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Abstract 

 

Genome-scale metabolic models (GEMs) provide a powerful framework for simulating the 

entire set of biochemical reactions occurring in a cell. Constraint-based modeling tools like 

flux balance analysis (FBA) developed for the purposes of predicting metabolic flux 

distribution using GEMs face considerable difficulties in estimating metabolic flux alterations 

between experimental conditions. Particularly, the most appropriate metabolic objective for 

FBA is not always obvious, likely context-specific, and not necessarily the same between 

conditions. Here, we propose a new method, called ΔFBA (deltaFBA), that employs 

constraint-based modeling, in combination with differential gene expression data, to 

evaluate changes in the intracellular flux distribution between two conditions. Notably, 

ΔFBA does not require specifying the cellular objective to produce the flux change 

predictions. We showcased the performance of ΔFBA through several case studies involving 

the prediction of metabolic alterations caused by genetic and environmental perturbations 

in Escherichia coli and caused by Type-2 diabetes in human muscle.  
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Introduction 

In the post-genomic era, there has been intense efforts directed toward the reconstruction 

of genome-scale models of cellular networks. An important portion of these efforts focuses 

on metabolic networks due to the significance of cellular metabolism for understanding 

diseases such as cancer 1–4 as well as for metabolic engineering applications in 

biomanufacturing 5. Recent advances in high-throughput sequencing technologies, gene 

functional annotation, and metabolic pathway databases, and developments of algorithms 

for mapping gene-protein-reaction (GPR) associations and identifying missing metabolic 

reactions systematically (gap-filling), have enabled the reconstruction of thousands of 

genome-scale metabolic models (GEMs), from single cell organisms to human 6,7. A GEM 

provides the gene-protein-reaction associations that encompass the set of metabolites and 

metabolic reactions in an organism as prescribed by its genome. Concurrent with these 

developments are the creation of efficacious algorithms that use GEMs to predict 

intracellular metabolic fluxes – i.e. the rates of metabolic reactions – and how these fluxes 

vary under different environmental, genetic, and disease conditions 8–10.  

 

A prominent class of algorithms based on a constrained-based modeling technique, called 

flux balance analysis (FBA), have flourished due to its ease of formulation and flexibility, 

using the stoichiometric coefficients of the metabolic reactions in a GEM, an assumed 

cellular objective such as maximization of biomass production, and various experimental 

data on metabolic capabilities and constraints of the cells, to predict metabolic fluxes 11. 

Although FBA is effective in handling large networks and predicting cell behavior in many 

metabolic engineering studies 12–15, considerable uncertainty still remains about the 

appropriate choice of cellular objective for different conditions and cell types – a choice that 

requires expert knowledge of the cells and their phenotype in a given condition. Such an 

issue is particularly prominent for complex organisms such as human. Moreover, the flux 

solutions produced by applying FBA have degeneracy – that is, multiple solutions exist that 

give the same cellular objective value 16. Not to mention, standard FBA often produces 

biologically unrealistic flux solutions 17,18.  
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Driven by the increasing ease and availability of whole-genome omics profiling data, a 

multitude of FBA-based algorithms have been developed to incorporate additional datasets 

to create context-specific metabolic networks and to improve flux prediction accuracy 19–26. 

Several of these methods, such as GIMME (Gene Inactivity Moderated by Metabolism and 

Expression) 19, iMAT (integrative Metabolic Analysis Tools) 21, and MADE (Metabolic 

Adjustment by Differential Expression) 25, are based on maximizing the consistency between 

the predicted flux distribution and the mRNA transcript abundance of metabolic genes, 

where the higher the transcript level of an enzyme, the larger should the flux of the 

corresponding reactions. Other methods, such as E-Flux 23, use data of transcript abundance 

for setting the bounds on reaction fluxes. More recent methods, such as ME-model 27 and 

GECKO 28, combine FBA with an explicit modeling of enzyme / protein expression and thus, 

are able to directly account for protein abundance. Thermodynamics constraints have also 

been integrated with the FBA to eliminate thermodynamically infeasible fluxes, and at the 

same time enable the integration of metabolite concentration data, as done in recent 

methods such as ETFL 29.  

