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Abstract—We present a simple, yet effective, auxiliary learning task for the
problem of neuron segmentation in electron microscopy volumes. The auxiliary
task consists of the prediction of Local Shape Descriptors (LSDs), which we
combine with conventional voxel-wise direct neighbor affinities for neuron bound-
ary detection. The shape descriptors are designed to capture local statistics
about the neuron to be segmented, such as diameter, elongation, and direction.
On a large study comparing several existing methods across various speci-
men, imaging techniques, and resolutions, we find that auxiliary learning of
LSDs consistently increases segmentation accuracy of affinity-based methods
over a range of metrics. Furthermore, the addition of LSDs promotes affinity-
based segmentation methods to be on par with the current state of the art for
neuron segmentation (Flood-Filling Networks, FFN), while being two orders of
magnitudes more efficient—a critical requirement for the processing of future
petabyte-sized datasets. Implementations of the new auxiliary learning task,
network architectures, training, prediction, and evaluation code, as well as the
datasets used in this study are publicly available as a benchmark for future
method contributions.

1 Introduction
The goal of connectomics is the reconstruction and interpretation
of neural circuits at synaptic resolution. These wiring diagrams
provide insight into the inner mechanisms underlying behavior
and help drive future theoretical experiments (Schneider-Mizell
et al., 2016; Motta et al., 2019; Bates et al., 2020; Hulse et al.,
2020). Additionally, the generation of connectomes has proven
to complement existing techniques such as calcium imaging and
electrophysiology where the resolution is often not sufficient to
parse the circuitry in detail (Schlegel et al., 2016; Turner-Evans
et al., 2020).

Currently, only electron microscopy (EM) allows imaging
of neural tissue at a resolution sufficient to resolve individual
synapses and fine neural processes. Two popular methods for
imaging these volumes are serial block-face scanning EM (SBF-
SEM) and focused ion beam scanning EM (FIB-SEM). While the
former technique is faster and generates high lateral resolution,
it results in lower axial resolution due to section slicing. The
latter method produces isotropic resolution by etching the face
of the volume with a focused ion beam before imaging. However,
this method is slower than serial section approaches. Briggman
and Bock (2012) provide a thorough overview of these imaging
approaches and others, including ssTEM and ATUM-SEM. All
methods have been used to generate invaluable datasets for the

connectomics community (Lee et al., 2016; Zheng et al., 2018;
Dorkenwald et al., 2019; Schneider-Mizell et al., 2020; Turner
et al., 2020; Scheffer et al., 2020; Phelps et al., 2021).

Depending on the specimen and the circuit of interest, current
EM acquisitions produce datasets ranging from several hundred
terabytes to petabytes. For instance, the raw data of a full
adult fruit fly brain (Fafb) comprises ∼50 teravoxels of neuropil
(Heinrich et al., 2018). Even sub-volumes taken from vertebrate
brains, which do not contain brain-spanning circuits, result in
massive amounts of data: The authors of Kornfeld et al. (2017)
imaged a region from a zebrafinch brain containing ∼106µm3

(∼663 gigavoxels) of raw data. More recently, a larger volume
of mouse visual cortex has been imaged, comprising ∼3 × 106µm3

(∼6,614 gigavoxels) (Dorkenwald et al., 2019; Turner et al., 2020;
Schneider-Mizell et al., 2020; Yin et al., 2020). In order to
reconstruct circuits in a full mouse brain, however, the authors
of Abbott et al. (2020) argue that it will require an acquisition of
around one exabyte of raw data (one million terabytes).

With datasets of this magnitude, purely manual reconstruction
of connectomes is infeasible. As an example, manual tracing in
the Drosophila dataset, Fafb, reaches speeds of about 11 hours
per cell (Zheng et al., 2018). Even the small brain of a Drosophila
contains an estimated 100,000 neurons, which would require ∼125
years of manual effort to trace each neuron to completion.

Consequently, automatic methods for the reconstruction of
neurons and identification of synapses have been developed. Over
the past decade, methods targeting relatively small volumes have
pioneered the reconstruction of neurons (Turaga et al., 2010; Lee
et al., 2017), and synapses (Kreshuk et al., 2015; Buhmann et al.,
2018). More recently, these efforts have been improved to tackle
the challenges of large datasets for neurons (Januszewski et al.,
2018; Funke et al., 2019; Dorkenwald et al., 2019; Li et al.,
2019), synaptic clefts (Heinrich et al., 2018), and synaptic partners
(Huang et al., 2018; Buhmann et al., 2020). With the help of
an automatic neuron segmentation method, neuron tracing times
decreased by a factor of 5.4 to 11.6 minutes per µm path length (Li
et al., 2019), effectively trading compute time for human tracing
time.

However, given the daunting sizes of current and future EM
datasets, limits on available compute time become a concern.
Future algorithms do not only need to be more accurate to further
decrease manual tracing time, but also computationally more
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efficient to be able to process large datasets in the first place.
Consider the computational time required by the current state of
the art, FFN: Assuming linear scalability and the availability of
1000 contemporary GPUs (or equivalent hardware), the processing
of a complete mouse brain would take about 226 years. This
example alone goes to show that the objective for future method
development should be the minimization of the total time spent to
obtain a connectome, including computation and manual tracing.
Therefore, automatic methods for connectomics need to be fast,
scalable (i.e., trivially parallelizable), and accurate.

1.1 Neuron Segmentation Methods

Neuron reconstruction is an instance segmentation problem. Un-
like semantic segmentation, in which the goal is to assign every
voxel to a specific class, instance segmentation assigns all voxels
belonging to the same object a unique label. Since those labels
can not be predicted directly, alternative local representations are
sought, which permit extraction of globally unique labels in a
subsequent processing step.

The most straight forward local representation is to label pixels
as either foreground or background, and then perform a connected
component analysis limited to foreground pixels to extract unique
objects. However, in the case of 3D neuron segmentation this
approach often fails to distinguish voxels in finer neurites, where
the axial resolution of the data is lower (Ciresan et al., 2012). To
deal with those situations, several methods have centered around
the prediction of affinities (i.e., the labeling of edges between
neighboring voxels as “connected” or “cut”), rather than labeling
the voxels themselves (Turaga et al., 2010; Funke et al., 2019).

Affinities effectively increase the resolution of the prediction,
but otherwise inherit the advantages and disadvantages of voxel-
wise boundary labeling: Both can be computed locally during
training and inference, which allows for trivial parallelization.
However, segmentations extracted from those predictions are sen-
sitive to small errors: A few incorrectly assigned voxels (or edges
between voxels) can label a boundary as foreground, resulting in
two segments becoming falsely merged during post-processing.

Those so-called merge errors are the notorious failure modes
of neuron segmentation methods. Merge errors have generally
been considered worse than split errors, since they have the
potential to propagate throughout a dataset. Even if just two
neurons are merged together, the resulting segmentation can be
difficult to resolve for proofreaders, if the neurons in question
have several contact sites. This has been a particular concern
for the first generation of proof-reading tools, which did not
provide algorithmic help to split wrongly merged objects. In those
situations, the origin point of a false merge would first need to be
found before the objects can be separated; a task akin to searching
for a needle in a haystack.

To avoid those merge errors, Turaga et al. (2009) introduced
Malis, a loss function that penalizes topological errors by min-
imizing the Rand Index. The Rand Index naturally favors split
errors over merge errors and thus helped to bias boundary pre-
dictions to split instead of merge in ambiguous situations. Funke
et al. (2019) expanded this method by constraining the loss to a
positive and negative pass, and by providing a maximal spanning
tree formulation of the loss, which allows for a quasi-linear and
exact computation of the loss during training.

More recent methods do not explicitly focus on merge errors,
which is a possible consequence of improved proofreading tools

that allow users to separate objects with just a few interactions. Lee
et al. (2017) found that using an increased affinity neighborhood
acts as an auxiliary learning objective to improve direct neighbor
affinities. This work demonstrates that auxiliary learning helps to
make better use of local context in the receptive field of the neural
network. The nature of this auxiliary learning approach is similar
to the LSDs proposed here.

All affinity-based methods have in common that they need a
subsequent agglomeration step to produce a final segmentation.
Methods such as watershed variants (Wolf et al., 2018) and con-
strained agglomeration (Beier et al., 2017) successfully demon-
strated an increase in robustness of the resulting segmentation to
small errors in the predicted affinities.

Not all neuron segmentation methods are based on boundary
predictions. The most notable exception are Flood-Filling Net-
works (FFN), the current state of the art in terms of segmentation
quality (Januszewski et al., 2018). FFN eliminated the need for a
multi-step segmentation process by using a recurrent convolutional
neural network to fill neurons iteratively in an end-to-end fashion.
Given seed points within neurons, the algorithm predicts which
voxels belong to the same object as the seeds. This approach has
been proven to be successful on very large volumes, although it
is computationally more expensive than its affinity-based counter-
parts.

More recently, another promising alternative to boundary pre-
diction has been proposed by Lee et al. (2019), which uses metric
learning to produce dense voxel embeddings. The embeddings of
voxels that belong to the same object are encouraged to be close
in embedding space, while the embeddings of voxels of different
objects are pushed away from each other. Clustering of the
embeddings then reveals a segmentation. Since object similarity or
dissimilarity can only be discerned locally, the method is applied
in a block-wise fashion and the segmentations of neighboring
blocks are stitched together to process a whole volume.

1.2 Contributions

We introduce LSDs as an auxiliary learning task for affinity pre-
dictions and demonstrate that segmentation results are competitive
with the current state of the art, albeit two orders of magnitude
more efficient to compute. LSDs are 10-dimensional vectors,
computed for each voxel, which encode local object properties.
We engineered LSDs to describe features that could be leveraged
to improve boundary detection. Specifically, they consist of three
parts: the local size of the object (1D), the offset to the local center
of mass (3D), and the local directionality (6D) (described in detail
in Section 2.1).

