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Abstract 
Understanding the evolutionary drivers determining the transmission rate and virulence of 
pathogens remains an important challenge for evolutionary theory with clear implications to the 
control of human, agricultural and wildlife infectious disease. Although disease is often very 
dynamic, classical theory examines the long-term outcome of evolution at equilibrium and, in 
simple models, typically predicts that R0 is maximized.  For example, immune escape may lead to 
complex disease dynamics including repeated epidemics, fluctuating selection and diversification. 
Here we model the impact of antigenic drift and escape on the evolution of virulence and show 
analytically that these non-equilibrium dynamics select for more acute pathogens with higher 
virulence. Specifically, under antigenic drift and when partial cross immunity leads to antigenic 
escape, our analysis predicts the long-term maximization of the intrinsic growth rate of the parasite 
resulting in more acute and virulent pathogens than those predicted by classic R0 maximization. 
Furthermore, it follows that these pathogens will have a lower R0 leading to implications for 
epidemic, endemic behavior and control. Our analysis predicts both the timings and outcomes of 
antigenic shifts leading to repeated epidemics and predicts the increase in variation in both 
antigenicity and virulence before antigenic escape.  There is considerable variation in the degree 
of antigenic escape that occurs across pathogens and our results may help to explain the difference 
in virulence between related pathogens most clearly seen in the human A, B and C influenzas. 
More generally our results show the importance of examining the evolutionary consequences of 
non-equilibrium dynamics. 
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Introduction 
Recent epidemics emphasize that infectious disease remains a major problem for human health 
and agriculture [1–4] and they are increasingly recognized as important in ecosystems and 
conservation [5,6].  This importance has led to the development of extensive theoretical literature 
on the epidemiology, ecology and evolution of host-pathogen interactions [7–10].  Understanding 
the drivers of the evolution of virulence, typically defined in the evolutionary literature as the 
increased death rate of individuals due to infection, is a key motivator of this theoretical work 
[8,10–14]. Generally, models assume that a higher transmission rate trade-offs against the intrinsic 
cost of reducing the infectious period due to higher death rates (virulence) of rapidly dividing 
strains and classically predict that evolution maximizes the parasite epidemiological R0 leading to 
an optimal virulence [8,10–14].  In fact, this result only holds in models where ecological 
feedbacks take a constrained form, such that even relatively simple processes such as density-
dependent mortality, multiple infections and spatial structure may lead to diversification or 
different optima [10,12,13,15].  Moreover, this classic evolutionary theory examines the long-term 
equilibrium evolutionary outcome in the context of stable endemic diseases, but in nature 
infectious diseases often exhibit complex dynamics, with potentially important impacts on 
pathogen fitness [16–19]. 

Antibody-mediated immunity is a critical factor driving the dynamics of important infectious 
diseases such as seasonal influenza, leading to selection for novel variants that can escape 
immunity to the current predominant strain [20–22]. Such antigenic escape typically causes the 
optimal strain of the parasite to change through time as it moves through antigenic space. 
Moreover, partial cross-immunity between the different parasite strains may lead to recurrent 
epidemics,  fluctuations in parasite strains and potentially strain coexistence [23–26]. Current 
theory has shown that the evolution of immune escape can lead to dramatic disease outbreaks [24–
26], but the implications of these epidemiological dynamics for the evolution of disease virulence 
are unknown. This question is challenging in part because much of the theoretical framework used 
to study virulence evolution typically considers diseases that are at an endemic equilibrium [8,10–
14].  As such we currently lack a broad theoretical understanding of the evolution of virulence in 
the presence of antigenic escape, despite its importance as an epidemic process and the likely 
implications of its inherently dynamical epidemic nature. 

Here we examine the implications of antigenic escape for the evolution of infectious disease in the 
context of the well-studied transmission/virulence trade-off [10,27].  For simplicity we first 
examine analytically the case without cross-immunity and then apply a new ‘oligomorphic’ 
analysis that combines quantitative genetic and game theoretical approaches [28] to examine the 
impact of cross-immunity that leads to antigenic jumps and epidemic outbreaks. With this analysis 
we are able to study the evolutionary outcome across a range of ecological and evolutionary time 
scales allowing us to examine evolutionary outcomes under non-equilibrium conditions. Our key 
result is that antigenic escape selects for higher transmission and virulence due to the repeated 
epidemics caused by immune escape, leading to the long-term persistence of acute pathogens. 
Indeed, antigenic escape has the potential to select for infectious diseases with substantially higher 
virulence than that predicted by the maximization of R0 in classic disease models leading to the 
evolution of much more acute diseases.  
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Modeling 
We consider a population of pathogens structured by a one-dimensional antigenic trait 𝑥, so that 
𝐼(𝑡, 𝑥) is the density of hosts infected with antigenicity strain 𝑥 at time 𝑡. Following Gog and 
Grenfell [29], we assume that an individual is either perfectly susceptible or perfectly immune to 
a strain. A strain of pathogen can infect any host, but will be infectious only when the host is 
susceptible to that strain. When a strain 𝑦 of pathogen infects a host that is susceptible to a strain 
𝑥, the host may become (perfectly) immune to the strain 𝑥 with probability 𝜎(𝑥 − 𝑦). This is the 
partial cross immunity function between strain 𝑥 and 𝑦, that takes a value between 0 and 1 and is 
a decreasing function of antigenic distance |𝑥 − 𝑦| between strain 𝑥 and 𝑦. The density of hosts 
susceptible to antigenicity strain 𝑥 at time 𝑡 is noted 𝑆(𝑡, 𝑥).  
Assuming that all pathogen strains have the same transmission rate 𝛽 and virulence 𝛼, we can 
describe the dynamics with the following structured Susceptible-Infected-Recovered model:  

𝜕𝑆(𝑡, 𝑥)
𝜕𝑡 = −𝛽𝑆(𝑡, 𝑥)0 𝜎(𝑥 − 𝑦)𝐼(𝑡, 𝑦)

!

"!
𝑑𝑦, (1𝑎)

𝜕𝐼(𝑡, 𝑥)
𝜕𝑡

= [𝛽𝑆(𝑡, 𝑥) − (𝛾 + 𝛼)]𝐼(𝑡, 𝑥) + 𝐷
𝜕#𝐼(𝑡, 𝑥)
𝜕𝑥#

. (1𝑏)
 

where 𝛾 is the recovery rate, and 𝐷 = 𝜇𝜎$# /2 is one half of the mutation variance for the change 
in antigenicity, representing random mutation in the continuous antigenic space. The dynamics for 
the density of recovered hosts is omitted from (1) as it does not affect the dynamics (1) for the 
densities of susceptible and infected hosts.  
Invasion of a single pathogen: in our first scenario,  we start with a population where all hosts 
are susceptible to any strain (𝑆(0, 𝑥) = 1) and a pathogen strain with antigenicity trait 𝑥 = 0 is 
initially introduced, so that 𝐼(0, 𝑥) = 𝜖𝛿(𝑥) , where 𝝐  is a small positive constant and 𝛿(⋅)  is 
Dirac’s delta function. The system then exhibits travelling wave dynamics in antigenicity space. 
At the front of the travelling wave, 𝐼(𝑡, 𝑥) is sufficiently small and 𝑆(𝑡, 𝑥) is sufficiently close to 
1. Eq. (1a) can then be linearized as 

𝜕𝐼(𝑡, 𝑥)
𝜕𝑡

= 𝑟𝐼(𝑡, 𝑥) + 𝐷
𝜕#𝐼(𝑡, 𝑥)
𝜕𝑥#

(2) 

where 𝑟 = 𝛽 − (𝛾 + 𝛼) is the rate of increase of an antigenicity strain before it spreads in the 
population and causes the build-up of herd immunity. The system (1) asymptotically approaches 
travelling waves of both pathogen antigenicity quasispecies 𝐼(𝑡, 𝑥), which have an isolated peak 
around the current antigenicity, and host susceptibility profile 𝑆(𝑡, 𝑥), that smoothly steps down 
towards a low level after pathogen antigenicity quasispecies passes through, with a common 
constant wave speed [30] (Fig 1A) 

𝑣 = 2√𝑟𝐷 = 2FG𝛽 − (𝛾 + 𝛼)H𝐷. (3) 

As the width of the partial cross-immunity function 𝜎(𝑥 − 𝑦) increases, the travelling wave with 
static shapes described above is destabilized (Fig #B, C), and the system shows intermittent 
outbreaks that occur periodically both in time and in antigenicity space [29,31] (Fig 1B). However, 
the wave speed is unchanged from (3), as the linearized system (2) towards the frontal end remains 
the same irrespective of the stability of wave profile that lags behind (Fig S1).  
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Figure 1. Continuous antigenic drift (A) and periodical antigenic shits (B) of the model. The 
orange colored surface denotes the infected density 𝐼(𝑡, 𝑥) varying in time 𝑡 and intigenicty 𝑥, and 
the yellow colored surface denotes the density of hosts 𝑆(𝑡, 𝑥) that are susceptible to antigenicity 
strain 𝑥 of pathogen at time 𝑡. The width of cross immunity is 𝜔 = 0.2 in (A) and 𝜔 = 0.6 in (B). 
Other parameters are 𝛽 = 2, 𝑢 = 0.001, 𝛼 = 0.1, 𝛾 = 0.5, and	𝐷 = 0.001. 
Evolution of antigenic escape with cross-immunity: To predict how cross-immunity affects 
the evolution of antigenic escape, we use an oligomorphic dynamics analysis [28]. We consider a 
population composed of different antigenicity strains (or morphs), that can be viewed as quasi-
species. The analysis in Appendix A allows us to track the dynamics of morph frequencies, 𝑝%, 
and mean trait values, 𝑥̅%, as: 

𝑑𝑝%
𝑑𝑡 = 𝛽(𝑠̅% − 𝑠̅)𝑝% , (4𝑎)

𝑑𝑥̅%
𝑑𝑡

= 𝑉%𝛽𝑠&(𝑥̅%). (4𝑏)
 

where 𝑠(𝑥) is the susceptibility profile of the population, which depends on the cross-immunity 
function 𝜎, 𝑠̅% is the mean susceptibility perceived by viral morph	𝑖, and  𝑠̅ the mean susceptibility 
averaged over the different viral morphs. Note that, in general, 𝑠(𝑥), 𝑠̅% and 𝑠̅ will be functions of 
time, as the susceptibility profile is molded by the epidemiological dynamics of 𝑆(𝑡, 𝑥) and 𝐼(𝑡, 𝑥). 
Equation (4a) reveals that, as expected, morph 𝑖 will increase in frequency if the susceptibility of 
the host population to this strain is higher on average. Equation (4b) shows that the increase in the 
mean antigenicity trait of morph 𝑖 depends on (i) the variance of the morph distribution, 𝑉%, (ii) the 
transmission rate, and (iii) the slope of the susceptibility profile close to the morph mean 𝑥̅% . 
Together with an equation for the dynamics of variance under mutation and selection (SI: 
Appendix S1), equations (4a) and (4b) allow us to quantitatively predict the change in antigenicity 
after a primary outbreak, as shown in Figure 2. 