 

A number of methods focus on using differential expression data between two conditions 

(e.g., perturbation vs. control) to predict metabolic alterations – a particular focus of our 

study. The method Relative Expression and Metabolic Integration (REMI) 30 used differential 

expression of transcriptome and metabolome to estimate metabolic flux profiles in 

Escherichia coli under varying dilution and genetic perturbations. The method relies on 

maximizing the agreement between the fold-changes of metabolic fluxes and the fold-

changes of enzyme expressions between two conditions. The metabolome data, if available, 

are used to determine the flux directionality using reaction thermodynamics. Among the 

alternative flux solutions, the L1-norm minimal solution is adopted to give a representative 

flux distribution. Another method by Zhu et al. 31 employed a softer definition when 

assessing consistency between the metabolic fluxes and enzyme differential expressions, 

where only the sign of the differences needs to agree. The method provides a qualitative 

determination of metabolic flux changes by determining the maximum and minimum flux 

through each reaction in the GEM. Both of the above methods generate metabolic flux 

predictions for each condition in comparison, and like standard FBA, both methods require 

an assumption on the cell’s metabolic objective. Generally, model prediction inaccuracy is 
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amplified when evaluating the differences between two model predictions. Another related 

method MOOMIN 32 uses a Bayesian approach to integrate differential gene expression 

profiles with GEMs to predict the qualitative change in the metabolic fluxes—increased, 

decreased or no change.  

 

In this work, we developed ΔFBA (deltaFBA) for predicting the metabolic flux difference 

given a GEM and differential transcriptomic data between two conditions. ΔFBA relies on a 

constrained-based model that governs the balance of flux difference in the GEM, while 

maximizing the consistency and minimizing inconsistency between the flux alterations and 

the gene expression changes. ΔFBA is created in MATLAB to work with the COnstraint-Based 

Reconstruction and Analysis (COBRA) toolbox 33. We applied the ∆FBA to analyze the 

metabolic changes of Escherichia coli in response to environmental and genetic 

perturbations using data from the studies of Ishii et al. 34 and Gerosa et al. 35. We compared 

the performance of ∆FBA to REMI for evaluating flux differences between conditions. We 

also demonstrated the application of ∆FBA to human GEM, specifically evaluating the 

metabolic alterations associated with type-2-diabetes in skeletal muscle using myocyte-

specific GEM 36. 

 

Materials and Methods 

Method Formulation 

ΔFBA generates a prediction for metabolic flux changes between a pair of conditions, such 

as treated vs. untreated or mutant vs. wild-type strains. In the following, we use the 

superscript C  to denote the control (reference) condition and P to denote the perturbed 

condition. ΔFBA enforces that the flux changes Δ𝒗 = (𝒗! − 𝒗") for each metabolite are 

balanced, as follows: 

 

𝐒Δ𝒗 = 𝐒(𝒗! − 𝒗") = 𝐒𝒗! − 𝐒𝒗" = 𝟎 

 

where 𝐒 denotes the 𝑚 × 𝑛 stoichiometric matrix for 𝑚 metabolites that are involved in  𝑛 

metabolic reactions in the GEM, and 𝒗 and Δ𝒗 denote the vector of metabolic fluxes and 
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flux changes, respectively. The flux balance above is a direct consequence of the steady-

state flux balance in each condition, i.e. 𝐒 = 𝟎 

 

 max
#𝒗,	𝒛!,	𝒛"

Φ = 2 𝑤(4𝑧() − 𝑧(*6
(∈𝐑!