We conducted a large comparative study of recent neuron
segmentation algorithms. Specifically, we evaluated four of the
aforementioned methods against three LSD-based methods on the
following datasets:

• Zebrafinch: A region consisting of ∼106µm3 (∼663 gi-
gavoxels) of songbird neural tissue, imaged using serial block-
face EM at 9x9x20 nanometer (xyz) resolution (Januszewski
et al., 2018). 0.02% of the full dataset was used to train
networks (dense segmentations), 12 manually traced neuron
skeletons (13.5 mm) were used for validation and 50 skele-
tons (97 mm) were used for testing.

• Hemi-brain: Three volumes containing ∼1650µm3,
∼4750µm3, and ∼10360µm3 (∼33 total gigavoxels) of raw
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Figure 1: Local shape descriptor and network architecture overview. A. EM data imaged with FIB-SEM at 8 nm isotropic resolution
(Hemi-brain dataset). Arrows point to example individual neuron plasma membranes. Dark blobs are mitochondria. Scale bar = 300 nm.
B. Label colors correspond to unique neurons. C. LSD mean offset schematic. A Gaussian (G) with fixed sigma (σ) is centered at
voxel (v). The Gaussian is then intersected with the underlying label (colored region) and the center of mass of the intersection (cm) is
computed. The mean offset (mo) between the given voxel and center of mass is calulated (among several other statistics, see Fig. 2 for a
visualization), resulting in the first three components of the LSD for voxel (v). D. Predicted mean offset component of LSDs (Lsd[0:3])
for all voxels. A smooth gradient is maintained within objects while sharp contrasts are observed across boundaries. 3D vectors are RGB
color encoded. E. Network architectures used. The 10D LSD embedding is used as an auxiliary learning task for improving affinities.
In a multi-task approach (MtLsd), LSDs and affinities are directly learnt. In an auto-context approach, the predicted LSDs are used as
input to a second network in order to generate affinities both without raw data (AcLsd), and with raw data (AcRLsd). For a detailed
network architecture visualization, see Fig. 16.

data, cropped from the ∼26 teravoxel dataset generated by
Scheffer et al. (2020). This volume was taken from the
central brain of a Drosophila and imaged with FIB-SEM at
8 nanometer isotropic resolution. 0.002% of the data was
used for training (dense segmentation), and 0.06% for testing
using a whitelist of proofread neurons.

• Fib-25: A ∼1.8 × 105µm3 (∼346 gigavoxels) volume from
the Drosophila visual system was imaged with FIB-SEM at
8 nm isotropic resolution (Takemura et al., 2015). 0.09% of
the data was used for training (dense segmentation). Testing
was restricted to a 13.8 gigavoxel region using a whitelist of
proofread neurons.

For each dataset, we compare LSD-based methods against three
previous affinity-based methods: (1) direct neighbor and (2) long-
range affinities with mean squared error (MSE) loss, and (3) direct
neighbor affinities with Malis loss. Each affinity-based method
(including our LSD methods) was trained in the same way and
uses the same network architecture (where possible). We used the
same segmentation extraction method (from Funke et al. (2019))
to convert the predicted affinities into segmentations.

We further include a comparison against FFN segmentations,
which were made available to us by the authors of Januszewski
et al. (2018).

We make the training scripts and datasets used in this study
publicly available in a central repository1, in the hope that non-
affinity-based methods that we did not cover in this study (like the
recent deep metric learning proposed in Lee et al. (2019)) can be
compared in a similar manner.

We compare the aforementioned methods against three dif-
ferent architectures that use LSDs as an auxiliary loss: a simple
multitask approach (MtLsd) and two auto-context approaches
(AcLsd and AcRLsd). We summarize those methods briefly in
the following, for a detailed description see Section 2.2.

MtLsd uses a similar strategy to the long-range affinity neigh-
borhood proposed by Lee et al. (2017). The network is taught to
simultaneously predict LSDs and affinities (Fig. 1.E).

AcLsd and AcRLsd use an auto-context learning strategy, as
proposed by Tu and Bai (2010). This strategy attempts to refine
the quality of a prediction by using a cascade of predictors. For

1https://github.com/funkelab/lsd
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voxel classification, for example, the first pass of an auto-context
classifier predicts voxel labels from raw data. The second pass then
uses those predictions from the first pass as input2. We loosely
adapted this idea when designing our auto-context networks. We
first taught a network to predict LSDs from raw EM data. The
predicted LSDs were then passed into a second network in order
to learn affinities (Fig. 1.E).

We generally observe an increase in affinity prediction ac-
curacy when training to predict LSDs in an auxiliary task. This
increase is most noticeable when using an auto-context setup.

2 Methods

2.1 Local Shape Descriptors

The intuition behind Local Shape Descriptors (LSDs)3 is to pro-
vide an auxiliary learning task that improves boundary prediction
by learning statistics describing the local shape of the object close
to the boundary. A similar technique was already shown to yield
superior results over boundary prediction alone (Bai and Urtasun,
2017). Here, we extend on this idea by predicting for every voxel
not just affinities values to neighboring voxels, but also statistics
extracted from the object under the voxel aggregated over a local
window, specifically: (1) the volume, (2) the voxel-relative center
of mass, and (3) pairwise coordinate correlations. See Fig. 1 for a
visualization.

More formally, let v ∈ Ω ⊂ N3 be the set of voxels in a
volume and y : Ω 7→ {0, . . . , l} a ground-truth segmentation. A
segmentation induces ground-truth affinity values affy

N , defined on
a voxel-centered neighborhood N ⊂ Z3, i.e.:

affy
N : Ω 7→ {0, 1} |N | affy

N (v) =
(
δy(v)=y(v+n),0 | n ∈ N

)
(1)

where δ is the Kronecker function. Our primary learning objective
is to infer affinities from raw data x : Ω 7→ R, i.e., we are interested
in learning a function

affx
N : Ω 7→ [0, 1] |N | (2)

such that affx
N (v) ≈ affy

N (v).
Similarly to the affinities, we introduce a function to describe

the local shape of a segment i ∈ {1, . . . , l} under a given voxel
v. Let bi : Ω 7→ {0, 1} with bi(v) = δy(v)=i be the binary mask
for segment i and w : Z3 7→ R a kernel acting as a local window
(e.g., a binary representation of a sphere centered at the origin,
w(z) = δ |z |<σ). The aggregation of this mask over the window
yields the local size si(v) of segment i at position v. Formally, this
operation is equal to a convolution of the binary mask with the
local window:

si(v) =
∑
v′∈Ω

bi(v′)w(v − v′) = (bi ∗w)(v). (3)

To capture local statistics about the segment at location v, we
further introduce the following voxel-wise functions m and c.
Those functions aggregate the pixel coordinates v over the local
window w to compute the local center of mass mi(v) and the local
covariance of voxel coordinates ci(v) for a given segment i:

2See https://www.ilastik.org/documentation/autocontext/autocontext for a
popular example of this strategy.

3Distinct from shape descriptors in Maitin-Shepard et al. (2016).

mi
k
(v) =

(
vk bi ∗w

)
(v)(

bi ∗w
)
(v)

k ∈ {x, y, z}

ci
kl
(v) =

(
vkvl bi ∗w

)
(v)(

bi ∗w
)
(v)

−mi
k
(v)mi

l
(v) k, l ∈ {x, y, z}

(4)
A derivation of those equations can be found in Supplemental
Section A.

To obtain a dense volume of shape descriptors, we compute
the above statistics for each voxel with respect to the segment this
voxel belongs to. Formally, we evaluate for each voxel v:

s̃(v) = sy(v)(v) (5)

m̃(v) =
(
my(v)

x (v),my(v)
y (v),my(v)

z (v))
)

(6)

c̃(v) =
(
cy(v)
xx (v), cy(v)

yy (v), . . . , cy(v)
xz (v), cy(v)

yz (v)
)

(7)

The final local shape descriptor lsdy : Ω 7→ R10 for a voxel v is a
concatenation of the size, center offset, and coordinate covariance,
i.e.,

lsdy(v) = ( s̃(v),︸︷︷︸
size

m̃(v) − v,︸     ︷︷     ︸
center offset

c̃(v)︸︷︷︸
covariance

). (8)

For a visual representation of the components of the LSDs, see
Fig. 2. We use lsdy(v) to formulate an auxiliary learning task that
complements the prediction of affinities. For that, we use the same
neural network to simultaneously learn the functions affx : Ω 7→
[0, 1] |N | and lsdx : Ω 7→ R10 directly from raw data x, sharing all
but the last convolutional layer of the network.

2.2 Network Architectures
We implement the LSDs using three network architectures. The
first is a multitask approach, MtLsd, in which the LSDs are output
from a 3D U-Net (Çiçek et al., 2016), along with nearest neighbor
affinities in a single pass. The other two methods, AcLsd and
AcRLsd are both auto-context setups in which the LSDs from
one U-Net are fed into a second U-Net in order to produce the
affinities. The former relies solely on the LSDs while the latter
also sees the raw data in the second pass. For a visualization of
network architectures, see Fig. 1.E and Supplemental Fig. 16. All
training was done using Gunpowder4 and Tensorflow5, using the
same 3D U-Net architecture (Funke et al., 2019).

2.3 Post-Processing
Prediction and post-processing (i.e., watershed and agglomeration)
was done in a block-wise fashion using the method described in
Funke et al. (2019).

3 Results
In this section, we present experimental results of the proposed
LSDs for neuron segmentation. We compare the accuracy of the
segmentations against several alternative methods for affinity pre-
diction and FFN on three large and diverse datasets. Furthermore,
we compare the computational efficiency of different methods and
analyze the relationship between different error metrics for neuron
segmentations.

