCV) was less biased than k-fold CV. This finding
can be attributed to the tendency of negligible overestimation of an error and difficulties in leaving out a substantial
number of data points for evaluation of a small dataset in LOOCV [41, 42]. Therefore, LOOCV was used to compare
the performance of our model on the ADNI and OASIS datasets with that of previous studies [43, 44, 45], and the

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.21.427712doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427712
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - JANUARY 22, 2021

results are reported here. Moreover, because the model’s performance can vary depending on random values, such as
weight initialization, all experimental results were obtained with 20 different random seeds. Following the original
paper [28], we set the teleport probability of APPNP, α, as 0.1. The MLP in Eq. 2 was structured as follows: size of
hidden units = 64, embedding dimension H = 64, and the number of hidden layers L = 3 1. Non-imaging demographic
measures for both the ADNI and OASIS datasets included age, sex, and APOE, as illustrated in Table 1.

Table 1: Non-imaging demographic measures for ADNI and OASIS datasets.
ADNI OASIS

Age 0-69, 70-79, 80+ 0-59, 60-69, 70-79, 80+
Sex Male, Female Male, Female
Gene APOE4: 0, 1, 2 APOE: 22, 23, 24, 33, 34, 44

Four evaluation metrics used throughout this paper are defined as follows:

• Accuracy =
TP + TN

TP + TN + FN + FP

• Precision =
TP

TP + FP

• Recall =
TP

TP + FN

• F1-score =
2× TP

2× TP + FP + FN
,

where TP, TN, FN, and FP denote true positive, true negative, false negative, and false positive, respectively. We use
accuracy as the main metric, as both datasets were well balanced.

3.2 Influence of hop sizes

As previously mentioned, over-smoothing has been regarded as the cause of performance deterioration in GCN. After
multiple layers of convolution, the representations of distinctive nodes become indistinguishable. On the other hand,
APPNP, which preserves the input information, is known to relieve this issue. Therefore, we trained and evaluated both
the APPNP and GCN models by changing the hop size to report its influence on the overall performance, as a different
number of propagation steps will result in distinct performance. The proposed GNN framework learns the neighboring
nodes K-hops away from each node, and K ⊆ {2, 4, 6, 8, 10}. The plots depicting the accuracy across all seeds and
folds on each dataset are shown in Fig. 4.

The best performance with an accuracy of 68% was obtained with the ADNI data when K = 8. A general tendency
was observed, wherein the accuracy increased as K approached 8 and decreased thereafter. Moreover, the proposed
APPNP model showed the best performance with the OASIS data when K = 2. Therefore, we used 8− and 2-hops,
which is the optimal degree of K in the APPNP model, in the remainder of the experiments.

Interestingly, our model showed negligible variances depending on the hop size, whereas GCN showed an initial
performance of 60%, which continuously decreased until it reached almost 0%. The accuracy drastically changed when
the hop size ranged from 4 to 6 for ADNI and 4 to 8 for the OASIS data. This clearly demonstrates that the GCN model
lacks the ability to utilize a higher number of propagation steps. For both datasets, the GCN model failed to learn
effectively with hops over 4.

3.3 Influence of demographic measures

Because graph-based frameworks distinguish and learn different graph structures, incorporating an effective repre-
sentation of such structures is necessary. Therefore, we further evaluated the performance of our proposed model by
changing the combination of non-imaging demographic information such as age, sex, and APOE genotype. The results
are shown in Fig.5 with multiple initialization seeds for convergence. The first observation showed approximately 10%
difference between the worst and the best-performing demographic measures for the ADNI and OASIS data. In other

1Without loss of generality, the size of the hidden units, embedding dimension, and number of hidden layers can be freely
determined with different values. Empirically, it was found that using shallow and thin networks is suitable for a small dataset, as in
this study, by preventing overfitting.
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(a) ADNI

(b) OASIS

Figure 4: Classification results depending on different hop sizes. The shades represent the minimum and maximum
values. 8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.21.427712doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427712
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - JANUARY 22, 2021

(a) ADNI

(b) OASIS

Figure 5: Influence of the demographic measures on the classification performance. The barplot illustrate the average
accuracy across all seeds.
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words, incorporating a poor combination of demographic measures can significantly decrease the performance of the
model.