+ 2 𝑤-4𝑧-* − 𝑧-)6
-∈𝐑"

 

 

(1) 

subject to: 

 𝐒Δ𝒗 = 𝟎 (1) 

 Δ𝒗.(/ ≤ Δ𝒗 ≤ Δ𝒗.01 (2) 

 Δ𝒗 −𝑚𝒛) ≥ 𝝁 −𝑚𝟏 (3) 

 Δ𝒗 −𝑚𝒛) ≤ 𝝁 (4) 

 Δ𝒗 +𝑚𝒛* ≤ −𝜼 +𝑚𝟏 (5) 

 Δ𝒗 +𝑚𝒛* ≥ −𝜼 (6) 

 Δ𝒗 +𝑚𝒛2 ≤ 𝑚𝟏 (7) 

 Δ𝒗 −𝑚𝒛2 ≥ −𝑚𝟏 (8) 

 𝑧32 + 𝑧3) ≥ +𝑧3#
*  (9) 

 𝑧32 + 𝑧3* ≥ +𝑧3#
)  (11) 

 

The weighting coefficients 𝑤(  allows users to prioritize certain reactions (e.g., reaction(s) 

corresponding to gene knock-out(s)) for (in)consistency. The set of upregulated reactions 

𝐑)  and the set of downregulated reactions 𝐑* are user-defined inputs.  Typically, the sets 

𝐑) and 𝐑* include reactions with statistically significant increase and decrease in gene 

expression between the perturbed condition and the control, respectively. Equation (2) 

specifies the upper and lower bounds for the flux change, which can be set based on 

experimental data (e.g. the change in the biomass production or growth rates), or based on 

the corresponding bounds from the perturbed (𝒗.(/4 , 𝒗.014 ) and the control condition 

4𝒗.(/) , 𝒗.01) 6 as follows: 

 

 Δ𝑣.(/,( = 4𝑣.(/,(4 − 𝑣.01,(5 6 (12) 

 Δ𝑣.01,( = 4𝑣.01,(4 − 𝑣.(/,(5 6 (13) 
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The MILP above will generate flux change prediction Δ𝒗 whose signs (positive and negative) 

agree with the direction of the gene expression changes. Specifically, the binary decision 

variables 𝒛), 𝒛*, and 𝒛2 in the MILP formulation set the sign (directionality) of the flux 

changes Δ𝒗. When 𝑧() = 1, Δ𝑣(  takes a positive value above a threshold 𝜇(, as specified by 

Equations (3)-(4). Vice versa, when 𝑧(* = 1, Δ𝑣(  takes a negative value below a threshold 𝜂(, 

as specified by Equations (5)-(6). The thresholds 𝜇(  and 𝜂(  for the positive and negative flux 

changes, respectively, are user-defined parameters. For example, the thresholds can be set 

to the same constant value 𝜀, or to a value that scales with the fold-change reaction 

expression 𝑒(
4/5  (see Supplementary Materials), as follows:  

 
 𝜇( = 𝜀𝑒(

4/5  (14) 

 𝜂( = 𝜀/𝑒(
4/5  (15) 

 
Clearly,  𝑧() and 𝑧(* cannot simultaneously be equal to 1 since no feasible Δ𝑣(  exists that 

simultaneously satisfy Equations (3)-(6). The decision variable  𝒛2 is used to force select 

reactions to have zero flux change value, as specified by Equations (7)-(8). Together with 

Equation (9)-(11), the forward and reverse halves of a reversible reaction, Δ𝑣3 and Δ𝑣3#, are 

prevented to simultaneously have non-zero values, so as to reduce degeneracy of the flux 

change solution Δ𝒗. 

 

Given the degrees of freedom in GEMs for Δ𝒗, many equivalent optimal solutions often exist 

that give the same objective function value Φ∗ as specified in Equation Error! Reference 

source not found.. By assuming parsimony in	Δ𝒗 – that is, Δ𝒗 is minimal between the 

perturbed and control condition, a two-step optimization procedure is implemented in 

ΔFBA. The first step is to maximize consistency with gene expression changes as prescribed 

in Equations Error! Reference source not found.-(11) with the maximum objective function 

value denoted by Φ∗. The second step is to produce an L2 norm minimal solution for Δ𝒗, as 

follows: 

 

 min
#𝒗,	𝒛!,	𝒛"

‖Δ𝒗‖88  (16) 
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subject to the same constraints in Equations (1)-(11) while achieving the same level of 

consistency Φ∗, implemented by the additional constraint: 

 

 2 𝑤(4𝑧() − 𝑧(*6
(∈𝐑!