4http://funkey.science/gunpowder
5https://www.tensorflow.org/
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Figure 2: Visualization of LSD components. A. Surface mesh of a segmented neuron from FIB-SEM data. Scale bar = 1 µm. B. RGB
mapping of LSD direction vectors (LSD[3:6]). Neural processes are colored with respect to the directions they travel. Intermediate
directions are mapped accordingly (see cartesian coordinate inset). C. LSD predictions in corresponding 2D slices to the three boxes
shown in A and B; neuron highlighted in white. Columns signify neuron orientation (blue = lateral movement, green = vertical
movement, red = through-plane movement). Rows correspond to components of the LSDs. First row = mean offset (as seen in Fig. 1).
Second and third rows = direction vectors. Second row shows mapping seen in B. Last row = size (number of voxels inside intersected
Gaussian). Scale bar = 250 nm.

3.1 Methods

For each dataset we investigated seven methods:

• Direct neighbor affinities (Baseline): Baseline network
with a single voxel affinity neighborhood and MSE loss as
proposed by Turaga et al. (2010). We trained a 3D U-Net to
predict affinities.

• Long range affinities (LR): Same approach as the Baseline
network, but uses an extended affinity neighborhood with
three extra neighbors per direction, as proposed by Lee et al.
(2017). The extended neighborhood functions as an auxiliary
learning task that was shown to improve the direct neighbor
affinities.

• MALIS loss (Malis): Same approach as the Baseline
network, but using the loss described in Funke et al. (2019)
instead of plain MSE.

• Flood filling networks (FFN): A single segmentation per
investigated dataset, provided by the authors of Januszewski

et al. (2018).

• Multi-task LSDs (MtLsd): A network to predict both LSDs
and direct neighbor affinities in a single pass, as seen in
Fig. 1.E. Similar to LR, the LSDs act as an auxiliary learning
task for the direct neighbor affinities.

• Auto-context LSDs (AcLsd): An auto-context setup, where
LSDs were predicted from one network and then used as
input to a second network in which affinities were predicted.

• Auto-context LSDs with raw (AcRLsd): Same approach as
AcLsd, but the second network also receives the raw data as
input in addition to the LSDs generated by the first network.

All network architectures are described in detail in Supplemental
Section C.1.2 and Supplemental Section D.1.2 for the Zebrafinch
and FIB-SEM volumes, respectively.

Each affinity-based network was trained with the same pipeline
(i.e. data augmentations and optimizer) and different hyper-
parameters with respect to whether the data was anisotropic
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(Zebrafinch, Supplemental Section C.1.3) or isotropic (FIB-SEM
volumes, Supplemental Section D.1.3).

3.2 Metrics for Neuron Segmentation

Since proofreading of segmentation errors is currently the main
bottleneck in obtaining a connectome (Scheffer et al., 2020),
metrics to assess neuron segmentation quality should ideally
reflect the time needed for proofreading. This requirement is not
easily met, since it depends on the tools and strategies used in
a proofreading workflow. Currently used metrics aim to correlate
scores with the time needed to correct errors based on assumptions
about the gravity of certain types of errors. A common assumption
has been that false merges take significantly more time to correct
than false splits, although next generation proofreading tools
challenge this conception (Plaza and Funke, 2018).

In this study, we report neuron segmentation quality with two
established metrics: Variation of Information (VoI) and Expected
Run-Length (ERL). In addition to those metrics, we propose a new
metric, which we refer to as the Min-Cut Metric (MCM), designed
to measure the number of graph edit operations needed to perform
in a hypothetical proofreading tool.

• Variation of Information (VoI): A metric to compare clus-
terings (Meilă, 2007), which became an established metric
to assess neuron segmentation accuracy. VoI measures the
disagreement between two segmentations in terms of the
average number of bits needed to guess the segment ID of
a randomly chosen voxel in one segmentation, given only
its label in the other segmentation. This measurement is
performed in both directions, giving rise to the two additive
components of VoI, a measure for split and merge errors.
Lower values are better, with equivalent segmentations (up to
label permutations) having a value of zero.

• Expected Run-Length (ERL): Following the assumption
that false merges are in practice harder to correct than
false splits, Januszewski et al. (2018) proposed to measure
accuracy in terms of the Expected Run Length (ERL), which
measures the expected length of an error-free path along
neurons in a volume. Notably, all paths contained in falsely
merged segments are considered erroneous, thus ERL em-
phasizes merge errors disproportionally. An appealing aspect
of ERL is that it relates segmentation errors to cable length,
a commonly used and interpretable feature of neurons.

• Min-Cut Metric (MCM): A metric that assumes that a user
can directly interact with agglomerated fragments from an
oversegmentation. In particular, we assume that users can
split segments by means of a min-cut through the fragment
graph between two selected fragments, where edge costs
correspond to the merge scores used during agglomeration. In
this context, the MCM reports the number of split and merge
operations needed to be performed by a human annotator to
obtain the desired segmentation. The details of this metric are
described in Supplemental Section B.

3.3 Datasets

The following describes the datasets, regions of interest (RoIs),
and ground-truth used in this study. Dataset overviews can be seen
in Fig. 3, Fig. 4, Fig. 5 top panels, and are described in Table 1.

3.3.1 Zebrafinch
The largest dataset used in this study was the songbird dataset
also used in Januszewski et al. (2018). This volume consists of a
∼106µm3 region of a zebrafinch brain, imaged with serial block-
face EM at a resolution of 9x9x20 nm (x,y,z). For our experiments,
we used a slightly smaller region completely contained inside the
raw data with edge lengths of 87.3, 83.7, and 106 µm (x,y,z). We
refer to this region as the Benchmark Roi.

For each affinity-based network described in Section 3.1, we
used 33 volumes containing a total of ∼200µm3 (∼6µm3 average
per volume) of labeled data6 for training. We then ran prediction
on the Benchmark Roi, using a block-wise processing scheme.

Using the resulting affinities, we generated two sets of super-
voxels: one without any masking and one constrained to neuropil
using a mask6. Additionally, we filtered supervoxels in regions in
which the average affinites were lower than a predefined value
(e.g., glia). Supervoxels were agglomerated using one of two
merge functions, described in Funke et al. (2019), to produce the
region adjacency graphs used for evaluation.

We then produced segmentations for RoIs of varying size cen-
tered in the Benchmark Roi, in order to assess how segmentation
measures scale with volume size. In total, we cropped 10 cubic
RoIs ranging from ∼11µm to ∼76µm edge lengths, in addition to
the whole Benchmark Roi. We will refer to the respective RoIs
by their edge lengths. For each affinity-based network, in each RoI,
we created segmentations for a range of agglomeration thresholds
(resulting in a sequence of segmentations ranging from over- to
undersegmentation). Additionally, we cropped the provided FFN
segmentation accordingly and relabeled connected components.

We used a set of 50 manually ground-truthed skeletons6,
comprising 97 mm, for evaluation. For each network we assessed
VoI and ERL on each RoI. For affinity-based methods we also
computed the MCM on the 11, 18, and 25µm RoIs. Additionally,
we used 12 validation skeletons consisting of 13.5 mm to deter-
mine the optimal thresholds for each network on the Benchmark
Roi. Further details can be found in Supplemental Section C.

3.3.2 Hemi-Brain
The so-called Hemi-brain is a FIB-SEM volume of the
Drosophila melanogaster central brain, imaged at 8nm isotropic
resolution (Scheffer et al., 2020), comprising a total of 26 teravox-
els of image data. We evaluate all investigated methods on regions
restricted to the Ellipsoid Body, a neuropil implicated in spatial
navigation, (Turner-Evans and Jayaraman, 2016), which contained
ample ground-truth data for evaluation.

We used eight volumes of densely annotated ground-truth
volumes containing ∼450µm3 of labeled data for training. Three
RoIs with ∼12µm, ∼17µm, and ∼22µm edge lengths were cropped
from the larger volume, and prediction was done directly on each
RoI.

Supervoxels were limited to the Ellipsoid Body using a mask7
and then agglomerated using the same two merge functions as in
the Zebrafinch dataset.

We produced segmentations for each network over a range
of thresholds on the RoIs, and consolidated a single FFN
segmentation6. A densely labeled ground-truth volume was
cropped and filtered using a list of neuron IDs7 deemed to be

6Kindly provided by the authors of Januszewski et al. (2018)
7Kindly provided by the Janelia FlyEM project team (https://janelia.org/

project-team/flyem)
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Method VoI Split VoI Merge VoI Sum ERL (nm) NERL

Baseline 1.115 2.741 3.856 9146.866 0.038
LR 2.072 2.286 4.358 9517.332 0.040
FFN 1.068 1.188 2.256 16747.051 0.070

MtLsd 0.625 2.794 3.420 8854.584 0.037
AcLsd 1.192 1.222 2.414 12886.494 0.054

AcRLsd 0.944 1.346 2.290 12667.457 0.053

(F) Benchmark Roi. Validation = Best VoI Sum

Method VoI Split VoI Merge VoI Sum ERL (nm) NERL

Baseline 0.757 4.586 5.343 9113.392 0.038
LR 0.905 4.851 5.756 9044.500 0.038
FFN 1.068 1.188 2.256 16747.051 0.070

MtLsd 0.670 2.578 3.247 11352.811 0.047
AcLsd 0.533 2.021 2.554 11419.270 0.047

AcRLsd 0.803 1.436 2.239 13470.464 0.056

(G) Benchmark Roi. Validation = Best ERL

Figure 3: Zebrafinch dataset. Top panel shows data used for training and testing. 1. 33 gound truth volumes were used for training. 2. Full raw dataset, scale
bar = 15 µm. 3. Single section shows ground-truth skeletons, zoom in scale bar = 500 nm. 4. Validation skeletons (n=12). 5. Testing skeletons (n=50). Main
results shown below top panel. Points in Zebrafinch plots correspond to optimal thresholds from validation set. Each point represents an RoI. For VoI and
MCM, lower scores are better, for ERL higher scores are better. A. VoI Sum vs RoI size (µm3). B,C. VoI Sum and MCM Sum vs RoI size (first three RoIs),
respectively. Dashed line in A corresponds to RoIs shown in B,C. D. ERL (nanometers) vs RoI size. E. teraFLOPs vs VoI Sum across RoIs (same as in panels
A and D). Tables (F,G) show best network scores in bold, with respect to which metric was optimized during validation.
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Dataset Imaging Method Tissue Resolution (xyz) Training Data Testing Data

