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ABSTRACT10

Inference of effective population size from genomic data can provide unique information about11

demographic history, and when applied to pathogen genetic data can also provide insights into12

epidemiological dynamics. Non-parametric models for population dynamics combined with molecular13

clock models which relate genetic data to time have enabled phylodynamic inference based on large sets14

of time-stamped genetic sequence data. The theory for non-parametric inference of effective population15

size is well-developed in the Bayesian setting, but here we develop a frequentist approach based on16

non-parametric latent process models of population size dynamics. We appeal to statistical principles17

based on out-of-sample prediction accuracy in order to optimize parameters that control shape and18

smoothness of the population size over time. We demonstrate the flexibility and speed of this approach19

in a series of simulation experiments and apply the models to genetic data from several pathogen data20

sets.21
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INTRODUCTION22

Past fluctuation in the size of a population are reflected in the genealogy of a sample of individuals23

from that population. For example, under the coalescent model, two distinct lines of ancestry coalesce24

(ie find a common ancestor) at a rate that is inversely proportional to the effective population size at25

any given time (Kingman 1982; Griffiths and Tavare 1994; Donnelly and Tavare 1995). More coalescent26

events are therefore likely when the population size is small compared to when the population size is27

large. This causal effect of population size on genealogies can be reversed in an inferential framework28

to recover past population size dynamics from a given pathogen genealogy. This approach to inference29

of past demographic changes was first proposed 20 years ago (Pybus et al. 2000, 2001; Strimmer and30

Pybus 2001) and has been fruitfully applied to many disease systems (Pybus and Rambaut 2009; Ho31

and Shapiro 2011; Baele et al. 2016).32

Population size analysis is often performed within the Bayesian BEAST framework (Suchard et al. 2018;33

Bouckaert et al. 2019) which jointly infers a phylogeny and demographic history from genetic data. Here34

we focus on an alternative approach in which the dated phylogeny is inferred first, for example using35

treedater (Volz and Frost 2017), TreeTime (Sagulenko et al. 2018) or BactDating (Didelot et al. 2018),36

and demography is investigated on the basis of the phylogeny. Although potentially less powerful, this37

approach has the advantage of scalability to very large sequence data sets and allows more focus on38

models and assumptions involved in the demographic inference itself as previously noted in studies39

following the same post-processing strategy (Lan et al. 2015; Karcher et al. 2017; Volz and Didelot40

2018). However, some of the methodology and results we describe here should be applicable in a joint41

inferential setting too.42

The reconstruction of past population size dynamics is usually based on a non-parametric model, since43

the choice of any parametric function for the past population size would cause restrictions and be44

hard to justify in many real-life applications (Drummond et al. 2005; Ho and Shapiro 2011). However,45

even if a non-parametric approach offers a lot more flexibility than a parametric one, it does not fully46

circumvent the question of which demographic model to use as the basis of inference. For example,47

the skygrid model considers that the log population size is piecewise constant, with values following a48

Gaussian Markov chain, in which each value is normally distributed around neighbouring values and49

standard deviation determined by a precision hyperparameter (Gill et al. 2013). This model can be50
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justified as the discretisation of a continuous skyride model in which the log population size is ruled51

by a Brownian motion (Minin et al. 2008). Alternatively, the skygrowth model is a similar Gaussian52

Markov chain on the growth rate of the population size (Volz and Didelot 2018). Both models can be53

conveniently extended to explore the association between population size dynamics and covariate data54

(Gill et al. 2016; Volz and Didelot 2018).55

The skygrid, skygrowth or other similar models can be assumed when performing the inference of56

the demographic function, and the effect of this model choice has not been formally investigated.57

Furthermore, these discretised non-parametric models require to select the number of pieces in the58

demographic function, the location of boundaries between pieces, and the prior expectation for the59

difference from one piece to another, all of which can have significant effect on the inference results.60