+ 2 𝑤-4𝑧-* − 𝑧-)6
-∈𝐑"

= Φ∗ (17) 

 

The L2 minimization is based on the premise that the perturbed metabolic fluxes should not 

deviate far from the control condition, similar to the method called Minimization of 

Metabolic Adjustment (MOMA) 37. An alternative to L2-norm minimization is L1-norm 

minimization, which is analogous to maximizing sparsity of Δ𝒗. The L1-norm minimization 

was previously used in the parsimonious FBA (pFBA) method, but such an approach often 

still leads to multiple degenerate solutions. On the other hand, the L2-norm minimization 

will produce a unique solution, but the mixed integer quadratic optimization that is required 

to find the solution may have high computational requirement.  

 

ΔFBA is available as MATLAB scripts and are compatible with the COBRA toolbox. ΔFBA 

requires Gurobi optimizer (http://www.gurobi.com) as a pre-requisite. ΔFBA has been 

tested on a Windows PC using a 6-core Intel Xeon (2146G) Processor with 16 GB RAM.  

 

Case studies: Data and Implementation 

The first case study involved the response of E. coli’s metabolism to genetic (single-gene 

deletions) and environmental perturbations (dilution rates) performed by Ishii et al. 34. The 

study provided 13C-based flux data and RT-PCR mRNA abundances for the central carbon 

metabolism, pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle for 

wild-type K12 E. coli culture in chemostat under different dilution rates (0.1, 0.2, 0.4, 0.5, 

and 0.7 hours−1) and for 24 single-gene perturbations along the glycolysis and PPP 34.  The 

global transcriptional response was only captured for 5 of the 24 single-gene deletions 

(pgm, pgi, gapC, zwf and rpe) and two of the 4 dilution conditions (0.5 and 0.7 hours−1). The 

differential (fold-change) gene expression levels were computed with respect to the control 

condition, set to be wild-type K12 E. coli cultured at a dilution rate of 0.2 h-1. The differential 

(fold-change) reaction expressions were subsequently evaluated based on the fold-change 

gene expression using the GPR Max/Min rule available in the COBRA toolbox (MATLAB) 38. 
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For samples with only RT-PCR mRNA abundance data, the set of up- and downregulated 

reactions, 𝐑) and 𝐑*, included all reactions with fold-change reaction expressions higher 

than 1 and those with fold-change lower than 1, respectively. In the additional analyses for 

samples with whole-genome transcriptome data, the set of up- and downregulated 

reactions, 𝐑) and 𝐑*, respectively, were taken from the top and bottom 5th percentile of 

the differential reaction expressions. The differences of the measured cell specific glucose 

uptake rates between perturbed and control experiments were used as constraints. ΔFBA 

was applied using the two-step optimization with the L2 norm minimization, as described 

above. 

 

The second case study came from a study of  E. coli growth on 8 different carbon sources 

performed by Gerosa et al. 35. Unprocessed global transcriptomic data were obtained from 

ArrayExpress (E-MTAB-3392) 39, and differential expression analyses between every pair of 

carbon sources were evaluated using the Limma package in R 40. As before, the fold-change 

reaction expressions were computed based on fold-change in the global gene expression 

using the Max-Min GPR rule using COBRA toolbox 38. The up- and downregulated set of 

reactions were taken from the top and bottom 5th percentile of the differential reaction 

expressions. In addition, cell culture data on specific growth rates were used to compute the 

flux change bounds for biomass production rate. The uptake rates of the carbon source 

changes were also incorporated as constraints. We implemented the two-step optimization 

of ΔFBA using L2 norm minimization.  

 

The third case study came from two studies of skeletal muscle tissue metabolism in type-2 

diabetes (T2D) patients by van Tienen et al. 41 and Jin et al. 42.  The microarray gene 

expression datasets were obtained from GEO (GSE19420 41 and GSE25462 42,43) and the 

differential (fold-change) expression of genes for each dataset were computed using the 

Limma package in R 40. The fold-change reaction expressions were computed based on the 

differential gene expression using the Max/Min GPR rule. In the absence of additional 

constraints in the form of exchange fluxes or growth characteristics, we set the up- and 

downregulated reactions from the top and bottom 25th-percentile in differential reaction 

expressions, rather than the 5th percentile threshold used in E. coli case studies above, so as 

to incorporate more differentially expressed transcripts. We implemented an L1-norm 
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minimization in the second step of ΔFBA to reduce computational complexity (time) due to 

the large number of constraints associated with the differential reaction expressions.  