Zebrafinch SBFSEM songbird 9x9x20 nm 33 dense volumes (∼ 200 µm3) 50 skeletons (97 mm)
Hemi-brain FIBSEM Drosophila 8x8x8 nm 8 dense volumes (∼ 450 µm3) 3 whitelisted volumes (∼ 1.7 × 104 µm3)

Fib-25 FIBSEM Drosophila 8x8x8 nm 4 dense volumes (∼ 160 µm3) 1 whitelisted volume (∼ 7.7 × 103 µm3)

Table 1: Overview of datasets used in study
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Method VoI Split VoI Merge VoI Sum

Baseline 0.062 0.040 0.102
LR 0.070 0.061 0.131

Malis 0.144 0.036 0.180
FFN 0.129 0.046 0.175

MtLsd 0.048 0.037 0.085
AcLsd 0.191 0.006 0.197

AcRLsd 0.078 0.009 0.087

Method VoI Split VoI Merge VoI Sum

Baseline 0.394 0.725 1.118
LR 0.284 1.040 1.324

Malis 0.523 0.065 0.588
FFN 0.347 0.024 0.371

MtLsd 0.211 0.056 0.267
AcLsd 0.161 0.090 0.251

AcRLsd 0.165 0.404 0.568

Method VoI Split VoI Merge VoI Sum

Baseline 0.345 1.466 1.811
LR 0.143 0.729 0.873

Malis 0.437 0.162 0.599
FFN 0.242 0.036 0.279

MtLsd 0.166 0.470 0.636
AcLsd 0.126 0.181 0.307

AcRLsd 0.162 0.363 0.525

Figure 4: Hemi-brain dataset. Top panel shows data used for training and testing. 1. 8 ground-truth volumes were used for training.
2. Full Hemi-brain volume, scale bar = 30 µm. Experiments were restricted to Ellipsoid Body (circled region). 3. Volumes used for
testing. 4. Example sparse ground-truth testing data, scale bar = 2.5 µm. 5. Zoom-in, scale bar = 800 nm. 6. Example 3D renderings of
selected neurons. Main results below top panel. Plot curves show results over range of thresholds for each RoI (A = 12 µm RoI, B =
17 µm RoI, C = 22 µm RoI). Points correspond to optimal thresholds on testing set, no validation set was available. Lower scores are
better. Tables show best network scores in bold for each RoI.
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Method VoI Split VoI Merge VoI Sum

Baseline 1.222 0.133 1.355
LR 1.603 0.257 1.867

Malis 0.997 0.065 1.061
FFN 1.003 0.053 1.056

MtLsd 0.975 0.161 1.136
AcLsd 1.222 0.189 1.411

AcRLsd 1.138 0.275 1.413

Method VoI Split VoI Merge VoI Sum

Baseline 0.716 0.168 0.884
LR 1.089 0.268 1.357

Malis 0.774 0.105 0.879
FFN 0.624 0.076 0.700

MtLsd 0.687 0.09 0.777
AcLsd 0.502 0.123 0.625

AcRLsd 0.568 0.131 0.699

Method VoI Split VoI Merge VoI Sum

Baseline 0.927 0.112 1.039
LR 1.207 0.282 1.489

Malis 0.946 0.042 0.988
FFN 0.701 0.079 0.780

MtLsd 0.795 0.115 0.910
AcLsd 0.662 0.099 0.761

AcRLsd 0.691 0.186 0.877

Figure 5: Fib-25 dataset. Top panel shows data used for training and testing. 1. 4 ground-truth volumes were used for training. 2. Full
volume with cutout showing testing region, scale bar = 5 µm. 3. Cross section with sparsely labeled testing ground-truth. 4. Zoom-in,
scale bar = 750 nm. 5. Sub-volume corresponding to zoomed-in plane. 6. Subset of full RoI testing neurons. Small volume shown for
context. Main results below top panel. A. Full testing RoI. B,C. Two sub RoIs contained within full RoI. Plot curves show results over
range of thresholds. Points correspond to optimal thresholds on testing set, no validation set was available. Lower scores are better.
Tables show best network scores in bold, for each RoI.
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completely traced by expert proofreaders. Since the ground-truth
is comprised of voxel data rather than skeletons, we report only
VoI. Further details can be found in Supplemental Section D.

3.3.3 FIB-25
The Fib-25 dataset, produced by Takemura et al. (2015), is
another FIB-SEM volume imaged at 8nm resolution, containing
∼1.8 × 105µm3 of raw data taken from the Drosophila visual
system. Four volumes with ∼160µm3 of labeled data7 were used
for training.

We predicted on the full raw data and then restricted super-
voxels to an irregularly shaped neuropil mask6. Agglomeration
was done in the same fashion as the aforementioned volumes.
We created segmentations in two ways: for the first method,
following the procedure described in Januszewski et al. (2018),
we segmented neurons within the entire neuropil mask. For the
second method, we limited segmentation to two sub-RoIs con-
tained within both the neuropil mask and testing region (sections
5074–7950). The sub-RoIs have a size of ∼2.2 × 103µm3 and
∼2.6 × 103µm3, respectively. For FFN, we cropped the provided
segmentation6 and relabeled connected components.

Evaluation was limited to a list of proofread, voxel ground-
truth labels7 contained inside the testing region. Depending on
the segmentation method, connected components on both ground-
truth and segmentation volumes were either cropped and relabelled
or untouched. Since the ground-truth is comprised of voxel data
rather than skeletons, we report only VoI. Further details can be
found in Supplemental Section D.

3.4 Neuron Segmentation Accuracy
3.4.1 Zebrafinch
We find that LSDs are useful for improving the accuracy of direct
neighbor affinities, and subsequently the resulting segmentations.
Specifically, LSD-based methods consistently outperform other
affinity-based methods over a range of RoIs, whether used in a
multitask (MtLsd) or auto-context (AcLsd and AcRLsd) archi-
tecture (Fig. 3.A). In terms of segmentation accuracy according
to VoI, the best auto-context network (AcRLsd) performs on par
with FFN (Fig. 3.A).

Interestingly, we find that the ranking of methods depends on
the size of the evaluation RoI. Even for monotonic metrics like
VoI, we see that performance on the smallest RoIs (up to 54 µm)
does not extrapolate to the performance on larger datasets.

We also investigated how ERL varies over different RoI sizes.
To this end, we cropped the skeleton ground-truth to the respective
RoIs and relabeled connected components (as we did for the VoI
evaluation). However, the resulting fragmentation of skeletons
heavily impacts ERL scores: ERL can not exceed the average
length of skeletons, and thus the addition of shorter skeletons
fragments can result in a decrease of ERL, even in the absence of
errors. We see this effect prominently in Fig. 3.D: ERL measures
do not progress monotonically over RoI sizes and absolute values
are likely not comparable across different dataset sizes. In addition,
the ranking of methods for a given RoI size varies significantly
over different RoI sizes.

The high variability between metrics and RoI sizes prompted
us to develop a metric that aims to measure proofreading effort.
We developed MCM to count the number of interactions needed
to split and merge neurons in order to correctly segment the
ground-truth skeletons, assuming that a min-cut-based split tool

is available. Due to the computational cost associated with MCM
(stemming from repeated min-cuts in large fragment graphs), we
limited its computation to the three smallest investigated RoIs in
this dataset. As expected, we observe a linear increase in MCM
with RoI size across different methods (Fig. 3.C). Furthermore, we
see that MCM and VoI mostly agree on the ranking of methods
(Fig. 3.B, Supplemental Fig. 14), which suggests that VoI should
be preferred to compare segmentation quality in the context of a
proofreading workflow that allows annotators to split false merges
using a min-cut on the fragment graph. We could not compute
MCM for FFN since the MCM requires a fragment graph.

3.4.2 Hemi-Brain
We observe a similar variability of method rankings over RoI sizes
on the Hemi-brain dataset.

On the largest investigated RoI (22µm edge length), AcLsd
clearly performs best among all affinity-based methods (VoI sum
of 0.307 vs. 0.525 for the second best, see Fig. 4.C). As such,
AcLsd is competitive with FFN (VoI sum 0.279), with the notable
difference of performing more merge errors, but significantly less
split errors than FFN.

On the 17µm RoI, AcLsd again performs better than all other
affinity-based methods and also better than FFN (VoI sum of 0.251
vs. 0.371, see Fig. 4.B). MtLsd is on par with AcLsd on this RoI,
which stands in contrast to its significantly worse performance on
the 22µm RoI. This observation further puts into question to what
extent the accuracy of a segmentation can be extrapolated from
smaller to larger RoI sizes.

These concerns become even more evident when turning to
the results on the smallest RoI of 12µm edge length. Here, AcLsd
performs worse than all other methods, with a significant margin
to the best performing method, MtLsd (VoI sum 0.197 vs 0.085).
Even Baseline achieves very good results on this RoI (VoI sum
0.102), although it would be a poor choice in production given its
detrimental performance on the larger RoIs. We have to conclude
that the size of this RoI is likely not large enough to accurately
deduce whether the differences in method performance are due to
model accuracies or data biases.