For instance, after a primary outbreak caused by a strain with antigenicity	𝑥̅' = 0 at 𝑡 = 0, the 
susceptibility profile is approximately constant and given by 𝑠(𝑥) = (1 − 𝜓')((*), where 𝜓'	is 
the final size of the epidemic of the primary outbreak at antigenicity 𝑥 = 0 (SI: Appendix S1). 
Thus, for a decreasing cross-immunity function,	𝜎(𝑥), the slope of the susceptibility profile is 
positive, which selects for increased values of the mean antigenicity trait	𝑥̅,of a second emerging 
morph (SI: Appendix S1). As the process repeats itself, this leads to successive jumps in antigenic 
space. In addition, a more peaked cross-immunity function, 	𝜎,  yields larger slopes to the 
susceptibility profile and thus selects for higher values of the antigenicity trait. 

B      High cross immunity (ω=0.6) A      Low cross immunity (ω=0.2)
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Long-term joint evolution of antigenicity, transmission and virulence: We now extend our 
analysis to account for mutations affecting pathogen life-history traits such as transmission and 
virulence. To simplify, we use the classical assumption of a transmission-virulence trade-off 
[8,10–14] and consider that a pathogen morph,	𝑖, has frequency, 	𝑝%, mean antigenicity trait, 𝑥̅%, 
and mean virulence 𝛼Y%. In Appendix S2, we show that the morph’s mean traits change as 

𝑑
𝑑𝑡 Z

𝑥̅%
𝛼Y%
[ = G% Z

𝛽(𝛼Y%)𝑠&(𝑥̅%)

𝛽′(𝛼Y%)𝑠(𝑥̅%) − 1
[ 

where G% is the genetic (co)variance matrix, and the vector on the right-hand side is the selection 
gradient. Note that, while the selection gradient on antigenicity depends on the slope of the 
antigenicity profile at the morph mean, the selection gradient on virulence depends on the slope of 
the transmission-virulence trade-off at the morph mean, weighted by the susceptibility profile at 
the morph mean.  
Assuming we can neglect the build-up of correlations between antigenicity and virulence due to 
mutation and selection, the genetic (co)variance matrix is diagonal with elements 𝑉%*  and 𝑉%- . 
Then, as shown previously, antigenicity increases if the slope of the susceptibility profile is locally 
positive, while mean virulence increases as long as 𝛽′(𝛼Y%) > 1/𝑠(𝑥̅%). For a fixed antigenicity trait, 
𝑥 = 𝑥∗,  the susceptibility profile converges towards 𝑠(𝑥∗) = (𝛾 + 𝛼)/𝛽  and the evolutionary 
endpoint satisfies 

𝛽&(𝛼) =
𝛽(𝛼)
𝛾 + 𝛼 

which corresponds to the classical result of R0 maximisation for the unstructured SI model [15,27]. 
However, when antigenicity can evolve, selection will also lead to the build-up of a positive 
covariance 𝐶 between antigenicity and virulence, resulting in a synergistic effect (SI: Appendix 
S2; Figure S3). As the antigenicity trait increases, the evolutionary trajectory of virulence 
converges to the solution of 

𝛽&(𝛼) = 1 

which corresponds to maximizing the rate of increase of pathogen 𝑟(𝛼) = 𝛽(𝛼) − (𝛾 + 𝛼) in a 
fully susceptible population. This is equivalent to maximizing the wave speed 𝑣(𝛼) = 2`𝑟(𝛼)𝐷, 
as shown in Appendix S3. Figure 3a shows that, in the absence of cross-immunity, the ES virulence 
is well predicted by r maximization. With cross-immunity (Figure 3b), virulence evolution is 
characterized by jumps that reflect the sudden shifts in antigenicity due to cross-immunity.  
As such antigenic escape selects for higher transmission and virulence and more acute infectious 
diseases. This has parallels with the results that show that there is a transient increase in virulence 
at the start of an epidemic with r rather than R0 being maximized [16,17,19,32], but it is important 
to note that here we predict the long-term persistence of highly transmissible and virulent disease 
strains due to the existence of antigenic escape.  
Although we have so far assumed a never-ending antigenic escape process, it is easy to extend our 
analysis to consider that antigenic escape is constrained by pleiotropic effects. Then, once the 
antigenicity trait has stabilized, the ES virulence would satisfy 

𝛽&(𝛼) =
1 − 𝜌	𝛽(𝛼)𝑠′(𝑥)

𝑠(𝑥)  
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where 𝜌 = 𝐶/𝑉- measures the correlation between antigenicity and virulence. Thus, the slope to 
the transmission-virulence trade-off at the ESS now takes an intermediate value between 𝛽/(𝛾 +
𝛼)	and 1, as shown in figure 4. 
Short-term joint evolution of antigenicity and virulence: Although our analysis allows us to 
understand the long-term evolution of pathogen traits, it can also be used to accurately predict the 
short-term dynamics of antigenicity and virulence. We now consider that a primary outbreak has 
molded a susceptibility profile 𝑠(𝑥) that we assume constant. Although this assumption will cause 
deviations from the true susceptibility profile, it allows us to decouple our evolutionary 
oligomorphic dynamics from the epidemiological dynamics. Figure 5 shows that the 
approximation accurately predicts the jump in antigenic space and joint increase in virulence 
during the secondary outbreak. The accuracy of the prediction depends on the time at which we 
seed the oligomorphic dynamical system, as detailed in Appendix S1, but remains high for a broad 
range of values of this initial time. Hence, our analysis can be used to successfully predict the trait 
dynamics after the emergence of a new antigenic strain. 
 
A      
 

 
 

B 
 

 

 
Figure 2. Oligomorphic dynamics prediction of the emergence of antigenicity shift. (a) 
Oligomorphic prediction for the change in the mean antigenicity after the primary outbreak at 𝑥 =
0 (red curve), compared with that obtained by numerical simulations (blue dots).  (b) Heat map 
representation of the time change of the antigenic drift model (1). Parameters: 𝛽 = 2, 𝛾 + 𝛼 =
0.6, 𝜎(𝑥) = exp(−𝑥#/2𝜔#) with 𝜔 = 2, 𝐷 = 0.001. Initially, all hosts are equally susceptible 
with 𝑆(0, 𝑥) = 1. The primary pathogen strain is introduced at 𝑥 = 0 with infected density 0.001. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.19.427227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.19.427227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
A Without cross-immunity 

 
B With cross-immunity 

 
 

 
 

 
 

 
Figure 3. Marginal distribution of antigenicity (left) and virulence (right) in the 
absence (a) or presence (b) of cross-immunity. (a) No cross immunity is assumed so that 
each antigenicity genotype causes specific herd immunity: 𝜎(𝑥 − 𝑦) = 𝛿(𝑥 − 𝑦), where 
𝛿(⋅) is Dirac’s delta function.  There are 1600 antigenic variations having equally divided 
antigenicity between 0 and 80. (b) We assume a Gaussian cross-immunity kernel, 
𝜎(𝑥 − 𝑦) = exp(−(𝑥 − 𝑦)#/2𝜔#), with width 𝜔 = 5.  There are 300 antigenic variations 
having equally divided antigenicity between 0 and 300. In both panels, there are 100 viral 
virulence traits each having virulence equally divided between 0 and 20, and Diffusion 
constants due to mutations are 𝐷* = 0.01 (for antigenicity) and 𝐷- = 0.01(for virulence). 
The blue dashed lines show the ES virulence predicted from maximizing R0, as expected 
in the absence of antigenic escape, while the red dashed lines show the predicted ES 
virulence that maximizes 𝑟(𝛼) = 𝛽(𝛼) − (𝛾 + 𝛼) as predicted from our analysis. Other 
parameters: γ = 0.5, and 𝛽(𝛼) = 5√𝛼 . 
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2 
 

 

 
 

Figure 4. Graphical representation of the predicted ES virulence with or without 
antigenic escape under the assumption of a transmission-virulence trade-off. In the 
absence of antigenic escape, the ES virulence, 𝛼/∗ , can be predicted from the maximization 
of the pathogen’s epidemiological basic reproduction ratio, 𝑅' = 𝛽/(𝛾 + 𝛼) , or 
equivalently by the minimization of the total density of susceptible hosts since, at 
equilibrium, 𝑠∗ = 1/𝑅'. The slope of the transmission-virulence trade-off at the ESS is 
then 1/𝑠∗ = 𝑅'. With antigenic escape, the ES virulence, 𝛼0∗, can be predicted from the 
maximization of the pathogen’s growth rate in a fully susceptible population, 𝑟' = 𝛽(𝛼) −
(𝛾 + 𝛼). The slope of the transmission-virulence trade-off at the ESS is then 1. This holds 
true in the limit of a large antigenicity trait, but intermediate values of ES virulence, 
corresponding to intermediate slopes, can also be selected for if other processes constrain 
the evolution of the antigenicity trait, as explained in the main text. 
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3 
 

 
 