Here we propose several statistical procedures to automatically select the best values for some of these61

variables. In particular, the parameter controlling the smoothness of the population size function62

is usually assumed to have an arbitrary non-informative prior distribution in a Bayesian inferential63

setting (Minin et al. 2008; Gill et al. 2013), whereas we show here that it can be selected using a64

frequentist statistical approach based on out-of-sample prediction accuracy. We tested the effect of65

these procedures on simulated datasets, where the correct demographic function is known and can be66

used to assess the relative value of inference under various conditions. We also reanalysed real datasets67

from recent studies on viral and bacterial infectious diseases, and show that the new methods can lead68

to improved epidemiological insights.69
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MATERIALS AND METHODS70

Non-parametric Models71

Let the demographic function Ne(t) be piecewise linear with R pieces of equal lengths h. Let γi denote72

the log of the effective population size in the i-th piece. In the skygrid model (Gill et al. 2013), the73

values of γi follow a Gaussian Markov chain, with the conditional distribution of γi+1 given γi equal74

to:75

γi+1 ∼ N (γi, h/τ) (1)

By contrast, the skygrowth model (Volz and Didelot 2018) is defined using the effective population size76

growth rates ρi which are assumed constant in each interval and are equal to:77

ρi =
exp(γi+1)− exp(γi)

hexp(γi)
(2)

These growth rate values form a Gaussian Markov chain, with:78

ρi+1 ∼ N (ρi, h/τ) (3)

We also define a new model which we call skysigma based on the values σi of the second order differences79

of the log of the effective population size:80

σi = (γi+1 − γi)− (γi − γi−1) = γi+1 − 2γi + γi−1 (4)

Once again we consider a Gaussian Markov chain in which:81

σi+1 ∼ N (σi, h/τ) (5)

Each of the models above defines a demographic function Ne(t) from which the likelihood of the82

genealogy G can be calculated. Let n denote the number of tips in G, let s1:n denote the dates of83
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the leaves and c1:(n−1) denote the dates of the internal nodes. Let A(t) denote the number of extant84

lineages at time t in G which is easily computed as the number of leaves dated after t minus the number85

of internal nodes dated after t:86

A(t) =
n∑

i=1

1[si > t]−
n−1∑
i=1

1[ci > t] (6)

This quantity is important because in the coalescent model, each pair of lineages coalesces at rate87

1/Ne(t), so that the total coalescent rate at time t is equal to:88

λ(t) =


A(t)(A(t)−1)

2Ne(t)
, if A(t) ≥ 2

0, otherwise.

(7)

The full likelihood of the coalescent process is therefore computed as (Griffiths and Tavare 1994;89

Donnelly and Tavare 1995):90

L(G|Ne(t)) = exp

(
−
∫ ∞
−∞

1[A(t) ≥ 2]
A(t)(A(t)− 1)

2Ne(t)
dt

) n−1∏
i=1

1

Ne(ci)
(8)

This computation is straightforward for the models considered here where the demographic function91

Ne(t) is piecewise constant.92

Selection of the precision parameter93

The precision parameter (also called the ’smoothing’ parameter) τ controls how much subsequent

values of the Markov Ne will vary when data is uninformative. The selection of this parameter is

therefore shaped by competing aims of maximizing explanatory power while reducing overfitting. In

frequentist statistics, a standard approach to selecting smoothing parameters is to minimize out-of-

sample prediction error. Here, we pursue a k-fold cross-validation strategy where genealogical data is

partitioned into k sets, k− 1 of which are used for fitting, and the last one is used for prediction. This

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.18.427056doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427056
http://creativecommons.org/licenses/by/4.0/


procedure is equivalent to maximizing the following objective function:

f(τ) =
k∏

j=1

P (G \Xj |N̂e(Xj , τ)), (9)

where N̂e(Xj , τ) is the maximum likelihood estimates of Ne on the partial data Xj ⊂ G and assuming94

the precision parameter is τ . In this case Xj=1:k represents a subset of the sample times and internal95

node times of the genealogy G.96

This is a standard formulation of the cross-validation method, but the implementation depends on how97

genealogical data is partitioned. We use the strategy of discretizing the coalescent likelihood (Equation98