A somewhat surprising result is the performance of AcRLsd
on this dataset. Although architecturally very similar to AcLsd
(the only difference is that AcRLsd receives raw data and LSDs
in the second pass, while AcLsd receives only LSDs), AcRLsd is
significantly worse on the two larger RoIs. This stands in contrast
to the results we obtained on the Zebrafinch dataset. Our results
do not allow us to say with confidence whether this artifact is
due to overfitting to the training data (which might be more likely
to happen for AcRLsd) or due to model noise introduced by the
random initialization during training.

3.4.3 FIB-25
We first evaluated all methods on the full testing RoI of the
Fib-25 dataset (Fig. 5.A). On the full RoI, LSDs generally do
not perform well. We observe that the best auto-context method
(AcLsd) performs worse than the Baseline (VoI sum 1.413 vs
1.355). Interestingly, MtLsd achieves higher accuracy than both
auto-context networks. FFN exceeds all other methods (VoI sum
1.056)8, and Malis is not far behind (VoI sum 1.061). Since

8The authors of Januszewski et al. (2018) report a VoI split of 0.8837.
While we were able to replicate the reported VoI merge score of 0.053, we
found VoI split to be 1.003.
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those results are not consistent with the results seen on the
Zebrafinch and Hemi-brain volumes, we visually inspected the
segmentations. We found a high rate of false merges occurring
in the periphery of the testing RoI, stemming from nuclei and
boundaries of the imaged volume, which are not contained in the
training data. As such, the full testing RoI of this dataset favors
“conservative” methods, i.e., methods that have higher split rates.

To test the plain neuropil segmentation accuracy, we further
cropped two RoIs (∼2.2 × 103µm3 and ∼2.6 × 103µm3) inside the
testing region, such that they contain only dense neuropil (see
Supplemental Section D.3.3 for details).

On the two sub RoIs, LSDs outperform other affinity-based
methods and are comparable to FFN, (Fig. 5.B,C). Consistent with
the Zebrafinch and Hemi-brain results, using an auto-context
approach seems to generate the best results. On sub RoI 1, AcLsd
slightly exceeds the accuracy of FFN (VoI sum: 0.625 vs 0.700,
respectively). We observe similar results on sub RoI 2 (VoI sum:
0.761 vs 0.780, respectively).

These results highlight the need for masking neuropil when
processing large volumes, as was done in the Zebrafinch dataset.
Interestingly, LR affinities perform poorly across RoIs, which
might suggest that an increased affinity neighborhood is sometimes
not sufficient for improving direct neighbor affinities.

3.5 Throughput

In addition to being accurate, it is important for neuron segmen-
tation methods to be fast and computationally inexpensive. As
described in the introduction, the acquisition size of datasets is
growing rapidly and approaches should therefore aim to com-
plement this trajectory. LSD-based methods can be parallelized
in the same manner as Baseline affinities, making them a good
candidate for the processing of very large datasets or environments
with limited computing resources. In our experiments, prediction
and segmentation of affinity-based methods was done in a block-
wise fashion, allowing parallel processing across many workers,
see Fig. 7 for an overview. This allowed for efficient segmentation
following prediction (Table 2.B).

When considering computational costs in terms of floating
point operations (FLOPs), we find that the AcRLsd network
(the computationally most expensive of all LSD architectures)
is two orders of magnitude more efficient than FFN, while pro-
ducing a segmentation of comparable quality (Fig. 3.E). For this
comparison, we computed FLOPs of all affinity-based methods
during prediction (see Supplemental Section E for details). For
FFN, we used the numbers reported in Januszewski et al. (2018),
limited to the forward and backward passes of the network, i.e.,
the equivalent of the prediction pass for affinity-based methods.
We limit the computational cost analysis to GPU operations,
since FLOP estimates on CPUs are unreliable and the overall
throughput is dominated by GPU operations. We therefore only
consider inference costs for all affinity-based networks, since
agglomeration is a post-processing step done on the CPU. To
keep the comparison to FFN fair, we do not count FLOPs during
FFN agglomeration, although it involves a significant amount of
GPU operations. Table 2.A summarizes the computational costs
of all investigated methods and provides throughput numbers on
the hardware used in this study. Generally, affinity-based methods
are more computationally efficient than FFN by two orders of
magnitude.

4 Discussion
The main contribution of this work is the introduction of LSDs
as an auxiliary learning task for neuron segmentation. We demon-
strated that, when compared to other affinity-based methods, the
LSDs consistently help to improve neuron segmentations across
specimen, resolution, and imaging techniques. We also found
results to be competitive with the current state of the art approach,
while being two orders of magnitude faster. All methods, datasets,
and results are publicly available9, which we hope will be a useful
starting point for further extensions and a benchmark to evaluate
future approaches in a comparable manner.

On the Zebrafinch dataset, the largest dataset both in terms
of image data and available ground-truth, LR and Malis did not
exceed the accuracy of the Baseline network. This is surprising
considering that LR also uses an auxiliary task to improve direct
neighbor affinity predictions. This observation might well be due
to differences in how masks are handled during training, which
we will discuss in more detail in Section 4.4. We found those
results generally confirmed on the Hemi-brain dataset, with the
exception of Malis, which performed better on this dataset than
on Zebrafinch.

Although relatively small in comparison, the Fib-25 dataset
nevertheless provided insights into network performance in the
periphery of dense neuropil. On the full RoI, both auto-context
LSD networks performed very poorly, while Malis was on par
with FFN. This is due to increased false merges in the periphery,
which proliferate into the testing RoI. Networks that favor splitting
over merging, such as Malis and FFN, are consequently less
affected. Further analysis on two sub RoIs, both contained entirely
within the neuropil mask and the testing RoI, confirmed this to be
the case: here, LSD networks improve over other affinity networks
and are again competitive with FFN. These results highlight the
importance of masking when processing large volumes.

4.1 Metric Evaluation
An important but challenging task is finding a robust metric for
assessing the quality of a neuron segmentation. Ideally, such a
metric reflects the amount of time needed to proofread a segmen-
tation. Here, we presented results in terms of VoI and ERL, two
commonly used metrics for this task.

VoI directly reports the amount of split and merge errors.
Being a voxel-wise metric, however, VoI can be sensitive to
slight, but systematic, shifts in boundaries. At the same time,
small topological changes might go unnoticed, which is especially
problematic in fine neurites in the vicinity of synapses (Funke
et al., 2017).

ERL reports the expected error-free path-length of a re-
construction with respect to skeleton ground-truth. Similar to
VoI, ERL is not sensitive to small topological changes close to
terminals. Furthermore, ERL disproportionately punishes merge
errors and subsequently favors split-preferring methods (Plaza and
Funke, 2018). Additionally, we found that ERL increases non-
monotonically with varying volume sizes (Fig. 3.D), which is due
to the fragmentation of skeletons in volumes that are not large
enough to contain entire neurons.

Consequently, neither method directly reflects the labor re-
quired for proofreading a segmentation, which is arguably the
relevant quantity to optimize (Plaza, 2016; Funke et al., 2017).

9https://github.com/funkelab/lsd
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Figure 6: Qualitative examples showing predicted affinities and LSD components on Fib-25 dataset. Scale bar = 500 nm. Top row shows
raw data. Arrows correspond to example plasma membranes. A baseline architecture (row two) fails to distinguish these boundaries,
which could lead to possible errors in a resulting segmentation. The LSDs (bottom 4 rows) help to improve the affinites generated by
the MtLsd, AcLsd and AcRLsd networks.
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(A) Prediction

Method Workers Total Process Time (seconds) Throughput (µm3/ GPU seconds) teraFLOPs

LSDs 100 (2080Ti) 7,090 1.093 437,000
Baseline 60 (2080Ti) 8,449 1.528 437,000

LR 60 (2080Ti) 10,596 1.218 440,000
Malis 60 (2080Ti) 8,522 1.515 437,000
FFN 1,000 (P100) 11,054 0.07 70,500,000

MtLsd 60 (2080Ti) 9,193 1.404 440,000
AcLsd 15 (V100) 43,972 1.174 874,000

AcRLsd 24 (V100) 37,837 0.854 874,000

(B) Segmentation (MtLsd example)

Method Workers Total Process Time (seconds) Throughput (µm3/ CPU seconds)

Watershed 100 CPUs 7,780 0.996
Agglomeration 100 CPUs 19,859 0.390

Table 2: Computational costs on Zebrafinch Benchmark Roi.

This quantity depends on the available tools for proofreading, and
in particular on the amount of interactions needed to fix errors of
different kinds: False splits might be hard to find, but do require
only one interaction to merge. False merges, on the other hand,
might be easy to spot, but the number of interactions needed
to fix them depends greatly on the proofreading tool. Current
proofreading tools10,11 allow annotators to correct merge errors
with a few interactions. We therefore introduced the MCM, a
metric which uses graph cuts to emulate the amount of interactions
required to correct false merges in a segmentation. We observed
a linear growth of MCM with volume size (Fig. 3.C), which is a
necessary condition for neuron segmentation metrics that measure
the amount of proofreading effort needed (assuming an equal
distribution of errors).

Unfortunately, MCM is computationally quite expensive. The
sequence of graph-cuts needed for the evaluation of merge errors
quickly becomes infeasible on large volumes. However, MCM
shows general ranking agreement with VoI, evaluated on 11
randomly sampled sub-RoIs in Zebrafinch (Fig. 10) and across
different thresholds (Supplemental Fig. 14). These findings suggest
that VoI can serve as a reasonable proxy to rank methods based
on their expected proofreading time.

Additionally, we find VoI to be a robust metric for the vali-
dation of method parameters: For each affinity-based network, the
threshold minimizing VoI sum on the validation set is also close
to the best threshold on the testing set (Supplemental Fig. 12).
This property is of practical relevance, as in any real-world
scenario hyperparameters have to be adjusted on a volume that
is significantly smaller than the target volume. Unfortunately, ERL
does not seem to exhibit this property to the same degree: the
best validation thresholds gradually diverge from the best testing
thresholds as scale increases (Supplemental Fig. 13), which makes
it difficult to extrapolate segmentation accuracy from a validation
dataset.