Figure 5. Oligomorphic dynamics prediction of the emergence of next strain in 
antigenicity-virulence coevolution.  Panels (a) and (b) show the contour plots for the joint 
trait distribution observed in the same simulations at 𝑡1 = 104.8  (at which the 
susceptibility distribution 𝑠(𝑥) and initial moments in OMD are defined as explained in 
the main body) and 𝑡2 = 109 (at which the OMD projection is terminated as the infected 
density increases around this time and then susceptibility distribution 𝑠(𝑥) measured at 
𝑡 = 𝑡1  no longer stays constant). The overlaid dotted curves are the trajectory of mean 
traits	(𝑥̅, 𝛼Y)  up 𝑡 = 𝑡1  and 𝑡 = 𝑡2 observed in the simulation. Panels (c), (d) and (e) show 
the dynamics of the total density of infected hosts, mean antigenicity and mean virulence, 
respectively. Parameters:	𝛾 = 0.5, 𝛽(𝛼) = 5√𝛼 ,	𝐷* = 0.005, 𝐷- = 0.0002. As in Fig 2 
we assume a Gaussian cross-immunity kernel, 𝜎(𝑥 − 𝑦) = exp(−(𝑥 − 𝑦)#/2𝜔#), with 
width 𝜔 = 5. The oligomorphic dynamics describing the changes in the frequency 𝑝'(𝑡) =
1 − 𝑝,(𝑡)  of the currently prevailing morph at time 𝑡1  and the frequency 𝑝,(𝑡)  of 
upcoming morph, the mean antigenicity 𝑥̅%(𝑡) and mean virulence 𝛼Y%(𝑡) of the two morphs 
(𝑖 = 0,1), and the within-morph variances 𝑉%* and 𝑉%- in antigenicity and virulence, as well 
as the within-morph covariance 𝐶%(t) between antigenicity and virulence in each morph 
(𝑖 = 0,1) are defined as (A44)-(A49) in Appendix S2.  
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Discussion 
We have shown how antigenic escape selects for more acute, virulent infectious diseases 
with higher transmission rates that cause increased mortality in infected hosts.  This result 
is important given the number of important infectious diseases such as seasonal influenza 
that have epidemiology driven by antigenic escape. Until recently the evolution of 
virulence literature has mostly focused on equilibrium solutions that in simple models lead 
to the classic idea that pathogens evolve to maximize their basic reproductive number R0 
[8,10–14]. Our results show that the process of antigenic escape leading to the continual 
replacement of strains [23–26], creates a dynamical invasion process that in and of itself 
selects for more acute, fast transmitting, highly virulent strains that do not maximize R0. 
This has parallels with the finding that more acute strains are selected temporally at the 
start epidemics [24–26], but critically, in our case the result is not a short-term transient 
outcome. Rather, the eco-evolutionary process leads to the long-term persistence of more 
acute strains with higher transmission rates causing higher virulence. As such, antigenic 
escape may be an important driver of high virulence in infectious disease. 

In the simpler case where there is no cross immunity, there is a travelling wave of new 
strains invading due to antigenic escape.  In this case we can use established methods to 
gain analytical results that not only predict the speed of change of the strains, but also the 
evolutionarily stable virulence. With our model’s assumptions, without antigenic escape 
we would get the classic result of the maximization of the reproductive number R0 [8,10–
14], but once there is antigenic escape we show analytically that the intrinsic growth rate 
of the infectious disease r is maximized. Maximizing the intrinsic growth rate leads to 
selection for higher transmission leading to a much higher virulence. Effectively this is the 
equivalent of an infectious disease “live fast, die young” strategy. The outcome is due to 
the dynamical replacement of strains, with new strains invading the population continually 
leading to a continual selection for the strains that invade better [24–26].  As such we 
predict that any degree of antigenic escape will in general select for more acute faster 
transmitting strains with higher virulence in the presence of a transmission-virulence trade-
off.  
Partial cross-immunity leads to a series of jumps in antigenic space that are characteristic 
of the epidemiology of a number of diseases and in particular, in humans, the well-known 
dynamics of influenza A & B [23–26].  Here a cloud of strains remains in antigenic space 
until there is a jump that, on average, overcomes the cross immunity and leads to the 
invasion of a new set of strains that are distant enough to escape the immunity of the 
resident strains [23–26]. In order to examine the evolutionary outcome in this scenario we 
applied a novel oligomorphic analysis [28]. Again, we find that antigenic escape selects 
for higher virulence with more acute faster transmitting strains being favored with again 
selection leading toward the maximization of the intrinsic growth rate r.  Both our analysis 
and simulations show that in the long term the virulence increases until it reaches a new 
optima potentially of an order of magnitude higher than would be expected by the classic 
prediction of maximizing R0.  We show that virulence increases between each antigenic 
jump, falling slightly at the next jump before increasing again until it reaches this new 
equilibrium. It is also important to note that diversity in both antigenicity and virulence 
increases as we move towards the next epidemic, maximizing just at the point when the 
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jump occurs. This increase in diversity could in principle be used as a predictor of the next 
jump in antigenic space. 

Clearly the virulence of any particular infectious disease depends on multiple factors, 
including both host and parasite traits, and critically the relationship between transmission 
and virulence. This makes comparisons of the virulence across different infectious diseases 
problematic since the specific trade-off relationship between transmission and virulence is 
often unknown. However, our model shows that antigenic escape will, all things being 
equal, be a driver of higher virulence favoring more acute strains. It is also important to 
note that since antigenic escape is a very general mechanism that selects for higher 
virulence it follows that we may see high virulence in parasites even when the costs in 
terms of reduced infectious period are substantial. Amongst the influenzas, influenza C 
does not show obvious antigenic escape [33] and is typically much less virulent than the 
other influenzas which are the classic examples of infectious disease with antigenic escape. 
Furthermore, Influenza A shows much more antigenic escape than Influenza B and again 
in line with our predictions typically influenza A is the more virulent [34,35]. Clearly these 
differences can be ascribed to multiple factors and indeed the higher virulence of influenza 
A is often posited to be due to a more recent zoonotic emergence [36]. However, our 
models suggest that the differences in the degree to which they show antigenic escape per 
se may also contribute to these differences. Clearly there are also highly virulent pathogens 
that do not show antigenic escape and a formal comparative analysis is confounded by 
multiple factors, but the evidence from influenza is consistent with our predictions. 

An important implication of our work is that it follows that antigenic escape selects for 
strains with a higher virulence than the value that maximizes R0 and therefore leads to the 
evolution of infectious diseases with lower R0. One simplistic implication of this is that, 
from this point of view, diseases with antigenic escape may be easier to eliminate and 
control with vaccination.  Of course, in practice the opposite is often true since producing 
an effective vaccine is much more problematic when there is antigenic escape [33,37]. In 
addition, it follows that epidemics will tend to be less explosive than they otherwise would 
have been, having a lower peak but lasting longer, with evolution here effectively 
‘flattening the curve’. Infectious diseases that show jumping antigenic escape are 
characterized by repeated epidemics, but our work suggests that due to the selection for a 
lower R0 the eco-evolutionary feedback will have significantly impacted the pattern of 
these epidemics.  This is an important example of a dynamical ecological/epidemiology 
feedback into evolutionary outcomes that in turn then feedbacks into the epidemiology 
characteristics of the disease. 
We have used oligomorphic dynamics [28] to make predictions on the waiting times and 
outcomes of the antigenic jumps in our model with cross immunity.  This approach tracks 
both mean trait values and the changes in trait variances in models with explicit ecological 
dynamics. As such it combines aspects of eco-evolutionary theory [38,39] and quantitative 
genetics approaches [40,41] to provide a more complete understanding of the evolution of 
quantitative traits. Our approach can assume a wide range of different ecological and 
evolutionary time scales and therefore allows us to address fundamental questions on eco-
evolutionary feedbacks and on the separation between ecological and evolutionary time 
scales. This is important since it allows us to test the implications of the different 
assumptions of classical evolutionary theory and to better understand the role of eco-
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evolutionary feedbacks on evolutionary outcomes. Furthermore, the approach can be 
applied widely to model transient dynamics, and to predict the waiting times and extent of 
diversification that occurs in a range of contexts [28,42].  Here it allowed us to predict 
evolutionary outcomes analytically in the dynamical context of antigenic escape.  
Broadly, our results emphasize that epidemiological dynamics may have important 
implications to the evolution of infectious disease. Here repeated invasions driven by 
antigenic escape mutants were shown to lead to the long term evolution of more acute 
virulent pathogens.  It has previously been shown that newly invading parasites will 
temporarily not be at the classic R0 optima [19,32], but our model shows that this more 
acute parasite state is a long term optima when there is antigenic escape. Furthermore, this 
long term optima leads to a more acute severe disease which is clearly of particular 
importance in human health. Human coronaviruses can evolve antigenically to escape 
antibody immunity [43] and moreover in principle epidemics of new variants as a novel 
disease adapts to the host will lead to equivalent dynamics and evolutionary outcomes. It 
also follows that interventions that impact epidemiological dynamics may also have 
impacts on the evolution of pathogen traits such as virulence or transmission and it is 
therefore critical that we have a broader theory of the evolution of virulence that predicts 
the implications of these epidemiological effects. Furthermore, these dynamical feedbacks 
are likely to be important in a range of contexts beyond infectious disease and the analytical 
approaches we use here are likely to be useful in understanding dynamical evolutionary 
outcomes.  
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Supplementary Information 
 

Appendix S1: Oligomorphic dynamics of antigenic escape 
We consider a model of antigenic escape of a pathogen from host herd immunity on a one-
dimensional antigenicity space (𝑥), which describes the changes in the density 𝑆(𝑡, 𝑥) of hosts that 
are susceptible to antigenicity strain 𝑥 of pathogen at time 𝑡, and the density 𝐼(𝑡, 𝑥) of hosts that 
are currently infected and infectious with antigenicity strain 𝑥 of pathogen at time 𝑡: 

𝜕𝑆(𝑡, 𝑥)
𝜕𝑡 = −𝑆(𝑡, 𝑥)0 𝛽𝜎(𝑥 − 𝑦)𝐼(𝑡, 𝑦)

∞

"∞
𝑑𝑦, (A1)

𝜕𝐼(𝑡, 𝑥)
𝜕𝑡 = 𝛽𝑆(𝑡, 𝑥)𝐼(𝑡, 𝑥) − (𝛾 + 𝛼)𝐼(𝑡, 𝑥) + 𝐷

𝜕#𝐼(𝑡, 𝑥)
𝜕𝑥# . (A2)