With the ADNI data, when considering only one type of non-imaging demographic information, we observed that
using the data on sex yielded the highest accuracy, whereas age showed the poorest accuracy. We also found a general
tendency of increasing performance when the APOE genotype was combined with other demographic measures. As
shown in Fig. 5, “APOE genotype, Sex” and “APOE genotype, Age” yielded better performances than “Age, Sex.” The
best performance was obtained with all three demographic measures.

With the OASIS data, using the APOE genotype information showed the best performance among “Age,” “Sex,” and
“APOE genotype,” as shown in Fig. 5, which was similar to the results of ADNI. However, because “Age” showed
better performance than “Sex,” “Age, Sex” showed comparable performance to “APOE genotype, Sex.” Furthermore,
the “APOE genotype, Age” combination was better than that of “APOE genotype, Sex.” Generally, our model showed
increased performance when incorporating the APOE genotype information in the graph. Similarly, as in the ADNI
data, “APOE genotype, Age, Sex” showed the second-best performance.

For uniformity, we used the combination of “APOE genotype, Age, Sex” for both ADNI and OASIS as the default
graph structure in this study.

3.4 Comparison with other methods

We further compared our classification results with several other well-defined classifiers: K-nearest neighbor (KNN),
MLP, linear regression, convolutional neural networks (CNN), and GCN.

Table 2: Summarized comparison results with ADNI in terms of four evaluation metrics.

Accuracy Precision Recall F1-score

KNN 53.22 55.0 35.48 43.13
Linear 62.17 ± 1.84 62.29 ± 2.16 61.93 ± 2.24 62.08 ± 1.66
CNN 59.27 ± 4.21 59.16 ± 4.41 60.8 ± 5.36 59.85 ± 4.08
MLP 62.82 ± 1.43 63.05 ± 1.41 61.93 ± 2.68 62.46 ± 1.79
GCN 60.4 ± 1.61 61.09 ± 1.66 57.25 ± 2.31 59.1 ± 1.86
Homogeneous APPNP 66.04 ± 1.1 67.77 ± 1.62 61.29 ± 0.0 64.36 ± 0.74
APPNP 67.98 ± 1.41 69.34 ± 1.66 64.51 ± 2.09 66.82 ± 1.54

Table 3: Summarized comparison results with OASIS in terms of four evaluation metrics.

Accuracy Precision Recall F1-score

KNN 60.0 60.16 59.16 59.66
Linear 69.39 ± 0.65 72.23 ± 0.65 63.0 ± 1.09 67.3 ± 0.82
CNN 64.58 ± 2.52 64.85 ± 2.61 63.75 ± 3.1 64.27 ± 2.57
MLP 70.66 ± 0.51 73.53 ± 0.64 64.58 ± 0.68 68.76 ± 0.56
GCN 72.37 ± 1.91 72.0 ± 1.92 73.24 ± 2.49 72.6 ± 1.98
Homogeneous APPNP 68.02 ± 2.84 67.87 ± 2.93 68.5 ± 3.05 68.17 ± 2.81
APPNP 75.83 ± 1.41 75.77 ± 1.28 75.95 ± 2.52 75.84 ± 1.61

With the ADNI dataset, KNN demonstrated the worst classification performance from 35% to 55% in terms of all
four measures, and CNN slightly outperformed KNN. The superior performance of our proposed APPNP framework
when compared with MLP indicates that incorporating non-imaging information in a graph structure improves the
performance. Furthermore, the best performance is repeatedly observed with our APPNP model, which is approximately
7% higher than that of the conventional GCN (Table 2).

KNN showed performance improvement of approximately 60% with the OASIS dataset when compared with the ADNI
dataset; however, this value was again the lowest. Similar to the results for ADNI, a general tendency was observed
where the linear regression model performed better than CNN. CNN outperformed linear regression in only one of
the 4 measures, i.e., recall, which was negligible because the standard deviation was different. Importantly, our model
showed the best performance of approximately 75% for all four evaluation measures (Table 3).
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3.5 Effectiveness of heterogeneous APPNP

In addition to comparison with baseline classification methods, we tested the effectiveness of the proposed APPNP
model. While our model can facilitate the utilization of distinct heterogeneous nodes (i.e., different types of nodes)
through the subject–demographics graph, homogeneous APPNP uses a subject–subject graph that connects the subjects’
nodes if they share commonalities among the demographic measures. Demographic nodes are absent from the graph in
this model. We compared the performance of both models, and the results are illustrated in Tables 2 and 3.