4.2 Auxiliary Learning for Boundary Prediction
Auxiliary learning tasks have been shown to improve network
performance across different applications. One possible explana-
tion for why auxiliary learning is also helpful for the prediction

10https://flywire.ai
11https://github.com/janelia-flyem/NeuTu

of neuron boundaries is that the additional task incentivizes the
network to consider higher-level features. Predicting LSDs is likely
harder than boundaries, since additional local structure of the
object has to be considered. Merely detecting an oriented, dark
sheet (e.g., plasma membranes) is not sufficient; statistics of the
whole neural process have to be taken into account. Those statistics
rely on features that are not restricted to the boundary in question.
Therefore, the network is forced to make use of more information
in its receptive field than is necessary for boundary prediction
alone. This, in turn, increases robustness to local ambiguities and
noise for the prediction of LSDs. As a welcome side-effect, it
seems that the network learns to correlate boundary prediction
with LSD prediction, which explains why the boundary prediction
benefits from using the LSDs as an auxiliary objective.

Surprisingly, we see that LR affinities do not perform as
well across the investigated datasets. While LR affinities share
some of the benefits of LSDs, they might not be as efficient as
LSDs in encoding higher-level features. For example, LR affinities
have blind spots (missing neighborhood steps), whereas LSDs are
spatially homogeneous. Additionally, we found LR affinities to be
detrimental when used with masking of glia and other structures.
It is likely harder to correlate nearest neighbor affinities with a
long-range neighborhood in the presence of masks.

While Lee et al. (2017) saw superhuman accuracy using an
increased affinity neighborhood on the SNEMI3D challenge, the
processed volume was relatively small (∼110µm3). Our results
suggest that it is hard to correlate accuracy on small volumes
to accuracy on large volumes (Fig. 3.A)12. Additionally, we only
consider an increased affinity neighborhood and not other aspects
of the original LR implementation, such as residual modules in
the U-Net and inference blending, which might be essential for
further performance increases. Finally, the SNEMI3D dataset has
an anisotropy factor of ∼5, whereas the data we test on here has an
anisotropy factor of either ∼2 (Zebrafinch) or is isotropic (Hemi-
brain, Fib-25).

4.3 Auto-Context Refinement
We found that using an auto-context approach greatly improved
resulting segmentations (Fig. 3.A). We tested if this increase

12Also shown by the authors of Januszewski et al. (2018) in supplementary
tables 4 and 5.
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Figure 7: Overview of block-wise processing scheme. A. Example 32 µm RoI showing total block grid. B. Required blocks to process
example neuron. Scale bar = ∼ 6µm. C. Corrsponding orthographic view highlights supervoxels generated during watershed. Block size
= 3.6 µm. Inset shows respective raw data inside single block (scale bar = ∼ 1µm). D. Supervoxels are then agglomerated to obtain a
resulting segment. Note: While this example shows processing of a single neuron, in reality all neurons are processed simultaneosuly.

in accuracy was consistent when using affinities as the input
to the second network (i.e., a Baseline auto-context approach,
AcBaseline), and found that it made no significant improvements
to the Baseline network (Fig. 8).

We hypothesize that predicting affinities from affinities is too
similar to predicting affinities from raw EM data. Specifically, we
suspect that the AcBaseline network simply copies data in the
second pass rather than learning anything new. Easy solutions,
such as looking for features like oriented bars, already produce
relatively accurate boundaries in the first pass. Consequently, there
is little incentive for the network to change course in the second
pass. Translating from LSDs to affinities, on the other hand,
is a comparatively different task, which forces the network to
incorporate the features from the LSDs in the second pass. The
subsequent boundary predictions seem to benefit from this.

4.4 Masking
Binary masks are commonly used to limit neuron segmentation to
dense neuropil and exclude confounding structures like glia cells.
Recent approaches to processing large volumes have incorporated
tissue masking at various points in the pipeline (Januszewski et al.,
2018; Li et al., 2019; Dorkenwald et al., 2019; Scheffer et al.,
2020), to prevent errors in areas that were underrepresented in the
training data.
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Figure 8: Zebrafinch, Benchmark Roi, VoI split vs VoI merge,
auto-context comparison.

Our results confirm the importance of masking. We used a
neuropil mask which excluded cell bodies, blood vessels, myelin,
and out-of-sample (background) voxels (see Supplemental Fig. 20
for a visualization). Across all investigated methods, the accuracy
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degraded substantially on larger RoIs when processed without
masking (see Fig. 9, Supplemental Fig. 11).

Masking of irrelevant structures can also be incorporated in the
training process. The Zebrafinch training volumes already had
some glial processes masked out. We trained all networks to pre-
dict zero affinities in these regions (see Supplemental Fig. 18 for
a visualization). We then discarded fragments with close to zero
affinity values during agglomeration. Methods which succeeded in
learning to mask these areas (Baseline, MtLsd, AcLsd, AcRLsd)
produced better results than those that did not (Malis, LR).
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Figure 9: Zebrafinch, mask delta VoI sum vs RoI.

4.5 Accuracy Extrapolation
One of the challenges of deep learning is to find representative
testing data and metrics to infer production performance. This is
especially challenging for neuron segmentation, considering the
diversity of neural ultrastructure and morphology found in EM
volumes. While challenges like CREMI13 and SNEMI3D14 make
an effort to include representative training and testing data, the
implications for model performance on larger datasets are not
straight forward.

Our results suggest that testing on small volumes provides
limited insight into the quality of a method when applied to larger
volumes. For example, the total volume of the three CREMI testing
datasets (∼1056 µm3) is still less than the smallest Zebrafinch
(∼1260 µm3) and Hemi-brain (∼1643 µm3) RoIs. As shown in
Fig. 3 and Fig. 4, the smallest volumes are not indicative of
performance on larger volumes. In this context, it seems difficult
to declare a clear “winner” when it comes to neuron segmentation
accuracy. Dataset sizes and the choice of evaluation metrics greatly
influence which method is considered successful.

5 Conclusions and Future Directions
Although adding LSDs as an auxiliary learning task significantly
increases accuracy, it is unclear whether different shape descrip-
tors could lead to further improvements. The LSDs proposed here
were subjectively engineered based on features that we expected
to be important to encode object shape. Future experiments could
incorporate different features or focus on learning an optimal
embedding rather than a hand-designed one. In that context, we

13https://cremi.org
14http://brainiac2.mit.edu/SNEMI3D

note that it is not clear whether each component of the LSD
embedding contributes equally to the improvement of affinity
predictions.

Currently, we only use LSDs as an auxiliary learning task.
As a result, affinities are still required to produce a segmentation.
Whether this is really needed is an open question, since the pre-
dicted LSDs already identify objects reliably. An interesting future
direction would be to use the predicted local shape information di-
rectly for fragment agglomeration. As an intermediate step, LSDs
can serve to provide a second source of information for identifying
errors in a segmentation. Once a segmentation is generated, LSDs
could be calculated on the labels and then compared with the
initial LSD predictions. The difference between the two would
likely highlight regions containing errors (Fig. 23.C).

LSDs were designed for the goal of neuron segmentation but
might also be applicable to other instance segmentation problems.
As an example, LSDs have already been successfully used to gen-
erate segmentations of cell bodies and mitochondria (Fig. 23.A,B).
Additionally, Gallusser et al. (2020) demonstrate promising results
using LSDs for Golgi apparatus and endoplasmic reticulum seg-
mentation. In general, we believe that objects that have a blob-like
structure such as other organelles and various cell types would
likely benefit from LSDs. Furthermore, the direction vectors of
the LSDs provide insight into neuropil vs. tract regions of the
brain (Fig. 23.D). These predictions could be leveraged in order
to generate better tissue masks. While the LSDs presented here
were conceived for a specific instance segmentation task, it would
be interesting to see the LSDs extended and applied to other
microscopy problems.
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A Local Shape Descriptors
We define the notational shorthand

fik (v) = vk bi(v) k ∈ {x, y, z} (9)
fikl(v) = vkvl bi(v) k, l ∈ {x, y, z}, (10)

and use those to rewrite (4) as follows:

mi
k(v) = (fik ∗w)(v)/si(v) k ∈ {x, y, z} (11)

cikl(v) = (fikl ∗w)(v)/si(v) −mi
k(v)mi

l(v) k, l ∈ {x, y, z}. (12)

It can easily be seen that (11) is equal to the local center of mass,
limited both by the object mask b and the local window w:

mi
k(v) = (fik ∗w)(v)/si(v)
=

1
si(v)

∑
v′∈Ω

fik (v′)w(v − v′)

=
1

si(v)
∑
v′∈Ω

v′k bi(v′)w(v − v′)

Similarly, the computation of the local covariance of voxel coor-
dinates is equivalent to a convolution of the local window w with
fikl(v). The local covariance is defined as:

cikl(v) =
1

si(v)
∑
v′∈Ω
(v′k − v̄k )(v′l − v̄l) bi(v′)w(v − v′)

=
1

si(v)
∑
v′∈Ω
(v′k −mi

k (v))(v′l −mi
l(v)) bi(v′)w(v − v′)

=
1

si(v)
∑
v′∈Ω

(
v′kv
′
l − v′k mi

k (v) − v′l mi
k(v) +mi

k (v)mi
l(v)

)
·

· bi(v′)w(v − v′)

Rearranging terms reveals that ci
kl
(v) can efficiently be computed

via a convolution as well:

cikl(v) =
1

si(v)

( ∑
v′∈v

v′kv
′
l bi(v′)w(v − v′)−

mi
l(v)

∑
v′∈v

v′k bi(v′)w(v − v′)−

mi
k (v)