	 

where 𝛽, 𝛼, and 𝛾 are the transmission rate, virulence (additional mortality due to infection), and 
recovery rate of pathogens which are independent of antigenicity. 𝜎(𝑥 − 𝑦) denotes the degree of 
cross immunity: a host infected by strain 𝑦 of pathogen acquires perfect cross immunity with 
probability 𝜎(𝑥 − 𝑦) but fails to acquire any cross immunity with probability 1 − 𝜎(𝑥 − 𝑦) (this 
is called polarized cross immunity by Gog and Grenfell 2002). The cross-immunity kernel 𝜎(𝑥 −
𝑦) is assumed to be a decreasing function of the distance |𝑥 − 𝑦| between strains 𝑥 and 𝑦. When 
a new strain with antigenicity 𝑥 = 0 is introduced at time 𝑡 = 0, the initial host population is 
assumed to be susceptible to any antigenicity strain of pathogen: 𝑆(0, 𝑥) = 1. 𝐷 = 𝜇𝜎$# /2 is one 
half of the mutation variance for the change in antigenicity, representing random mutation in the 
continuous antigenic space. 
Susceptibility profile molded by the primary outbreak 
We first analyze the dynamics of the primary outbreak of a pathogen and derive the resulting 
susceptibility profile, which can be viewed as the fitness landscape subsequently experienced by 
the pathogen. For simplicity we assume that mutation can be ignored during the first epidemic 
started with the antigenicity stain 𝑥 = 0. The density 𝑆'(𝑡) = 𝑆(𝑡, 0) of hosts that are susceptible 
to the currently prevailing antigenicity strain 𝑥 = 0, as well as the density 𝐼'(𝑡) = 𝐼(𝑡, 0) of hosts 
that are currently infected by the focal strain change with time as 

𝑑𝑆'
𝑑𝑡 = −𝑆'𝛽𝐼', (A3)

𝑑𝐼'	
𝑑𝑡

= 𝑆'𝛽𝐼' − (𝛾 + 𝛼)𝐼', (𝐴4)

𝑑𝑅'
𝑑𝑡 = 𝛾𝐼'. (A5)	

 

with 𝑆'(0) = 1, 𝐼'(0) ≈ 0, and 𝑅'(0) = 0. The final size of the primary outbreak, 

𝜓' = 𝑅'(∞) = 1 − 𝑆'(∞) = exp m−𝛽0 𝐼'(𝑡)
!

'
𝑑𝑡n, 

is determined as the unique positive root of  

𝜓' = 1 − 𝑒"3!4! , (𝐴6) 
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where 𝜌' = 𝛽/(𝛾 + 𝛼) > 1  is the basic reproductive number [Anderson and May, 1991]. 
Associated with this epidemiological change, the susceptibility profile 𝑆*(𝑡) = 𝑆(𝑡, 𝑥) against 
antigenicity 𝑥  (𝑥 ≠ 0 ) other than the currently circulating strain (𝑥 = 0 ) changes by cross 
immunity as 

𝑑𝑆*
𝑑𝑡

= −𝑆*𝛽𝜎(𝑥)𝐼', (𝑥 ≠ 0). (𝐴7) 

Integrating both sides of (A7) from 𝑡 = 0 to 𝑡 = ∞, we see that the susceptibility profile 𝑠(𝑥) =
𝑆*(∞) after the primary outbreak at 𝑥 = 0 is 

𝑠(𝑥) = exp m−𝛽𝜎(𝑥)0 𝐼'(𝑡)
!

'
𝑑𝑡n = (1 − 𝜓')((*) = 𝑒"3!((*)4! . (𝐴8) 

where the last equality follows from (A6). The susceptibility can be effectively reduced by cross-
immunity when the primary strain has a large impact (the fraction of hosts remained uninfected, 
1 − 𝜓', is small) and when the degree of cross immunity is strong (𝜎(𝑥) is close to 1). With a 
strain antigenically very close to the primary strain (𝑥 ≈ 0), the cross immunity is very strong 
(𝜎(𝑥) ≈ 1) so that the susceptibility against strain 𝑥 is nearly maximally reduced 𝑠(𝑥) ≈ 1 − 𝜓'.  
With a strain antigenically distant from the primary strain, 𝜎(𝑥) becomes substantially smaller 
than 1, making the host more susceptible to the strain. For example, if the cross immunity is halved 
(𝜎(𝑥) = 0.5) from its maximum value 1, then the susceptibility to that strain is as large as 
(1 − 𝜓')'.6. If a strain is antigenically very distant from the primary strain, 𝜎(𝑥) ≈ 0, and the host 
is nearly fully susceptibility to the strain (𝑠(𝑥) ≈ 1). 
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Figure S1: Continuous antigenic drift (A) and periodical antigenic shits (B) of the model. The 
orange colored surface denotes the infected density 𝐼(𝑡, 𝑥) varying in time 𝑡 and intigenicty 𝑥, and 
the yellow colored surface denotes the density of hosts 𝑆(𝑡, 𝑥) that are susceptible to antigenicity 
strain 𝑥 of pathogen at time 𝑡. The width of cross immunity 𝜔 = 0.2 in (A) and 𝜔 = 0.6 in (B). A 
continuous antigenic drift solution (travelling wave of a fixed shaped profile with a constant wave 
speed) loses stability around 𝜔 = 0.4 and the departure from the travelling wave increases as 𝜔 
increases (C). The wave speeds stay nearly constant and agree with (3) when 𝜔 is varied (D). Other 
parameters are 𝛽 = 2, 𝑢 = 0.001, 𝛼 = 0.1, 𝛾 = 0.5, and	𝐷 = 0.001. 
 

Threshold for antigenic escape 

Of particular interest is the threshold antigenicity distance 𝑥7 that allows the antigenic escape, i.e. 
any antigenicity strain more distant than this threshold from the primary strain (𝑥 > 𝑥7 ) can 
increase when introduced after the primary outbreak. Such a threshold is determined from 

𝛽𝑆*"(∞) = 𝛽𝑠(𝑥7) = (𝛾 + 𝛼) 

or 

(1 − 𝜓')((*") = 𝑒"3!((*")4! =
1
𝜌'
. (𝐴9) 

With a specific choice of cross-immunity profile, 

𝜎(𝑥) = exp m−
𝑥#

2𝜔#n , (𝐴10) 

B  High cross immunity (ω=0.6)A  Low cross immunity (ω=0.2)
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the threshold antigenicity beyond which the virus can increase in the susceptibility profile 𝑠(𝑥) 
after the primary outbreak is, from 

exp m−𝜌'𝜓' exp m−
𝑥7#

2𝜔#nn =
1
𝜌'
, 

and taking logarithm of both sides twice, 

𝑥7 = 𝜔r2 log
𝜌'𝜓'
log 𝜌'

. (𝐴11) 

Oligomorphic dynamics 
Integrating both sides of (A2) over the whole space, we obtain the dynamics for the total density 
of infected hosts,  𝐼(̅𝑡) = ∫ 𝐼(𝑡, 𝑥)𝑑𝑥!

"! : 

𝑑𝐼 ̅
𝑑𝑡 = m𝛽0 𝑆(𝑡, 𝑥)𝜙(𝑡, 𝑥)

!

"!
𝑑𝑥 − (𝛾 + 𝛼)n 𝐼(̅𝑡) = [𝛽𝑠̅(𝑡) − (𝛾 + 𝛼)]𝐼(̅𝑡). (𝐴12) 

where 

𝜙(𝑡, 𝑥) = 𝐼(𝑡, 𝑥)/𝐼(̅𝑡), 

is the relative frequency of antigenicity strain 𝑥 circulating at time 𝑡, and 

𝑆̅(𝑡) = 0 𝑆(𝑡, 𝑥)𝜙(𝑡, 𝑥)
!

"!
𝑑𝑥 (𝐴13) 

is the mean susceptibility experienced by currently circulating pathogens. The dynamics for the 
relative frequency 𝜙(𝑡, 𝑥) of pathogen antigenicity is 

𝜕𝜙
𝜕𝑡

= 𝛽{𝑆(𝑡, 𝑥) − 𝑆̅(𝑡)}𝜙(𝑡, 𝑥) + 𝐷
𝜕#𝜙
𝜕𝑥#

. (𝐴14) 

As in Sasaki and Dieckmann (2011), we decompose the frequency distribution to the sum of 
several morph distributions (oligomorphic decomposition) as  

𝜙(𝑡, 𝑥) =z𝑝%𝜙%(𝑡, 𝑥)
%

(𝐴15) 

where 𝑝%(𝑡) is the frequency of morph 𝑖 and 𝜙%(𝑡, 𝑥) is within-morph distribution of antigenicity. 
By definition,  ∑ 𝑝%% = 1 and ∫ 𝜙%(𝑡, 𝑥)

!
"! 𝑑𝑥 = 1. Let  

𝑥̅% = 0 𝑥𝜙%(𝑡, 𝑥)
!

"!
𝑑𝑥 (𝐴16) 

be the mean antigenicity of a morph and  

𝑉% = 0 (𝑥 − 𝑥̅%)#𝜙%(𝑡, 𝑥)
!