8) into intervals bordered by the time of nodes (tips si or internal nodes ci of the tree) and/or the R−199

times when the piecewise-constant Ne changes value. Given R − 1 change points, n tips, and n − 1100

internal nodes of G, there are R+ 2n−3 intervals (ι1, · · · , ιR+2n−3). Each cross-validation training set101

is formed by taking a staggered sequence of intervals and collecting the genealogical data contained in102

each, so that Xk = {ιj |modulo(j, k) 6= 0}.103

Selection of the grid resolution104

Before any of the non-parametric models described above can be fitted, the number R of pieces in the105

piecewise demographic function needs to be specified. Setting R too low may lead to an oversimplified106

output that does not capture all the information on past population changes suggested by the genealogy,107

whereas setting R too high can lead to overfitting. We therefore propose to use well established108

statistical methods to select the optimal value of R. First the model is fitted for multiple proposed109

values of R, and then for each output we compute the Akaike information criterion (AIC), which is110

equal to:111

AICR = 2R− 2log(LR) (10)

where LR is the maximum value of the likelihood when using R pieces. The value of R giving the112

smallest value of AICR is selected. We also implemented the Bayesian information criterion (BIC),113

which are respectively equal to:114

BICR = Rlog(n− 1)− 2log(LR) (11)
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However, we found that the BIC was often overly conservative in the choice of the resolution as115

previously noted (Kuha 2004; Weakliem 1999), and therefore we focus here in the use of AIC.116

Simulation of testing data117

In order to test the accuracy of our methodology, we implemented a new simulator of coalescent118

genealogies given sampling dates and a past demographic function Ne(t). When the demographic119

function is constant, the simulation of coalescent genealogies is equivalent to simulating from a120

homogeneous Poisson process, in which the waiting times from one event to the next are exponentially121

distributed. To extend this to the situation where the demographic function is non-constant requires122

to simulate from an equivalent non-homogeneous Poisson process. The approach we used to achieve123

this is to consider a homogeneous Poisson process with a population size Nm which is lower than any124

value of Ne(t), ie ∀t,Ne(t) ≥ Nm. We simulate this process using exponential waiting times, but filter125

an event happening at time t according to the ratio Nm/Ne(t). Specifically, we draw u ∼ Unif(0, 1) and126

if u < Nm/Ne(t) the event is accepted and otherwise rejected. The resulting filtered Poisson process127

simulates from the non-homogeneous Poisson process as required (Ross 2014). The disadvantage of128

this approach over other methods of simulations is that there may be many rejections if Ne(t) takes129

small values so that Nm needs to be small too. This is therefore not the most efficient method of130

simulation. However, efficiency of simulation is not important for our purpose here, and this method131

has the advantage to avoid the computation of integrals on the Ne(t) function which other methods132

would require.133

Implementation134

We implemented the simulation and inference methods described in this paper into a new R package135

entitled mlesky which is available at https://github.com/emvolz-phylodynamics/mlesky . If136

multiple CPU cores are available, these resources are exploited within the procedure of selection of137

the smoothing parameter where the computation can be split between the different cross values in the138

cross-validation. Multicore processing is also applied in the procedure of selection of the grid resolution139

where computation can be split between different values of the number R.140
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RESULTS141

Application to simulated dataset with constant population size142

A dated phylogeny was simulated with 200 tips sampled at regular intervals between 2000 and 2020,143

and a constant past population size function Ne(t) = 20 (Figure 1). To illustrate the importance of144

the resolution R and precision τ parameters, we inferred the demographic function under the skygrid145

model (cf Equation 1) for a grid of values with R ∈ {5, 20, 50} and τ ∈ {1, 10, 20} (Figure 2). The146

results look quite different depending on the parameters used, and in particular when R is large and τ147

is small, fluctuations in the population size are incorrectly inferred. When applying the AIC procedure148

to this dataset, the correct value of R = 1 was inferred for which the parameter τ becomes irrelevant.149