 

Implementation of REMI 

The method Relative Expression and Metabolomic Integrations (REMI) was developed for 

predicting individual flux distributions of a pair of conditions (𝒗! and 𝒗") using multi-omics 

dataset. The toolbox was downloaded from https://github.com/EP-LCSB/remi. The 

differential gene expressions in each case study were obtained as described above. The 

mapping from differential gene expression to the corresponding reaction expressions were 

done using the procedure detailed in REMI 30. Briefly, the authors followed the 

implementation of Fang et al. 33 to translate gene expression ratios to obtain reaction 

expression ratios. When several enzyme subunits are required for a reaction, a geometric 

mean of expression ratios is chosen to represent the reaction ratio. In the case where 

multiple isozymes catalyze a reaction, the arithmetic mean of the individual expression 

ratios of the isozymes is used for the reaction ratio. The set of up- and down-regulated 

reactions 𝐑) and 𝐑* were taken from the computed differential reaction expressions as in 

ΔFBA implementation. Unlike ΔFBA, REMI produces solutions for the metabolic fluxes of 

perturbed  𝒗! and control condition 𝒗". For comparison, we evaluated the flux change 

predicted by REMI by taking the difference: Δ𝒗 = 𝒗! − 𝒗".   

 

Performance evaluation 

The quantitative agreement between the measured flux difference Δ𝒗9 and the predicted 

flux changes Δ𝒗∗ was assessed by using two accuracy metrics: uncentered Pearson 

correlation coefficient and normalized root mean square error (NRMSE). The uncentered 

Pearson correlation coefficient 𝜌 was computed as follows 

 
𝜌 =

Δ𝒗9 ∙ Δ𝒗∗

‖Δ𝒗9‖8‖Δ𝒗∗‖8
 

(10) 

 

Meanwhile, the NRMSE was according to the following equation – using tdStats package in 

R: 
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𝑁𝑅𝑀𝑆𝐸 =

1
Δ𝑣.019 − Δ𝑣.(/9

R‖Δ𝒗
9 − Δ𝒗∗‖88

𝑚  
(11) 

 
Besides the quantitative agreement in flux changes, we also evaluated the qualitative 

agreement by comparing the signs of the flux changes between experimental 

measurements and predictions. To this end, we discretized the measured and predicted flux 

changes into +1, 0, and −1, to describe upregulated, no change, and downregulated 

reactions, respectively. The agreement in the direction of the flux changes was evaluated as 

the number of correct sign predictions divided by the total number of fluxes.  

 

Metabolic subsystem enrichment analysis 

The flux differences obtained from applying ΔFBA were first filtered according to the 

directionality of their change. The significantly altered fluxes (|Δ𝑣(| > 𝜀) were grouped 

based on the subsystem to which the fluxes belong. A Fisher exact test (fisher.test function 

in the R-package) was used in determining over-represented subsystems in upregulated 

(positive change) and downregulated (negative change) fluxes. The statistical significance p-

values were corrected for multiple hypothesis testing using the p.adjust function in R.  

 

Results 
 
Escherichia coli response to genetic and environmental variations 
 
Ishii et al. 34 studied the robustness of E. coli K12 metabolism in chemostat in response to 

changes in dilution rates and to gene deletions. The study generated multi-omics data, 

including transcriptomic, proteomic, metabolomic, and 13C metabolic fluxes, and 

demonstrated the remarkable ability of E. coli to reroute its metabolic fluxes to maintain 

metabolic homeostasis in response to environmental and genetic perturbations. Only a 

small fraction of variation in the measured flux ratios can be explained by the fold-change in 

reaction expressions, as indicated by the low coefficient of determinations R2, regardless of 

the GPR mapping procedures in ΔFBA and REMI (see Figure 1A). The weak agreement 

between reaction expressions and metabolic fluxes motivates using a system-oriented 

approach that consider the global network changes based on GEMs 44. We applied ΔFBA 

using E. coli’s iJO1366 GEM to predict the metabolic flux shifts from the control condition 
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(wild-type K12 at 0.2 hour-1 dilution rate), caused by alterations in dilution rates (0.1, 0.4, 