"!
𝑑𝑥 = 𝑂(𝜖#). (𝐴17) 

be the within-morph variance of each morph, which is assumed to be small, of the order of 𝜖#. Let 
us denote the mean susceptibility of host population for viral morph 𝑖  by 𝑆%̅ =
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∫ 𝑆(𝑡, 𝑥)𝜙%(𝑡, 𝑥)
!
"! 𝑑𝑥. As shown in Sasaki and Dieckmann (2011), the dynamics for viral morph 

frequency is expressed as 
𝑑𝑝%
𝑑𝑡

= 𝛽(𝑆%̅ − 𝑆̅)𝑝% + 𝑂(𝜖), (𝐴18) 

while the dynamics for the within-morph distribution of antigenicity is 

𝜕𝜙%
𝜕𝑡

= 𝛽{𝑆(𝑡, 𝑥) − 𝑆%̅}𝜙%(𝑡, 𝑥) + 𝐷
𝜕#𝜙%
𝜕𝑥#

. (𝐴19) 

From this, the dynamics for the mean antigenicity of a morph, 
𝑑𝑥̅%
𝑑𝑡 = 𝑉%𝛽

𝜕𝑆
𝜕𝑥}*8*̅#

+ 𝑂(𝜖:). (𝐴20) 

and the dynamics for the within-morph variance of a morph 

𝑑𝑉%
𝑑𝑡 =

1
2𝛽

𝜕#𝑆
𝜕𝑥#

~
*8*̅#

{𝐸[𝜉%;] − 𝑉%#} + 2𝐷 + 𝑂(𝜖6). (𝐴21) 

are derived, where 𝜉% = 𝑥 − 𝑥̅% and 𝐸[𝜉%;] = ∫ (𝑥 − 𝑥̅%);𝜙%(𝑡, 𝑥)𝑑𝑥
!
"!  is the fourth central moment 

of antigenicity around the morph mean. Assuming that the morph distribution is and remains 
normal (Gaussian closure), 𝐸[𝜉%;] = 3𝑉%# and hence Eq. (A21) becomes 

𝑑𝑉%
𝑑𝑡 = 𝛽

𝜕#𝑆
𝜕𝑥#

~
*8*̅#

𝑉%# + 2𝐷 + 𝑂(𝜖6). (𝐴22) 

Second outbreak predicted by OMD 
Equations (A18), (A20) and (A22) are general, but they rely on a full knowledge of the dynamics 
of the susceptibility profile 𝑆(𝑡, 𝑥) . In order to make further progress, we use an additional 
approximation by substituting Eq. (A9), the susceptibility profile over viral antigenicity space after 
the primary outbreak at 𝑥 = 0 and before the onset of the second outbreak at a distant position. 
We keep track of two morphs at positions 𝑥'(𝑡) and 𝑥,(𝑡), where the first morph is that caused 
the primary outbreak at 𝑥 = 0, and the second morph is that emerged in the range 𝑥 > 𝑥7 beyond 
the threshold antigenicity 𝑥7 defined in Eq. (A9) (and (A11) for a specific form of 𝜎(𝑥)) as the 
source of the next outbreak.  

As 𝑠(𝑥) = (1 − 𝜓')((*) = exp[𝜎(𝑥) log(1 − 𝜓')], we have 
d𝑠
d𝑥
(𝑥̅%) = �

d𝜎
d𝑥
(𝑥̅%) log(1 − 𝜓')� 𝑠(𝑥̅%), 

and 

d#𝑠
d𝑥#

(𝑥̅%) = m
d#𝜎
d𝑥#

(𝑥̅%) log(1 − 𝜓') + �
d𝜎
d𝑥

(𝑥̅%) log(1 − 𝜓')�
#

n 𝑠(𝑥̅%). 

Therefore, the frequency, mean antigenicity, and variance of antigenicity of an emerging morph 
(𝑖 = 1) change respectively as 
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𝑑𝑝,
𝑑𝑡 = 𝛽[𝑠(𝑥̅,) − 𝑠(𝑥̅')]𝑝,(1 − 𝑝,),

𝑑𝑥̅,
𝑑𝑡

= 𝑉,𝛽
d𝑠
d𝑥
(𝑥̅,),

𝑑𝑉,
𝑑𝑡 = 𝛽

d#𝑠
d𝑥#

(𝑥̅%)𝑉,# + 2𝐷,

(𝐴23) 

The predicted change in the mean antigenicity is plotted by integrating Eq. (A23). As initial 
condition, we choose the time when a seed of second peak in the range 𝑥 > 𝑥7 first appears, and 
then compute the mean trait as 

𝑥̅(𝑡) = 𝑥'G1 − 𝑝,(𝑡)H + 𝑥̅,𝑝,(𝑡). (𝐴24) 

In the case of Figure 1, where 𝛽 = 2, 𝛾 + 𝛼 = 0.6, 𝐷 = 0.001, and 𝜔 = 2, the final size of 
epidemic for the primary outbreak, defined as (7) was 𝜓 = 0.959 , and the critical antigenic 
distance for the increase of pathogen strain obtained from (A22) was 𝑥7 = 2.795. The initial 
condition for the oligomorphic dynamics (A23) for the second morph was then 𝑝,(𝑡') =
1.6 × 10"<, 𝑥̅,(𝑡') = 3.239, 𝑉,(𝑡') = 0.2675 at 𝑡' = 41. In Figure 1, the predicted trajectory for 
the mean antigenicity (A24) is plotted as red curve, together with the mean antigenicity change 
observed in simulation (blue curve). 
The accuracy of predicting with OMD the antigenicity and the timing of the second outbreak 

Here we describe how the initial conditions for oligomorphic dynamics, i.e., the frequency, the 
mean antigenicity and the variance in antigenicity of the morph that caused the primary outbreak 
and the morph which may cause the second outbreak are determined. We then show how the 
accuracy in prediction of the second outbreak depends on the timing for prediction. 

We divide the antigenicity space into two at 𝑥 = 𝑥7 above which the pathogen can increase under 
the given susceptibility profile after the primary outbreak, but below which the pathogen cannot 
increase. We then take relative frequencies of pathogens above 𝑥7  and below 𝑥7 , and the 
conditional mean and variance in these separated regions to set the initial frequencies, means, and 
variances of the morphs at the time 𝑡' when we predict the second outbreak:  

𝑝'(𝑡') =
∫ 𝐼(𝑡', 𝑥)
*"
' 𝑑𝑥

∫ 𝐼(𝑡', 𝑥)
!
' 𝑑𝑥

, 	𝑝,(𝑡') =
∫ 𝐼(𝑡', 𝑥)
!
*"

𝑑𝑥

∫ 𝐼(𝑡', 𝑥)
!
' 𝑑𝑥

,

𝑥̅'(𝑡') =
∫ 𝑥𝐼(𝑡', 𝑥)	𝑑𝑥
*"
'

∫ 𝐼(𝑡', 𝑥)
*"
' 𝑑𝑥

, 𝑥̅,	(𝑡') =
∫ 𝑥𝐼(𝑡', 𝑥)
!
*"

𝑑𝑥

∫ 𝐼(𝑡', 𝑥)
!
*"

𝑑𝑥
,

𝑉'(𝑡') =
∫ G𝑥 − 𝑥̅'(𝑡')H

#
𝐼(𝑡', 𝑥)

*"
' 𝑑𝑥

∫ 𝐼(𝑡', 𝑥)
*"
' 𝑑𝑥

, 𝑉,(𝑡') =
∫ G𝑥 − 𝑥̅,(𝑡')H

#𝐼(𝑡', 𝑥)
!
*"

𝑑𝑥

∫ 𝐼(𝑡', 𝑥)
!
*"

𝑑𝑥
.

(𝐴25) 

We then compare the trajectory for mean antigenicity change observed in simulation (blue curve 
in Figure 1) and the predicted trajectory (red curve in Figure 1) for mean antigenicity (A24) by 
integrating oligomorphic dynamics (A23) with initial condition (A25) at time 𝑡 = 𝑡'.  Figure S1 
shows how the accuracy of prediction, measured by the Kullback-Leibler divergence or L2 norm 
between these two trajectories depends on the timing chosen for the prediction,	𝑡' . The second 
outbreak occurs around t = 54.6 where mean antigenicity jumps from around 0 to around 5.  The 
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prediction with OMD is accurate if it is made for 𝑡' > 40. Figure 1 is drawn for 𝑡' = 41 where 
the second peak is about to emerge (see Figure S2). Even for the latest prediction for 𝑡' = 51 in 
Figure S2, the morph frequency of the emerging second quasispecies was only 0.3%, so the 
prediction is still worthwhile to make. 

Figure S2 shows that the prediction power is roughly constant (albeit with a wiggle) for 5 < 𝑡' <
30 (the predicted timings are 10-15% longer than actual timing for 5 < 𝑡' < 30), and steadily 
improved for 𝑡' > 30. When the prediction is made very early <(𝑡' < 5) the deviations are larger. 

 
Figure S2. The accuracy of prediction of the second outbreak as a function of the prediction 
timing, using either the Kullback-Leibler divergence (left panel) (A) The KL divergence plotted 
here is 𝐼=>(𝑃, 𝑄) =

,
?$"?!

∫ 𝑄(𝑡) log𝑄(𝑡)/𝑃(𝑡)?$
?!

, where 𝑄(𝑡)  is the trajectory for mean 
antigenicity observed in simulation, and 𝑃(𝑡) is the corresponding trajectory obtained with OMD 
with using the data at 𝑡 = 𝑡' being used to set the initial condition. The right end of the comparison 
in time horizon is set to 𝑡, = 80 when the second outbreak is over. (B) The logarithmic density of 
antigenicity strains, 𝐼(𝑡, 𝑥), at 𝑡 = 41. A tiny seed for the second morph around 𝑥 = 6 is visible. 

Appendix S2: Oligomorphic dynamics for the joint evolution of antigenicity and 
virulence 
Let 𝑠(𝑥) be the susceptibility of the host population against antigenicity 𝑥 a specific susceptibility 
profile is given by (A8) in Appendix S1 with cross-immunity function 𝜎(𝑥) and the final size 𝜓' 
of epidemic of the primary outbreak. Note that as in appendix S1, the susceptibility profile is in 
general a function of time. The density 𝐼(𝑥, 𝛼) of hosts infected by a pathogen of antigenicity 𝑥 
and virulence 𝛼 changes with time, when rare, as 

𝜕𝐼(𝑥, 𝛼)
𝜕𝑡

= 𝛽𝑠(𝑥)𝐼(𝑥, 𝛼) − (𝛾 + 𝛼)𝐼(𝑥, 𝛼) +	𝐷*
𝜕#𝐼
𝜕𝑥#

+ 𝐷-
𝜕#𝐼
𝜕𝛼#

. (𝐴26) 

The change in the frequency 𝜙(𝑥, 𝛼) = 𝐼(𝑥, 𝛼)/∫ ∫ 𝐼(𝑥, 𝛼)𝑑𝑥𝑑𝛼 of a pathogen with antigenicity 
𝑥 and virulence 𝛼 follows 

𝜕𝜙
𝜕𝑡

= {𝑤(𝑥, 𝛼) − 𝑤�}𝜙 + 𝐷*
𝜕#𝜙
𝜕𝑥#

+ 𝐷-
𝜕#𝜙
𝜕𝛼#

, (𝐴27) 

where
𝑤(𝑥, 𝛼) = 𝛽(𝛼)𝑠(𝑥) − 𝛼, (𝐴28) 
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is the fitness of a pathogen with antigenicity 𝑥 and virulence 𝛼 and 𝑤� = ∫ ∫ 𝑤(𝑥, 𝛼)𝑑𝑥𝑑𝛼 is the 
mean fitness.  