∑
v′∈v

v′l bi(v′)w(v − v′)+

mi
k(v)mi

l(v)
∑
v′∈v

bi(v′)w(v − v′)
)

cikl(v) =
1

si(v)

( ∑
v′∈v

v′kv
′
l bi(v′)︸      ︷︷      ︸

fikl (v′)

w(v − v′)−

mi
l(v) (fik ∗w)(v)︸      ︷︷      ︸

mi
k
(v) si (v)

−

mi
k(v) (fil ∗w)(v)︸      ︷︷      ︸

mi
l
(v) si (v)

+

mi
k (v)mi

l(v) si(v)
)

=
1

si(v)

(
(fikl ∗w)(v) − si(v)mi

l(v)mi
k (v)

)
=(fikl ∗w)(v)/si(v) −mi

l(v)mi
k(v)

B Min-Cut Metric

The Min-Cut Metric (MCM) measures the number of edit op-
erations that need to be performed by a human annotator in a
hypothetical proofreading tool that allows to: (1) merge wrongly
split segments and (2) split wrongly merged segments by means
of a min-cut15. To this end, we assume that the segmentation
to interact with results from an agglomeration of fragments (or
“supervoxels”). In particular, we assume that a fragment graph
G = (V, E, s) is available, where each node v ∈ V corresponds to a
fragment and edges (u, v) ∈ E are introduced between neighboring
fragments. Each edge e ∈ E has an associated merge score
s(e), which denotes under which agglomeration threshold the two
incident fragments are to be merged into the same segment. A
segmentation of the fragment graph is induced by a merge score
threshold θ. Let Eθ = {e ∈ E | s(e) ≤ θ} be the set of filtered
edges. Each connected component in the graph Gθ = (V, Eθ ) then
corresponds to one segment. We will refer to the segment ID of a
fragment under a given threshold θ as lθ (v).

For the MCM metric, we assume ground-truth is available in
the form of skeletons. Let T be the set of ground-truth skeletons,
with each t ∈ T being a set of skeleton nodes. We will refer to
the skeleton ID of a skeleton node a as s(a) and the fragment
underlying the skeleton node as lθ (a).

Given a segmentation lθ , MCM first simulates the splitting of
all wrongly merged structures as given by ground-truth skeletons.
For that, we first identify merging segments, i.e., segments that
contain nodes from more than one skeleton. For each merging
segment, we iteratively perform a series of min-cuts through the
fragment graph, until the skeletons are separated. For that, we
repeatedly find a pair of skeleton nodes a and b, such that

1) s(a) , s(b) (the skeleton nodes belong to different skeletons),
2) lθ (a) = lθ (b) (the underlying fragments belong to the same

segment), and
3) the Euclidean distance between a and b is minimized.

We then perform a min-cut on the fragment graph, with u and
v as the source and sink, respectively, and the capacity c(e) of
edges e in the fragment graph set proportional to −s(e), such that
edges with a high merge score are cheaper to cut. Once the min-
cut is found, all edges of the cut are removed from Eθ and the
segmentation is updated accordingly. For a visualization of this
procedure, see Supplemental Fig. 22.A. This procedure aims to
mimic a proofreader, who identified a merge and consequently
picked two close locations on either side of the merge to perform
a split operation.

In some cases, a min-cut can fail to separate all nodes of the
merged skeletons with a single cut from two selected nodes. In this
case, the procedure is repeated until all skeletons are separated,
leading to additional split errors (see Supplemental Fig. 22.B for
an example).

After all skeletons are separated, the remaining split errors are
counted. For that, we assume that each split requires one merge
operation to be fixed. More generally, we identify the segments
underlying each skeleton t: Let L(t) = {lθ (a) | a ∈ t} be the set
of segments underlying a skeleton. The number of required merge
operations is then recorded as 1 − |L(t)|.

15Also referred to as “cleaving”.
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C Zebrafinch
C.1 Training

C.1.1 Data
33 volumes of densely labeled neurons6 were used for training.
Each volume was padded with raw data. 30 volumes had raw
dimensions of ∼7, 4.95, 4.95µm (zyx) and label dimensions of ∼3,
1.35, 1.35µm. The remaining 3 volumes had raw dimensions of
∼6.6, 5.9, 5.9µm and label dimensions of ∼2.6, 2.3, 2.3µm. Some
regions containing glial processes were already set to zero and
incorporated during network training (Supplemental Fig. 17.A). A
labels mask (1 inside labels RoI, null outside) was generated and
used during training.

C.1.2 Networks
All methods used the U-Net architecture described in Funke et al.
(2019). Networks consisted of three layers and were downsampled
by a factor of [1,3,3] in the first two layers and [3,3,3] in the last
layer. The reverse was done for the upsampling path. 12 initial
feature maps were used and features were multiplied by a factor
of 5 between layers. The resulting data was further convolved and
passed through a sigmoid activation to get from 12 output feature
maps16 to either 3 (affinities) or 10 feature maps (LSDs). All
networks used an MSE loss, minimized with an Adam optimizer.
The Malis network was trained to 10k iterations using MSE to
initialize affinities and was then switched to Malis loss for the
remainder of training.

Non auto-context networks had an input shape (raw) of
[84,268,268] and output shape (labels, LSDs, affinities) of
[48,56,56] (voxels, zyx). Auto-context networks had an input
shape (raw) of [120,484,484], an intermediate shape (predicted
LSDs) of [84,268,268], and an output shape (labels, affinities) of
[48,56,56] (see Supplemental Fig. 19.A for visualization of auto-
context training shapes on Fib-25). The predicted LSDs used in
the intermediate shape were taken from a pre-trained network
which predicted LSDs from raw. Non auto-context networks were
trained to 400k iterations. Auto-context networks were trained to
∼200k iterations following the 400k iterations of LSD training.
See Supplemental Table 3 for a breakdown of the MtLsd network
as an example.

All networks used a single voxel affinity neighborhood [1,1,1].
The LR network used three additional neighborhood steps of
[3,3,3], [5,9,9] and [15,27,27]. The computed LSDs used a sigma
of 120 nm and a downsampling factor of two.

C.1.3 Pipeline
Each training batch was randomly picked from one of the 33
training volumes. For each batch, the raw data was first normalized
and padded with zeros. Labels were padded with the maximum
padding required to contain at least 50% of ground-truth data
assuming a worst case rotation of 45°. Data was randomly sampled
from each dataset using a labels mask to ensure every batch con-
tained at least 50% of ground-truth data. Data was then augmented
with elastic transformations, random mirrors + transposes, and
intensities (see Supplemental Table 3 for augmentation hyper-
parameters used for example MtLsd network). The following was
done to the respective networks:

16MtLsd network had 14 output feature maps to account for 13 final feature
maps from the affinities (3) and LSDs (10)

• Baseline, LR - Label boundaries were first eroded by a
single voxel. Ground truth affinities were calculated on the
labels using the pre-defined affinity neighborhoods and a
scale array was created to balance loss between class labels.
Training: [raw + gt affs] → pred affs.

• Malis - Label boundaries were eroded. If training loss was in
Malis phase (i.e. after 10k iterations), connected components
were relabelled before calculating ground-truth affinities. If
training loss was in MSE phase (i.e. before 10k iterations),
labels were subsequently balanced. Training: [raw + gt affs]
→ pred affs.

• LSDs - Ground truth LSDs were calculated on the labels us-
ing the pre-defined sigma and downsampling factor. Training:
[raw + gt LSDs ] → pred LSDs.

• MtLsd - Label boundaries were eroded. Ground truth LSDs
were calculated followed by ground-truth affinities. Labels
were then balanced. Training: [raw + gt LSDs + gt affs] →
[pred LSDs + pred affs].

• AcLsd, AcRLsd - Label boundaries were eroded, ground-
truth affinities were calculated, and labels were balanced.
LSDs were then predicted in a slightly larger region and
used as input to train the affinities. Training: [raw + gt LSDs
] → pred LSDs → pred affs. For AcRLsd, cropped raw
was incorporated in the second pass, in addition to predicted
LSDs.

This process was repeated for a pre-defined number of itera-
tions (generally until loss convergence).

C.2 Prediction
Prediction was done in a block-wise fashion restricted to the
Benchmark Roi. Individual workers used Gunpowder4 to pre-
dict output data (i.e. affinities or LSDs) and were distributed
throughout the volume with DaisyNguyen et al. (2020). Block
size was chosen with respect to how much data could fit in GPU
memory. Most networks had a smaller block size in order to fit on
2080 RTX GPUs (∼12 GB RAM). While this increased the total
number of blocks to process, the amount of workers available to
use was sufficient to minimize total processing time. The auto-
context networks were too large to fit on 2080 RTX GPUs and
were therefore run on Tesla V100 GPUs. While there were less
V100’s available, the block size could be greatly increased (∼32
GB RAM), decreasing the total amount of blocks to process.
LSDs were physically written to file before use in the auto-context
networks. This was done for visualization; prediction could be
adapted to generate LSDs on the fly. All networks wrote affinities
to file and then subsequently used them for segmentation.

C.3 Segmentation
C.3.1 Watershed
Seeded watershed17 was done on the affinities generated during
prediction. Both non-masked and neuropil-masked supervoxels
were produced. Due to data anisotropy, supervoxels were extracted
for each section separately. An epsilon agglomeration was used
to agglomerate fragments to a predefined threshold (0.1). This
was done to decrease the number of RAG nodes during the full
agglomeration step. Supervoxels which had an average affinity

17https://github.com/funkey/waterz
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value lower than a pre-defined threshold (0.05) were filtered out
of the RAG and set to zero in the resulting datasets. A block size
of 3.6µm3 and context of [12,27,27] voxels (zyx) were used.