0.5, and 0.7 hours−1) and by 24 single-gene deletions (galM, glk, pgm, pgi, pfkA, pfkB, fbp, 

fbaB, gapC, gpmA, gpmB, pykA, pykF, ppsA, zwf, pgl, gnd, rpe, rpiA, rpiB, tktA, tktB, talA, and 

talB).  We compared the predicted flux changes using ΔFBA with the differences of 46 

measured metabolic fluxes along the central carbon metabolism by incorporating the 

enzyme expression obtained from RT-PCR. Uncentered Pearson correlations, NRMSE, and 

sign accuracy of the flux change predictions are depicted in Figure 1B and C, indicating a 

general agreement between the predicted flux changes and the differences in the measured 

fluxes.  We compared the accuracy of flux change predictions by ΔFBA and REMI 30. As 

illustrated in Figure 1B and C, ΔFBA generally outperforms REMI in predicting the flux 

changes by having lower NRMSE, higher Pearson correlations, and higher sign accuracy. The 

results using the whole-genome gene expression profiles for a subset of perturbation 

experiments are comparable with those using RT-PCR data above (see also Supplementary 

Figure S2 and Supplementary Figure S3).  

 

Another study, carried out by Gerosa et al. 35, looked at how E. coli’s central carbon 

metabolism adapts to 8 different carbon sources: acetate, fructose, galactose, glucose, 

glycerol, gluconate, pyruvate and succinate. The study generated 13C metabolic flux, 

metabolite concentration and microarray gene expression data from exponentially growing 

E. coli under each carbon source. The study found that only a small subset of the numerous 

transcriptome changes translates to notable shifts in the corresponding metabolic fluxes, 

indicating non-trivial relationships between transcriptional regulations and metabolic fluxes. 

We applied ΔFBA to predict flux changes between every pair of the carbon sources, treating 

one as the perturbation and another as the control condition. Figure 2 describes the good 

agreement between the flux change predictions by ΔFBA with the measured differences of 

34 metabolic fluxes between any two carbon sources, specifically in terms of uncentered 

Pearson correlation (mean: 0.61), NRMSE (mean: 0.15), and sign accuracy (mean: 0.66). The 

findings from Ishii et al. and Gerosa et al. highlight the ability of ΔFBA in accurately 

predicting metabolic flux alterations using transcriptomic data for both environmental (e.g., 

dilution rates, carbon sources) and genetic perturbations.  

 

Dysregulation of Skeletal Muscle Metabolism in Type – 2 – Diabetes  
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In this case study, we looked at metabolic alterations of human muscle using the myocyte 

GEM iMyocyte2419 36 and gene expression datasets from two type-2 diabetes (T2D) studies, 

one by van Tienen et al. 41 and another by Jin et al. 42. In long term T2D patients compared 

to age-matched cohort, van Tienen et al. 41 reported the downregulation of gene expression 

related to substrate transport into mitochondria, conversion of pyruvate into acetyl-CoA, 

aspartate-malate shuttle in mitochondria, glycolysis, TCA cycle, and electron transport 

chain. Similarly, Jin et al. 42 reported a significant enrichment of pathways involved the 

oxidative phosphorylation among the downregulated genes in their T2D cohort compared to 

control. Jin et al. 42 further identified the transcription factor SRF and its cofactor MKL1 

among the top-ranking enriched gene sets with increased expression. But, the correlation 

between the differential gene expressions in the two studies is only modest. 36  

 