Let us decompose the joint frequency distribution 𝜙(𝑥, 𝛼)  of the viral quasispecies as 
(oligomorphic decomposition): 

𝜙(𝑥, 𝛼) =z	𝜙%(𝑥, 𝛼)𝑝%
%

, (𝐴29) 

where 𝜙%(𝑥, 𝛼) is the joint frequency distribution of antigenicity 𝑥 and virulence 𝛼 in morph 𝑖 
(∫ ∫ 𝜙%𝑑𝑥𝑑𝛼 = 1) and 𝑝%  is the relative frequency of morph 𝑖  (∑ 𝑝%% = 1). The frequency of 
morph 𝑖 then changes as 

𝑑𝑝%
𝑑𝑡 = �𝑤�% −z𝑤�@𝑝@

@

�𝑝% ,

𝜕𝜙%
𝜕𝑡 = (𝑤(𝑥, 𝛼) − 𝑤�%)𝜙%(𝑥, 𝛼) + 𝐷*

𝜕#𝜙%
𝜕𝑥# + 𝐷-

𝜕#𝜙%
𝜕𝛼# ,

(𝐴30) 

where 𝑤�% = ∫∫𝑤(𝑥, 𝛼)𝜙%(𝑥, 𝛼) 𝑑𝑥𝑑𝛼 is the mean fitness of morph 𝑖.  

Assuming that the traits are distributed narrowly around the morph means 𝑥̅% =
∫ ∫ 𝑥𝜙%(𝑥, 𝛼)𝑑𝑥𝑑𝛼  and 𝛼Y% = ∫∫𝛼𝜙%(𝑥, 𝛼) 𝑑𝑥𝑑𝛼 , so that 𝜉% = 𝑥 − 𝑥̅% = 𝑂(𝜖)  and 𝜁% = 𝛼 −
𝛼Y% = 𝑂(𝜖) where 𝜖 is a small constant, we expand the fitness 𝑤(𝑥, 𝛼) around the means 𝑥̅% and 𝛼Y% 
of morph 𝑖,  

𝑤(𝑥, 𝛼) = 𝑤(𝑥̅% , 𝛼Y%) + �
𝜕𝑤
𝜕𝑥�%

𝜉% + �
𝜕𝑤
𝜕𝛼�%

𝜁%

				+
1
2
Z
𝜕#𝑤
𝜕𝑥#

[
%
𝜉%# + Z

𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%
𝜉%𝜁% +

1
2
Z
𝜕#𝑤
𝜕𝛼#

[
%
𝜁%# + 𝑂(𝜖:).

 

Substituting this and  

𝑤�% = 𝑤(𝑥̅% , 𝛼Y%) +
1
2Z
𝜕#𝑤
𝜕𝑥#[

%
𝑉%** + Z

𝜕#𝑤
𝜕𝑥𝜕𝛼[

%
𝑉%*- +

1
2Z
𝜕#𝑤
𝜕𝛼#[

%
𝑉%-- + 𝑂(𝜖:) 

into (A30), we have 

𝑑𝑝%
𝑑𝑡 = �𝑤% −z𝑤@𝑝@

@

� 𝑝% + 𝑂(𝜖), (𝐴31)

𝜕𝜙%
𝜕𝑡 = m�

𝜕𝑤
𝜕𝑥�%

𝜉% + �
𝜕𝑤
𝜕𝛼�%

𝜁% +
1
2Z
𝜕#𝑤
𝜕𝑥#[

%

(𝜉%# − 𝑉%*) + Z
𝜕#𝑤
𝜕𝑥𝜕𝛼[

%

(𝜉%𝜁% − 𝐶%)

				+
1
2 Z
𝜕#𝑤
𝜕𝛼#[

%

(𝜁%# − 𝑉%-)n 𝜙% + 𝐷*
𝜕#𝜙%
𝜕𝑥# + 𝐷-

𝜕#𝜙%
𝜕𝛼# + 𝑂

(𝜖:). (𝐴32)
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where 𝑤% = 𝑤(𝑥̅% , 𝛼Y%), �
AB
A*
�
%
= AB

A*
(𝑥̅% , 𝛼Y%), �

AB
A-
�
%
= AB

A-
(𝑥̅% , 𝛼Y%), �

A%B
A*%

�
%
= A%B

A*%
(𝑥̅% , 𝛼Y%), �

A%B
A*A-

�
%
=

A%B
A*A-

(𝑥̅% , 𝛼Y%), and �A
%B
A-%

�
%
= A%B

A-%
(𝑥̅% , 𝛼Y%) are fitness and its first and second derivatives evaluated at 

the mean traits of morph 𝑖, and  

𝑉%* = 𝐸%[(𝑥 − 𝑥̅%)#],
𝐶% = 𝐸%[(𝑥 − 𝑥̅%)(𝛼 − 𝛼Y%)],
𝑉%- = 𝐸%[(𝛼 − 𝛼Y%)#],

(𝐴33) 

are within-morph variances and covariance of the traits of morph 𝑖 . Here, 𝐸%[𝑓(𝑥, 𝛼)] =
∫∫𝑓(𝑥, 𝛼)𝜙%(𝑥, 𝛼) 𝑑𝑥 𝑑𝛼 denotes taking expectation of a function 𝑓 with respect to the joint trait 
distribution 𝜙%(𝑥, 𝛼) of morph 𝑖.  

Substituting (A32) into the change in the mean antigenicity of morph 𝑖 
𝑑𝑥̅%
𝑑𝑡 =

𝑑
𝑑𝑡 00𝑥𝜙%(𝑥, 𝛼) 𝑑𝑥 𝑑𝛼 = 00𝑥

𝜕𝜙%
𝜕𝑡 𝑑𝑥 𝑑𝛼 = 00(𝑥̅% + 𝜉%)

𝜕𝜙%
𝜕𝑡 𝑑𝜉% 𝑑𝜁% , 

we have 
𝑑𝑥̅%
𝑑𝑡 = �

𝜕𝑤
𝜕𝑥�%

	𝑉%* + �
𝜕𝑤
𝜕𝛼�%

𝐶% + 𝑂(𝜖:). (𝐴34) 

Similarly, the change in the mean virulence of morph 𝑖 is expressed as 
𝑑𝛼Y%
𝑑𝑡 = �

𝜕𝑤
𝜕𝑥�%

	𝐶% + �
𝜕𝑤
𝜕𝛼�%

𝑉%- + 𝑂(𝜖:). (𝐴35) 

Equations (A34)-(A35) from the mean trait change is summarized in a matrix form as 

𝑑
𝑑𝑡 �

𝑥̅%
𝛼Y%
� = 𝑮𝒊

⎝

⎜
⎛�
𝜕𝑤
𝜕𝑥�%

�
𝜕𝑤
𝜕𝛼�%⎠

⎟
⎞
+ 𝑂(𝜖:), (𝐴36) 

where 

𝑮𝒊 = �
𝑉%* 𝐶%
𝐶% 𝑉%-

� (𝐴37) 

is the variance-covariance matrix of the morph 𝑖. 

Substituting (A32) into the right-hand side of the change in variance of antigenicity of morph 𝑖, 
𝑑𝑉%*

𝑑𝑡 =
𝑑
𝑑𝑡 00𝜉%

# 𝜙% 𝑑𝜉%𝑑𝜁% = 00𝜉%#
𝜕𝜙%
𝜕𝑡 𝑑𝜉%𝑑𝜁% 

and those in the change in the other variance and covariance, we have 
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𝑑𝑉%*

𝑑𝑡 =
1
2Z
𝜕#𝑤
𝜕𝑥#[

%

[𝐸%(𝜉%;) − (𝑉%*)#] + Z
𝜕#𝑤
𝜕𝑥𝜕𝛼[

%
	 [𝐸%(𝜉%:𝜁%) − 𝑉%*𝐶%]

+
1
2
Z
𝜕#𝑤
𝜕𝛼#

[
%
	 [𝐸%(𝜉%#𝜁%#) − 𝑉%*𝑉%-] + 2𝐷* + 𝑂(𝜖6),

𝑑𝐶%
𝑑𝑡

=
1
2
Z
𝜕#𝑤
𝜕𝑥#

[
%
	[𝐸%(𝜉%:𝜁%) − 𝑉%*𝐶%] + Z

𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%

[𝐸%(𝜉%#𝜁%#) − 𝐶%#]

	+
1
2
Z
𝜕#𝑤
𝜕𝛼#

[
%
	 [𝐸%(𝜉%𝜁%:) − 𝐶%𝑉%-] + 𝑂(𝜖6),

𝑑𝑉%-

𝑑𝑡
=
1
2
Z
𝜕#𝑤
𝜕𝑥#

[
%
	[𝐸%(𝜉%#𝜁%#) − 𝑉%*𝑉%-] + Z

𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%
	 [𝐸%(𝜉%𝜁%:) − 𝐶%𝑉%-]

+
1
2
Z
𝜕#𝑤
𝜕𝛼#

[
%
	 [𝐸%(𝜁%;) − (𝑉%-)#] + 2𝐷- + 𝑂(𝜖6).