In these conditions the effective population size was estimated to be 19.65 with confidence interval150

ranging from 17.10 to 22.57 which includes the correct value of 20 used in the simulation. We repeated151

the AIC procedure for 100 different phylogenies all which had been simulated under the same constant152

population size conditions described above. For 65 of these phylogenies the AIC procedure selected153

R = 1, with the third quartile falling on R = 3 and only one simulation giving R > 10.154

Application to simulated dataset with sinusoidal population size155

Next we simulated a dated phylogeny with the same number and dates of the tips as before, but using156

a demographic function Ne(t) that was sinusoidal with minimum 2 and maximum 22, with period 6.28157

years. Figure 3 shows both the demographic function used and the resulting simulated phylogeny. We158

attempted to reconstruct the demographic function based on the phylogeny under the three models159

skygrid, skygrowth and skysigma described in Equations 1, 3 and 5, respectively. For each model160

the precision parameter τ was optimised using our new cross-validation procedure and the number of161

pieces was set to be R = 20 for ease of comparison. The results obtained in these conditions were162

very similar under the three models (Figure 4). This suggests that when the precision parameter is163

optimised using the cross-validation method, the choice between these three models becomes relatively164

unimportant. The choice of using one model rather than another is therefore mostly guided by the165

presence of covariate data and whether these are expected to correlate with the effective population166
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size directly or some other function of it such as the population growth rates (Gill et al. 2016; Volz167

and Didelot 2018).168

Application to simulated dataset with bottleneck in population size169

We simulated another dated phylogeny with the same and dates of the tips as before, but using a170

bottleneck function for Ne(t) which was equal to 10 at all times except between 2005 and 2010 when it171

was equal to 1. Figure 5 shows both this bottleneck function and the phylogeny simulated accordingly.172

We reconstructed the demographic function using the skygrid model. The lowest value of the AIC was173

obtained for R = 14, and the precision parameter was optimised using the cross-validation procedure174

to τ = 0.87. The inferred demographic function is shown in Figure 5, where the bottleneck between175

2005 and 2010 has been accurately detected.176

Application to HIV dataset177

We analyzed 399 HIV-1 sequences from Senegal between 1990 and 2014 (Nascimento et al. 2020). All178

sequences are subtype CRF02 AG. We used treedater (Volz and Frost 2017) to reconstruct a dated179

phylogeny (Figure 6). This phylogeny has a common ancestor around 1972 and the number of lineages180

through time having rapid change in the early 1980s when the HIV epidemic was expanding. We181

applied the AIC procedure to determine the optimal number of pieces to be used for the demographic182

function, which was found to be R = 35. The optimal value of the precision parameter was determined183

using the cross-validation procedure, and found to be τ = 4.40. The demographic function inferred184

using these values of R and τ is shown in Figure 6. The whole analysis took less than 30 seconds on185

a standard laptop computer.186

Application to cholera dataset187

We applied our methodology to a previously described collection of 260 genomes from the seventh188

pandemic of Vibrio cholerae (Didelot et al. 2015). A genealogy was estimated in this previous study189

using an early version of BactDating (Didelot et al. 2018), and it is reproduced in Figure 7. We applied190

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.18.427056doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427056
http://creativecommons.org/licenses/by/4.0/


the AIC procedure to determine that the demographic function would be modelled using R = 16 pieces.191

The precision parameter was optimised to a value of τ = 1.84 using the cross-validation procedure.192

The whole analysis took less than 20 seconds on a standard laptop computer. The result is shown in193