We applied ΔFBA to predict the flux changes based on the differential gene expressions in 

each of the two studies above (see Methods). We grouped the reactions based on whether 

the predicted flux changes are positive or negative, denoted by up- and down-reactions, 

respectively. We performed metabolic subsystem enrichment analysis using the subsystems 

defined in myocyte specific GEM iMyocyte2419 36 to identify over-represented metabolic 

subsystems among the up- and down-reactions (see Methods). As summarized in Figure 3, 

the enrichment analysis of metabolic changes in the van Tienen et al. study shows a 

significant over-representation of ß-oxidation and BCAA (branched-chain amino acids) 

metabolism among the down-reactions, and of extracellular transport and lipid metabolism 

among the up-reactions. The enrichment analysis of flux changes in the Jin et al. study also 

indicates an over-representation of lipid metabolism among the up-reactions in T2D 

patients, as well as an over-representation of ß-oxidation pathway among the down-

reactions (see Figure 3).  

 

Furthermore, we evaluated the change in the flux throughput for every metabolite 

irrespective of its compartmental location, more specifically by computing the change in the 

total production flux of each metabolite. Metabolites with a large change in the flux 

throughput are of particular interest for disease biomarkers. In the following, we focus on 

metabolites that have a flux throughput change above a threshold (|Δ𝑣(| > 𝜀; 𝜀 = 1), and 

capture intermediary metabolites that participate in linear reaction sequences. Figure 4 
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shows the flux throughput changes predicted by ΔFBA for various metabolites. Among the 

metabolites with a large drop in the flux throughput in both studies are Coenzyme A (CoA), 

Acetyl-CoA and AMP (Adenosine monophosphate), all of which have been previously 

identified as metabolite reporters of diabetes 36,45. Other metabolic biomarkers that have 

been previously proposed for T2D, such as repression of FAD (Flavin adenine dinucleotide), 

FADH2 and NADH by van Tienen et al. study 41 and increased glycerol by Jin et al. study 42, 

are confirmed by ΔFBA (see Figure 4). Väremo et al. 36 had also identified the metabolites 

above as T2D reporters via meta-analysis of numerous T2D datasets—including the two 

studies used here—and topology-based analysis using the GEM iMyocyte2419. Besides 

these confirmatory observations, our ΔFBA results further suggest that arachidonate and 

palmitate are candidate metabolic reporters for T2D, both of which have a significant 

positive flux throughput change in the two T2D studies (see Figure 4). The roles of 

arachidonate and palmitate in the progression and cause of T2D have also been previously 

investigated 46–48. The results above showcase the ability of ΔFBA in elucidating metabolic 

flux alterations in a complex human GEM and identifying key metabolites of interest in 

human diseases.  

 

Discussions 

GEMs and constraint-based modeling using FBA and the myriad FBA variants have proven to 

be important enabling tools for establishing genotype-phenotype relationship 10,49,50. The 

increasing availability of omics data have driving the development of FBA-based strategies 

that are able to use such data to improve the accuracy of predictions of intracellular 

metabolic fluxes. In this work, we present a new FBA-based method, called ∆FBA, built for 

the purpose of analyzing the metabolic alterations between two conditions given data on 

differential gene expression. ∆FBA does not require the specification of the metabolic 

objective, and thus, eliminates any potential pitfalls that are associated with an incorrect 

selection of this objective. Note that ∆FBA does not generate the flux prediction for a given 

condition; rather, the method produces differences of metabolic fluxes between two 

conditions.  Differential flux predictions are indispensable in formulating hypothesis and in 

understanding the physiological response of cells to changes in the environment. ∆FBA can 

be easily integrated and have been tested to work with the widely popular COBRA toolbox.  
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We showed the applicability and performance of ∆FBA for predicting metabolic flux changes 

in an array of experimental perturbations and in both simple prokaryotic E. coli and complex 

multicellular human muscle cells. In comparison to a related method REMI 30, ∆FBA show a 

markedly better accuracy in prediction the magnitude and direction of metabolic flux 

changes in E. coli. Further, the application of ∆FBA to two T2D studies shed light on the 

rewiring of muscle metabolism associated with type-2 diabetes that leads to the repression 

of ß-oxidation and activation of glycerolphospholipids, pointing to increased lipid 

metabolism in the T2D patients. Interestingly, serum metabolic profiling of T2D patients 

showed increased glycerophospholipids when compared to healthy controls 51. Besides, 

clinical and experimental studies have demonstrated the association between phospholipids 

and insulin resistance 52. Furthermore, by looking at the changes in the flux throughput of 

metabolites, the results of ∆FBA suggest two fatty acids, arachidonate and palmitate, for 

candidate biomarkers of T2D.  