The positive effect of incorporating the demographic measures in a heterogeneous manner with the subject–
demographics graph was observed in this comparison study. Our heterogeneous APPNP model continuously showed
superior performance when compared with the homogeneous model for both the ADNI and OASIS datasets. In addition,
the homogeneous model was inferior to the MLP model for the OASIS dataset. The overall differences in performance
between these two methods are approximately 2% and 7% for the respective data. We reason that the homogeneous
model oversimplified the graph structure and failed to account for the complex relations among the subjects, especially
for the larger graph.

4 Conclusion

In this paper, we proposed a novel framework for classifying AD using a graph neural network by incorporating
heterogeneous data and demonstrated that it outperforms the conventional deep learning approaches. Our proposed
method utilizes the subject–demographics graph to integrate the resting-state functional connectivity and demographics,
whereas previous studies manually defined the similarities among the nodes to connect them through the edges. We
expect that the combination of imaging and non-imaging features by constructing a bipartite graph would improve the
generalizability. Another advantage of this deep learning framework is that it automatically learns the essential features
for classification in an end-to-end manner. In other words, it does not rely on handcrafted features, which were common
in previous studies.

APPNP showed superior and robust performance than the conventional GCN, even when the number of propagations
increased. Although there is limited research on explaining why the majority of GCN models are shallow, several
studies have empirically shown that these architectures are generally applicable for 2 to 3 layers [46, 25, 47]. As shown
in Fig. 4, GCN shows a drastic performance drop after 4 hops, both with the ADNI and OASIS datasets. On the other
hand, APPNP rigorously demonstrated better performance than GCN as the size of hops increased, because it applied
personalized PageRank to tackle the over-smoothing issue. The ability to stack multiple propagation steps resulted in
larger receptive fields to gather more information for learning. Consequently, the classification accuracy of APPNP was
always higher than that of GCN.

Translating heterogeneous data into a graph structure plays an essential role in the classification performance. For
neuroimaging data, we used static RSFC as one of the features in the graph. Utilizing dynamic functional connectivity
within the graph could be beneficial because it reflects time-varying dynamic behavior [48, 49]. However, because
there is no current consensus on the methods to calculate the dynamic functional connectivity, it needs to be carefully
examined. In terms of non-imaging information, integrating different types of demographic measures in a graph
significantly affects the classification accuracy, as shown in Fig. 5. For instance, solely using the APOE genotype
information resulted in better performance than the combination of “Age, Sex” for both the ADNI and OASIS data.
This can be attributed to the identification of a highly correlated relationship between the APOE genotype and AD onset
[50, 51]. Within the ADNI dataset, “APOE genotype, Sex” showed better performance than “APOE genotype,” which
may reflect a difference in vulnerability to the disease depending on sex [52, 53]. On the other hand, decreased accuracy
value of the “APOE genotype, Age” compared with “APOE genotype” might be caused by limited data representation.

Our experiments also demonstrated that utilizing heterogeneous data through a subject–demographics graph in APPNP
was critical for the classification accuracy. As depicted in Tables 2 and 3, the results showed higher accuracy with
the ADNI dataset than the homogenous APPNP. A similar tendency was observed with the OASIS data. Integrating
heterogeneous data in a subject–demographics graph is not only convenient for adding features without considering
the importance weights, but also increases the representation power. Moreover, it is able to handle missing features
that are common in the dataset. Other graph construction strategies can be applied to combine neuroimaging and
diverse non-imaging demographic data, such as hippocampal volume, cortical thickness, and biochemical examination
results. One could consider multiple graph structures, such as building an adjacency matrix per demographic measure.
Furthermore, important non-imaging features can be filtered from all information through self-attention weight learning.
These sophisticated approaches can help identify the important features of dissipated information and improve the
classification results.
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Due to its convenience, a binary classification of CU and AD patients was performed in this study. However, because AD
lies in the spectrum, future studies are necessary to expand our proposed method by performing multi-class classification
as well as predicting the prognosis. This can be done by optimizing parameters such as the number of hidden layers,
feature vector size, and loss function used in this study. In addition, we utilized two balanced datasets to test the
applicability of the proposed model. However, substantial imbalance among classes can be found in certain types of
data. Therefore, in future studies, we would like to explore how graph neural networks can be used for large-scale
imbalanced datasets.
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