Figure 7. A first peak was detected in the 1960s, followed by a second peak in the 1970s and finally a194

third peak in the 1990s. This demographic function follows closely on the previously described three195

“waves” of cholera spreading globally from the Bay of Bengal (Mutreja et al. 2011; Didelot et al. 2015;196

Weill et al. 2017). However, these three waves had previously been described based on phylogeographic197

reconstructions of the spread of the pandemic around the world. The fact that we found a similar198

wave pattern in our analysis which did not include any information about the geographical origin of199

the genomes provides further support for the validity of this phylodynamic reconstruction.200
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DISCUSSION201

Non-parametric phylodynamic inference of population size dynamics is usually carried out in a Bayesian202

framework (Minin et al. 2008; Gill et al. 2013; Volz and Didelot 2018). Here we presented methods203

for performing such inference in a frequentist setting with a particular view towards model selection204

and reducing over-fitting. Optimal smoothing can be obtained in a natural way using standard cross-205

validation methods, and the optimal resolution of the discretised demographic function is achieved206

using the well-established AIC criterion. This approach can be advantageous when prior distributions207

are difficult to design or results are sensitive to arbitrarily chosen priors. Methods based on likelihood208

maximization is also quite fast and scalable to data sets much larger than is conventionally studied209

with Bayesian methods, and the selection of smoothing parameters does not require arbitrarily chosen210

hyperparameters. Conventional AIC metrics also alleviate the difficulty of model selection. In most of211

our simulations, we find relatively little difference in our estimates when parameterizing the model in212

terms of Ne(t) (Equation 1), or the growth rate of Ne(t) (Equation 3) or its second order variation of213

Ne(t) (Equation 5).214

Our methodology assumed that a dated phylogeny has been previously reconstructed from the genetic215

data. It is therefore well suited for the post-processing analysis of the outputs from treedater (Volz216

and Frost 2017) or TreeTime (Sagulenko et al. 2018). A key assumption of our method, as with217

its Bayesian counterparts, is that all samples in the phylogeny come from a single population ruled218

by a unique demographic function. To ensure that this is indeed the case, complementary methods219

are emerging that can test for the presence or asymmetry or hidden population structure in dated220

phylogenies (Dearlove and Frost 2015; Volz et al. 2020).221

Past variations in the effective population size of a pathogen population can reveal key insights into past222

epidemiological dynamics and help make predictions about the future. It is important to note that the223

effective population size is not generally equal to or even proportional to the number of infections over224

time (Volz et al. 2009; Dearlove and Wilson 2013). On the other hand, the growth rate of the effective225

population size (Equation 2) can be used to estimate the basic reproduction number over time R(t)226

which represents the average number of secondary infections caused by an infected individual (Volz227

et al. 2013; Volz and Didelot 2018). Having good estimates of this quantity is especially important for228

assessing the effect of infectious disease control measures (Fraser 2007), and phylodynamic approaches229
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provide a useful complementary approach to more traditional methods of estimation based on case230

report data (Cori et al. 2013).231
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Figure 1: Simulated dataset using a constant past population size function.
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Figure 2: Result on simulated dataset shown in Figure 1 using the skyline model, from top to bottom
R = 5, 20, 50 and from left to right τ = 1, 10, 20.
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Figure 3: Simulated data using a sinusoidal past population size function.
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Figure 4: Result of applying the three different models to the phylogeny shown in Figure 3.
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Figure 5: Demographic function (top), phylogeny (middle) and inferred demographic function (bottom)
for a simulated dataset under a bottleneck model.
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Figure 6: Analysis of the HIV dataset. Top: Dated phylogeny used as the starting point of past
population size inference. Bottom: Demographic function reconstructed based on the phylogeny above.
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Figure 7: Analysis of the seventh pandemic of Vibrio cholerae. Top: Dated phylogeny used as the
starting point of past population size inference. Bottom: Demographic function reconstructed based
on the phylogeny above.
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