 

There are several limitations of ∆FBA, the most obvious of which is that the method does 

not produce flux predictions for the conditions under comparison (perturbed vs. control). If 

the values of the metabolic fluxes are desired, one can use a FBA-based method, for 

example parsimonious FBA 53, to evaluate metabolic fluxes for one of the conditions 

(perturbed or control) – preferably one that is more well characterized (e.g., more 

experimental data, more obvious metabolic objective) – and compute the metabolic fluxes 

for the other condition by combining this flux prediction and the flux changes from ∆FBA. 

Also, in the formulation and the application of ∆FBA in this work, we considered only 

differential gene expression data. But the method can also accommodate other omics 

dataset, such as proteomics, by appropriate mapping of the data to changes in reaction 

expressions. Metabolomics data can also be accommodated in ∆FBA via thermodynamics 

constraints, as done in REMI 30, in which certain reactions can only proceed in one direction.  

 

Conclusion 

In this work, we address the challenge of studying metabolic flux alterations in organisms as 

a result of genetic or environmental changes. Our versatile method ∆FBA provides a set of 
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functions for evaluating metabolic flux differences between two conditions using genome-

scale metabolic models and differential gene expression data. The computational tool 

eliminates the need for assuming a metabolic objective by exploiting the fact that the flux 

differences also satisfy the same flux balance equation used in standard FBA. As 

demonstrated in several case studies, ∆FBA provides accurate and biologically relevant 

predictions of metabolic alterations caused by environmental, genetic, and disease-related 

perturbations. With increasing research efforts directed toward the integration of omics 

data with biochemical network models, tools such as ∆FBA represents an important 

advancement in this direction. The MATLAB implementation of ∆FBA is freely available on 

https://github.com/CABSEL/DeltaFBA. 
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Figures 

 

 

Figure 1: Comparison of the performance of ΔFBA and REMI in predicting E. coli metabolic 

response to environmental (dilution rates) and genetic (single gene deletions) 

perturbations. (A) The coefficient of determination (R2) between the measured flux 

ratios and the reaction expression ratios shows that differential gene expressions do 

not directly inform the metabolic flux changes. (B) Normalized Root Mean Square 

Error (NRMSE) of the predicted flux change – smaller indicates higher accuracy (mean 

NRMSE: ΔFBA = 0.14, REMI = 0.54). (C) Directional (Sign Accuracy) agreement and 

uncentered Pearson’s Correlation Coefficient (ρ) between the predicted and 

measured flux difference for the 46 reactions (mean sign accuracy: ΔFBA = 0.49, REMI 

= 0.43; mean ρ: ΔFBA = 0.61; REMI = -0.06). 
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Figure 2: Prediction of metabolic flux changes in E. coli caused by changes in the carbon source 

using ΔFBA. The horizontal axis reports the reference carbon source (control) and the vertical 

axis shows the altered (perturbed) carbon source. Uncentered Pearson’s Correlation 

Coefficient (ρ) is shown by the color of the markers. NRMSE is represented by the size of the 

markers – the larger the markers, the smaller is the NRMSE. Finally, the directional (sign) 

accuracy of the flux perturbation predictions is shown by the numbers inside the markers.  
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Figure 3: Enriched metabolic subsystems (FDR<0.05) among the in T2D patients based on flux 

changes predicted using ΔFBA. The flux changes were computed based on the 

transcriptome datasets from two T2D studies: van Tienen et al. 41 (GSE19420) and Jin 

et al. 42 (GSE25462). The statistical significance of the over-representation is shown 

by the size of the markers – larger markers have smaller adjusted p-values – while 

the odds ratio is shown by the color of the markers.  
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Figure 4: Alterations in metabolite flux throughput in T2D patients as predicted by ΔFBA.  
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