(𝐴38) 

If we assume that antigenicity and virulence within a morph follow two-dimensional Gaussian 
distribution for given means, variances and covariance, we should have 𝐸%(𝜉%;) =
3(𝑉%*)#, 𝐸%(𝜉%:𝜁%) = 3𝑉%*𝐶% , 𝐸%(𝜉%#𝜁%#) = 𝑉%*𝑉%- + 2𝐶%#, 𝐸%(𝜉%𝜁%:) = 3𝑉%-𝐶% , and 𝐸%(𝜁%;) = 3(𝑉%-)#, 
and hence 

𝑑𝑉%*

𝑑𝑡
= Z

𝜕#𝑤
𝜕𝑥#

[
%

(𝑉%*)# + 2Z
𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%
𝑉%*𝐶% + Z

𝜕#𝑤
𝜕𝛼#

[
%
𝐶%# + 2𝐷* + 𝑂(𝜖6), (𝐴39)

𝑑𝐶%
𝑑𝑡

= Z
𝜕#𝑤
𝜕𝑥#

[
%
𝑉%*𝐶% + Z

𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%

{𝑉%*𝑉%- − 𝐶%#} + Z
𝜕#𝑤
𝜕𝛼#

[
%
𝐶%𝑉%- + 𝑂(𝜖6), (𝐴40)

𝑑𝑉%-

𝑑𝑡
= Z

𝜕#𝑤
𝜕𝑥#

[
%
𝐶%# + 2Z

𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%
𝑉%-𝐶% + Z

𝜕#𝑤
𝜕𝛼#

[
%

(𝑉%-)# + 2𝐷- + 𝑂(𝜖6), (𝐴41)

	 

Eqs. (A39)-(A41) are rewritten in a matrix form as 
𝑑G%
𝑑𝑡

= G%H%G% + �
2𝐷*𝑉%* 0
0 2𝐷-𝑉%-

� + 𝑂(𝜖6), (𝐴42) 

where 

H% =

⎝

⎜
⎛
Z
𝜕#𝑤
𝜕𝑥#

[
%

Z
𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%

Z
𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%

Z
𝜕#𝑤
𝜕𝛼#

[
% ⎠

⎟
⎞
, (𝐴43) 

is the Hessian of the fitness function of the morph 𝑖. 
In our case (A26) of the joint evolution of antigenicity and virulence of a pathogen after its primary 
outbreak, the fitness function is given by 𝑤(𝑥, 𝛼) = 𝛽(𝛼)𝑠(𝑥) − 𝛼, and hence 𝑤% = 𝛽(𝛼Y%)𝑠(𝑥̅%) −
𝛼Y% , �AB

A*
�
%
= 𝛽(𝛼Y%)𝑠&(𝑥̅%) , �AB

A-
�
%
= 𝛽&(𝛼Y%)𝑠(𝑥̅%) − 1 , �A

%B
A*%

�
%
= 𝛽(𝛼Y%)𝑠&&(𝑥̅%) , � A

%B
A*A-

�
%
=
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𝛽&(𝛼Y%)𝑠&(𝑥̅%), �
A%B
A*A-

�
%
= 𝛽&(𝛼Y%)𝑠&(𝑥̅%), and �A

%B
A-%

�
%
= 𝛽&&(𝛼Y%)𝑠(𝑥̅%), where a prime on 𝛽(𝛼) and 

𝑠(𝑥) denotes differentiation by 𝛼 and 𝑥, respectively. Substituting these into the dynamics for 
morph frequencies (A31), for morph means (A34)-(A35), and for within-morph variance and 
covariance (A39)-(A41), we have 

𝑑𝑝%
𝑑𝑡 = �𝛽(𝛼Y%)𝑠(𝑥̅%) − 𝛼Y% −zG𝛽G𝛼Y@H𝑠G𝑥̅@H − 𝛼Y@H𝑝@

@

� 𝑝% , (𝐴44)

𝑑𝑥̅%
𝑑𝑡 = 𝛽(𝛼Y%)𝑠&(𝑥̅%)𝑉%* + {𝛽&(𝛼Y%)𝑠(𝑥̅%) − 1}𝐶% , (𝐴45)

𝑑𝛼Y%
𝑑𝑡

= 𝛽(𝛼Y%)𝑠&(𝑥̅%)𝐶% + {𝛽&(𝛼Y%)𝑠(𝑥̅%) − 1}𝑉%- , (𝐴46)

𝑑𝑉%*

𝑑𝑡 = 𝛽(𝛼Y%)𝑠&&(𝑥̅%)(𝑉%*)# + 2𝛽&(𝛼Y%)𝑠&(𝑥̅%)𝑉%*𝐶% + 𝛽&&(𝛼Y%)𝑠(𝑥̅%)𝐶%# + 2𝐷* , (𝐴47)

𝑑𝐶%
𝑑𝑡

= 𝛽(𝛼Y%)𝑠&&(𝑥̅%)𝑉%*𝐶% + 𝛽&(𝛼Y%)𝑠&(𝑥̅%){𝑉%*𝑉%- − 𝐶%#} + 𝛽&&(𝛼Y%)𝑠(𝑥̅%)𝐶%𝑉%- , (𝐴48)

𝑑𝑉%-

𝑑𝑡 = 𝛽(𝛼Y%)𝑠&&(𝑥̅%)𝐶%# + 2𝛽&(𝛼Y%)𝑠&(𝑥̅%)𝑉%-𝐶% + 𝛽&&(𝛼Y%)𝑠(𝑥̅%)(𝑉%-)# + 2𝐷- . (𝐴49)

 

Equations (A44)-(A49) describe the oligomorphic dynamics of the joint evolution of antigenicity 
and virulence of a pathogen for a given host susceptibility profile 𝑠(𝑥) over pathogen antigenicity. 
Of particular interest is whether the antigenicity evolution or virulence evolution accelerates each 
other by allowing them evolving simultaneously than when they evolve alone. After the primary 
outbreak at a given antigenicity, say 𝑥 = 0, the susceptibility 𝑠(𝑥) of host population increases 
due to cross-immunity as the distance 𝑥 > 0  from the antigenicity at the primary outbreak. 
Combining this with the positive tradeoff between transmission rate and virulence, we see that 
(𝜕#𝑤/𝜕𝑥𝜕𝛼)% = 𝛽′(𝛼Y%)𝑠′(𝑥̅%) > 0, and then from (A48) we see that the within-morph covariance 
between antigenicity and virulence stays positive if its initial value is nonnegative: 

𝑑𝐶%
𝑑𝑡
}
D#8'

= Z
𝜕#𝑤
𝜕𝑥𝜕𝛼

[
%
𝑉%*𝑉%- > 0. (𝐴50) 

If all second moments are sufficiently small initially for an emerging morph, a quick look at the 
linearization of (A47)-(A49) around (𝑉%* , 𝐶% , 𝑉%-) = (0,0,0) indicates that both 𝑉%* and 𝑉%- become 
positive due to the random generation of variance by mutation, 𝐷* > 0 and 𝐷- > 0, while the 
covariance stays close to zero. Then (A50) guarantees that first move of covariance is from zero 
to positive, which then guarantees that 𝐶% > 0 for all 𝑡. Therefore, the second term in (A34) is 
positive until the mean virulence reaches its optimum (𝛽′(𝛼)𝑠(𝑥) = 1). This means that joint 
evolution with virulence accelerates the evolution of antigenicity. The same is true for virulence 
evolution: the first term in (A35) (which denotes the associated change in virulence due to the 
selection in antigenicity through genetic covariance between them) is positive, indicating that joint 
evolution with antigenicity accelerates the virulence evolution. 
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Numerical example 
Figure 5 in the main body shows the oligomorphic dynamics prediction of the emergence of next 
strain in antigenicity-virulence coevolution. In order to make progress numerically we assume 
𝑠(𝑥) to be constant in the following analysis because we are interested in the process between the 
end of the primary outbreak and the emergence of the next antigenicity virulence morph. A The 
partial differential equations for the density of host 𝑆(𝑡, 𝑥) susceptible to the antigenicity strain 𝑥 
at time 𝑡, and the density of hosts infected by pathogen strain with antigenicity 𝑥 and virulence 𝛼 
are 

𝜕𝑆(𝑡, 𝑥)
𝜕𝑡

= −𝑆(𝑡, 𝑥) 0 0 𝛽(𝛼)𝜎(𝑥 − 𝑦)𝐼(𝑡, 𝑦, 𝛼)
*max

'
𝑑𝑦

-max

-min
𝑑𝛼,

𝜕𝐼(𝑡, 𝑥, 𝛼)
𝜕𝑡

= 	 [𝛽(𝛼)𝑆(𝑡, 𝑥) − (𝛾 + 𝛼)]𝐼(𝑡, 𝑥, 𝛼) + Z𝐷*
𝜕#

𝜕𝑥#
+ 𝐷-

𝜕#

𝜕𝛼#
[ 𝐼(𝑡, 𝑥, 𝛼),

(𝐴51) 

with the boundary conditions (𝜕𝑆/𝜕𝑥)(𝑡, 0) = (𝜕𝑆/𝜕𝑥)(𝑡, 𝑥max) = 0 , (𝜕𝐼/𝜕𝑥)(𝑡, 0, 𝛼) = (𝜕𝐼/
𝜕𝑥)(𝑡, 𝑥max, 0) = 0 , (𝜕𝐼/𝜕𝑥)(𝑡, 𝑥, 𝛼min) = (𝜕𝐼/𝜕𝑥)(𝑡, 𝑥, 𝛼max) = 0 , and the initial conditions 
𝑆(0, 𝑥) = 1 , and 𝐼(0, 𝑥, 𝛼) = 𝜖𝛿(𝑥)𝛿(𝛼)  where 𝛿(⋅)  is delta function and 𝜖 = 0.01 . The trait 
space is restricted in a rectangular region: 0 < 𝑥 < 𝑥max = 300 and  𝛼min = 0.025 < 𝛼 < 10 =
𝛼max. Oligomorphic dynamics prediction for the joint evolution of antigenicity and virulence is 
applied for the next outbreak after the outbreak with the mean antigenicity around 𝑥 = 108 at time  
𝑡 = 102 . The susceptibility of host to antigenicity strain 𝑥  at 𝑡' = 104.8  after the previous 
outbreak peaked around time 𝑡 = 102 came to an end is 

𝑠(𝑥) = 𝑆(𝑡', 𝑥). 
This susceptibility profile remains unchanged until the next outbreak starts, and hence the fitness 
of a pathogen strain with antigenicity 𝑥  and virulence 𝛼 is given by 

𝑤(𝑥, 𝛼) = 𝛽(𝛼)𝑠(𝑥) − (𝛾 + 𝛼) 
We divide the pathogen quasispecies into two morphs at time 𝑡' at the threshold antigenicity 𝑥7 
above which the net growth rate of pathogen strain under the given susceptibility profile 𝑠(𝑥) and 
the mean antigenicity becomes positive: 

𝑤G𝑥7 , 𝛼Y(𝑡')H = 𝛽(𝛼Y(𝑡'))𝑠(𝑥7) − G𝛾 + 𝛼Y(𝑡')H = 0. 

The initial frequency and the moments of two morphs, the strain 0 with 𝑥 < 𝑥7 and the strain 1 
with 𝑥 > 𝑥7 are then calculated respectively from the joint distribution 𝐼(𝑡', 𝑥, 𝛼) in the restricted 
region {(𝑥, 𝛼); 0 < 𝑥 < 𝑥7 , 𝛼min < 𝛼 < 𝛼max} and that in the restricted region {(𝑥, 𝛼);	𝑥7 < 𝑥 <
𝑥max, 𝛼min < 𝛼 < 𝛼max}. The frequency 𝑝, of the morph 1 (the frequency of the morph 0 is given 
by 𝑝' = 1 − 𝑝,), the mean antigenicity 𝑥̅% and mean virulence 𝛼Y% of the morph 𝑖, and variances 
and covariance, 𝑉%*, 𝐶%, 𝑉%- of the morph 𝑖 (𝑖 = 0,1) follow (A44)-(A49), where the dynamics for 
the morph frequency (A44) is simplified in this two morph situation as  

𝑑𝑝,
𝑑𝑡 =

[𝛽(𝛼Y,)𝑠(𝑥̅,) − 𝛽(𝛼Y')𝑠(𝑥̅') − (𝛼Y, − 𝛼Y')]𝑝,(1 − 𝑝,), 

with 𝑝'(𝑡) = 1 − 𝑝,(𝑡). This is iterated from 𝑡 = 𝑡' = 104.8 to 𝑡2 = 107. The frequency 𝑝,of 
the new morph, the population mean antigenicity 𝑥̅ = 𝑝'𝑥̅' + 𝑝,𝑥̅,, virulence 𝛼Y = 𝑝'𝛼Y' + 𝑝,𝛼Y,, 
variance in antigenicity 𝑉* = 𝑝'𝑉'* + 𝑝,𝑉,*, covariance between antigenicity and virulence 𝐶 =
𝑝'𝐶' + 𝑝,𝐶,, and variance in virulence 𝑉- = 𝑝'𝑉'- + 𝑝,𝑉,- are overlayed by red thick curves on 
the trajectories of moments observed in full dynamics (A51).  
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In the panel (a) of Figure 5, the dashed vertical line represents the threshold antigenicity 𝑥7 above 
which 𝑅' = 𝛽𝑠(𝑥)/(𝛾 + 𝛼Y) > 1  at 𝑡 = 𝑡1 = 104.8  where oligomorphic dynamics (OMD) 
prediction is attempted. Two morphs are then defined according to whether or not the antigenicity 
exceeds  a threshold 𝑥 = 𝑥7: the resident morph (morph 1) is represented as the dense cloud to the 
left of 𝑥 = 𝑥7 and the second morph (morph 2) consisting of all the genotypes to the right of 𝑥 =
𝑥7 with their 𝑅' greater than one. The within-morph means and variances are then calculated in 
each region. The relative total densities of infected hosts in the left and right regions defines the 
initial frequency of two morphs in OMD. A 2D Gaussian distribution is assumed for within-morph 
trait distributions to have the closed moment equations as explained before. Using these as the 
initial means, variances, covariances of the two morphs at 𝑡 = 𝑡1. The oligomorphic dynamics for 
11 variables (relative frequency of morph 1, mean antigenicity, mean virulence, variances in 
antigenicity and virulence and their covariance in morph 0 and 1)  is integrated up to 𝑡 = 𝑡2. The 
results are shown in red curves in the panels of second and third rows, which are compared with 
the simulation results (blue curves). 
The panels (c)-(e) in Figure 5 show the change in total infected density (c), mean antigenicity (d), 
and mean virulence (e). Red curves show the prediction by oligomorphic dynamics from the initial 
moments of each morph at 𝑡 = 𝑡1 to the susceptibility distribution 𝑠(𝑥) = 𝑆(𝑡1, 𝑥). Red curves in 
the (d) and (e) show the OMD prediction, which is compared with the simulation results (blue 
curves). The OMD predicted mean antigenicity, for example, is defined as 

𝑥̅(𝑡) = G1 − 𝑝,(𝑡)H𝑥̅'(𝑡) + 𝑝,(𝑡)𝑥̅,(𝑡), 

where 𝑝,(𝑡) is the frequency of morph 1, 𝑥̅' and 𝑥̅, are the  mean antigenicity of morph 0 and 1.  
The red curves in the third row of Figure 5 show the OMD-predicted changes in the variance in 
antigenicity, variance in virulence, and covariance between antigenicity and virulence, which are 
compared with the simulation results (blue curves).  The OMD predicted covariance, for example, 
is defined as 

𝐶(𝑡) = (1 − 𝑝,(𝑡))𝐶'(𝑡) + 𝑝,(𝑡)𝐶,(𝑡) + 𝑝,(𝑡)G1 − 𝑝,(𝑡)HG𝑥̅'(𝑡) − 𝑥̅,(𝑡)HG𝛼Y'(𝑡) − 𝛼Y,(𝑡)H 

where 𝐶'(𝑡) and  𝐶,(𝑡) are antigenicity-virulence covariance in morph 0 and 1, and 𝛼Y'(𝑡) and 
𝛼Y,(𝑡) are mean virulence of morph 0 and 1. 

 
 
Appendix S3: Selection for maximum growth rate 
In this appendix, we show that a pathogen that has the strategy maximizing the growth rate in a 
fully susceptible population is evolutionarily stable in the presence of antigenic escape. 
  
At stationarity, the travelling wave profiles of 𝐼�(𝑧) and 𝑆�(𝑧) along the moving coordinate, 𝑧 =
𝑥 − 𝑣𝑡, that drifts constantly to right with the speed 𝑣 are defined as 

0 = 𝐷
𝑑#𝐼�(𝑧)
𝑑𝑧# + 𝑣

𝑑𝐼�(𝑧)
𝑑𝑧 + 𝛽𝑆�(𝑧)𝐼�(𝑧) − (𝛾 + 𝛼)𝐼�(𝑧),

0 = 𝑣
𝑑𝑆�(𝑧)
𝑑𝑧

− 𝛽𝑆�(𝑧)0 𝜎(𝑧 − 𝜉)𝐼�(𝜉)
!

"!
𝑑𝜉. (𝐴52)
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with 𝐼�(−∞) = 𝐼�(∞) = 0, 𝑆�(∞) = 1.   

 Let 𝑗(𝑡, 𝑥) be the density of a mutant pathogen strain with virulence 𝛼′ and transmission 
rate 𝛽′ that is introduced in the host population where the resident strain is already established 
(A46). For the initial transient phase in which he density of mutant is sufficiently small, we have 
an equation for the change in 𝐽(𝑡, 𝑧) = 𝑗(𝑡, 𝑥): 

𝜕
𝜕𝑡 𝐽

(𝑡, 𝑧) = ¢𝐷
𝜕#

𝜕𝑧# + 𝑣
𝜕
𝜕𝑧 + 𝛽

&𝑆�(𝑧) − (𝛾 + 𝛼&)£ 𝐽(𝑡, 𝑧), (𝐴53) 

with the initial condition 𝐽(0, 𝑧) = 𝜖𝛿(𝑧), where 𝜖 is a small constant and 𝛿(⋅) is Dirac function. 
 Consider a system 

𝜕𝑤
𝜕𝑡 = ¢𝐷

𝜕#

𝜕𝑧# + 𝑣
𝜕
𝜕𝑧 + 𝛽

& − (𝛾 + 𝛼&)£𝑤, (𝐴54) 

with 𝑤(0, 𝑧) = 𝐽(0, 𝑧) = 𝜖𝛿(𝑧). Noting that 𝑆�(𝑧) < 1, we have 𝐽(𝑡, 𝑧) ≤ 𝑤(𝑡, 𝑧) for any 𝑡 > 0 
and 𝑧 ∈ ℝ from the comparison theorem. The solution to (A48) is 

𝑤(𝑡, 𝑧) =
𝜖

√4𝜋𝐷𝑡
exp m𝑟&𝑡 −

(𝑧 + 𝑣𝑡)#

4𝐷𝑡
n (𝐴55) 

where 𝑟& = 𝛽& − (𝛾 + 𝛼&). This follows by noting that 𝑤(𝑡, 𝑥)𝑒"0+?  follows a simple diffusion 
equation 𝜕𝑤/𝜕𝑡 = 𝐷𝜕#𝑤/𝜕𝑥#. By rearranging the exponents of (A49), 

𝑤(𝑡, 𝑧) = exp[𝑎𝑡 − 𝑘𝑧]
𝜖

√4𝜋𝐷𝑡
𝑒"J%/;L?

<
𝜖

√4𝜋𝐷𝑡
exp[𝑎𝑡 − 𝑘𝑧]

(𝐴56) 

where 

𝑎 ≡
𝑣&# − 𝑣#

4𝐷 , (𝐴57)

𝑘 ≡
𝑣
2𝐷 .

(𝐴58)
 

Here 𝑣& = 2√𝑟&𝐷  is the asymptotic wave speed if the mutant strain monopolizes the host 
population. Therefore, if 𝑣& < 𝑣, then 𝑎 < 0, and hence 𝑤(𝑡, 𝑧) for a fixed 𝑧 converges to zero as 
𝑡 goes to infinity; which in turn implies that 𝐽(𝑡, 𝑧) converges to zero because 𝐽(𝑡, 𝑧) ≤ 𝑤(𝑡, 𝑧) for 
all 𝑡 and 𝑧. Therefore, we conclude that any mutant that has a slower wave speed than the resident 
can never invade the population, implying that a strain that has the maximum wave speed 𝑣 =
2√𝑟𝐷 is locally evolutionarily stable. 
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