C.3.2 Agglomeration
Supervoxels were agglomerated using hierarchical region
agglomeration17 in which edges with lower affinity scores are
merged earlier. We empirically chose to use both 50 and 75
quantile merge functions since they produced the best results in
Funke et al. (2019). The same block size/context as watershed
were used.

C.3.3 Segment
The center point of the Benchmark Roi was used to grow sub
RoIs. The first sub RoI was created by growing the center point
in each dimension (positive and negative) by the block size used
during watershed and agglomeration. This resulted in 10.8µm edge
lengths (3.6µm + (3.6 x 2)). This RoI was again grown by the block
size to produce an RoI with 18µm edge lengths (10.8µm + (3.6 x
2)). This was repeated for a total of 10 RoIs (in addition to the
Benchmark Roi). Segmentations were created for each RoI by
cropping the RAG and relabelling connected components on the
graph18. This was done over a range of thresholds for each network
(threshold range = [0 - 1], step size = 0.02, total thresholds = 50).
Segmentations were created for both masked / non-masked data
and both merge functions.

C.4 Evaluation
Manually traced skeletons6 (12 validation, 50 testing) were used
for evaluation. For each sub RoI, skeletons were cropped, either
masked to neuropil or not masked, and connected components
were relabelled18. For affinity-based methods, fragment ids were
first mapped to skeleton ids in each block. This mapping was then
used to assign segment ids to skeleton ids for each threshold, using
the lookup tables generated in Supplemental Section C.3.3. A site
mask was used to restrict segments to the skeleton nodes. The
resulting node - segment mapping was used to compute19 ERL,
NERL and VoI.

Additionally, on the first three sub RoIs, the MCM was cal-
culated using masked skeletons and segmentations. For the FFN,
a single segmentation6 was used to generate the node - segment
mappings. The full segmentation was downloaded20 and cropped
to each sub RoI, either masked or not masked, and connected
components were relabelled. Only ERL, NERL and VoI were
calculated as there were no supervoxels to use for the MCM.
For all affinity-based methods, we repeated these steps using the
validation skeletons on the benchmark RoI. The optimal thresholds
indicated in test set plots were determined by the thresholds which
minimized VoI (for VoI and MCM plots) and maximized ERL
(for ERL plots).

D FIB-SEM volumes
D.1 Training
D.1.1 Data
Hemi-brain: 8 volumes of densely labeled neurons7 were used for
training. Volumes were taken from various neuropils21 contained

18https://github.com/funkelab/funlib.segment
19https://github.com/funkelab/funlib.evaluate
20https://github.com/seung-lab/cloud-volume
21Ellipsoid Body: 2, Protocerebral Bridge: 2, Fan-Shaped Body: 2,

Lobula Plate: 1, Lateral Horn: 1

within the dataset generated in (Scheffer et al., 2020). The Lobula
Plate and Lateral Horn volumes contained ∼4µm3 of raw data
and ∼2µm3 of labeled data, while the others contained ∼6µm3 of
raw data and ∼4µm3 of labeled data (Supplemental Fig. 17.B).

Fib-25: 4 volumes of densely labeled neurons7 were used for
training. The labels were not padded with raw as was done in the
Zebrafinch and Hemi-brain volumes. Two volumes contained
∼4µm3 of raw / labeled data, and two volumes contained 2µm3

of raw / labeled data (Supplemental Fig. 17.C). Label masks were
generated for all volumes, as done in the Zebrafinch.

D.1.2 Networks

Networks consisted of same architecture as Zebrafinch networks
except downsampling was isotropic with a factor of [2,2,2] in
the first two layers and [3,3,3] in the last layer. Features were
multiplied by a factor of 6 between layers.

Non auto-context networks had an input shape (raw) of
[196,196,196] and output shape (labels, LSDs, affinities) of
[92,92,92]. Auto-context networks had an input shape (raw)
of [304,304,304], an intermediate shape (predicted LSDs)
of [196,196,196], and an output shape (labels, affinities) of
[92,92,92]. Non auto-context networks were trained to 400k it-
erations. Auto-context networks were trained to ∼300k iterations
following 400k iterations of LSD training. See Supplemental
Table 4 for a breakdown of the MtLsd network as an example.

All networks used a single voxel affinity neighborhood [1,1,1].
The LR network used three additional neighborhood steps of
[3,3,3], [5,5,5] and [13,13,13]. The computed LSDs used a sigma
of 80 nm and a downsampling factor of two.

D.1.3 Pipeline

All networks were trained following the same pipeline as the
Zebrafinch networks using either 8 (Hemi-brain) or 4 (Fib-
25) ground-truth volumes. The augmentations were computed
isotropically, in contrast to the Zebrafinch networks (see Sup-
plemental Table 4 for augmentation hyper-parameters used for
example MtLsd network). For Fib-25 training, affinities and
LSDs were masked at the boundaries to ensure that prediction
on the irregularly shaped Fib-25 volume did not include boundary
artifacts (Supplemental Fig. 19.B).

D.2 Prediction

For the Hemi-brain, prediction was restricted to the three RoIs
described in Section 3.3.2. For Fib-25, prediction was done on the
full Fib-25 volume (including the background). The process was
the same as in the Zebrafinch.

D.3 Segmentation

D.3.1 Watershed

Fragment extraction was performed isotropically and used no
epsilon agglomeration step or mean affinity filtering, in contrast
to the Zebrafinch. A block size of 3µm3 and context of 31 voxels
were used. For the Hemi-brain, watershed was done on each
predicted RoI and restricted using an Ellipsoid Body mask7. For
Fib-25, an irregularly shaped tissue mask6 was used22.

22Mask contains some background and cell bodies
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D.3.2 Agglomeration
Agglomeration was done using the same merge functions on the
Zebrafinch. The same block size and context from watershed
were used.

D.3.3 Segment
For the Hemi-brain, segmentations were created for the three
processed RoIs. For Fib-25, segmentations were created for the
full Fib-25 RoI and two sub RoIs. The same threshold range from
the Zebrafinch was used.

D.4 Evaluation
Hemi-brain: dense ground-truth7 and an FFN segmentation6
were available for the entire Hemi-brain. Both volumes were
downloaded23,24 and cropped to the three established RoIs.
The cropped datasets were then constrained to the Ellipsoid
Body. The ground-truth was filtered using a whitelist of proof-
read ids. Connected components were relabelled and boundaries
were slightly eroded. Fib-25: dense ground-truth7 and an FFN
segmentation6 were already cropped to the testing RoI. The
ground-truth was already filtered with a whitelist and boundaries
were already eroded. Both volumes were further cropped to the
two sub RoIs and connected components were relabelled. For
affinity-based methods, VoI was calculated between the consol-
idated ground-truth and segmentations over all thresholds on each
RoI. For the FFN, VoI was calculated on the single segmentation
for each RoI.

E Throughput
For each affinity-based network, we calculated the amount of float-
ing point operations (FLOPs) for the processing of one block25
using TensorFlow’s Profiler26 (see Supplemental Table 5 for a
breakdown by operation). From the computed FLOPs and the
block size, we derived FLOPs/µm.

For FFN, FLOPs are reported for the full Zebrafinch RoI
in Januszewski et al. (2018), which we divided by the full RoI
volume to get FLOPs/µm.

23https://github.com/janelia-flyem/dvid
24https://github.com/janelia-flyem/neuclease
25One block is defined as the largest output volume that can be predicted

by a network in one pass on the respective GPU it was evaluated on.
26https://www.tensorflow.org/guide/profiler
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Parameter Value
Input feature maps 12
Layer fmap scale 5
Downsampling factors [[1,3,3],[1,3,3],[3,3,3]]
Output feature maps 14
Input shape [84,268,268]
Output shape [48,56,56]
Loss MSE
Optimizer Adam
Learning rate 0.5 × 10−4

β1 0.95
β2 0.999
ε 1 × 10−8

Iterations 400,000

Augmentation Parameter Value
Elastic control point spacing (4,4,10)

jitter sigma (0, 2, 2)
subsample 8

Rotation axis x,y,z
angle in [0, 2π]

Section Defects slip probability 0.05
shift probability 0.05
max misalign 10

Mirror axes x,y,z
Transpose axes x, y
Intensity scale in [0.9, 1.1]

shift in [−0.1, 0.1]

Table 3: Training parameters and augmentations4 of MtLsd network on Zebrafinch dataset.

Parameter Value
Input feature maps 12
Layer fmap scale 6
Downsampling factors [[2,2,2],[2,2,2],[3,3,3]]
Output feature maps 14
Input shape [196,196,196]
Output shape [92,92,92]
Loss MSE
Optimizer Adam
Learning rate 0.5 × 10−4

β1 0.95
β2 0.999
ε 1 × 10−8

Iterations 400,000

Augmentation Parameter Value
Elastic 1 control point spacing (40,40,40)

jitter sigma (0, 0, 0)
subsample 8

Rotation 1 axis x,y,z
angle in [0, 2π]

Section Defects 1 slip probability 0
shift probability 0
max misalign 0

Mirror axes x,y,z
Transpose axes x,y,z
Elastic 2 control point spacing (40,40,40)

jitter sigma (2, 2, 2)
subsample 8

Rotation 2 axis x,y,z
angle in [0, 2π]

Section Defects 2 slip probability 0.01
shift probability 0.01
max misalign 1

Intensity scale in [0.9, 1.1]
shift in [−0.1, 0.1]

Table 4: Training parameters and augmentations4 of MtLsd network on FIB-SEM datasets.
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Figure 11: VoI Sum vs RoI on masked (solid) and non-masked (dashed) Zebrafinch data.
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Operation FLOPs

unet_layer_2_left_1/convolution 940584960000
unet_layer_2_right_0/convolution 786542400000
unet_layer_3_left_1/convolution 419904000000
unet_layer_1_left_1/convolution 416320819200
unet_layer_2_right_1/convolution 338411520000
unet_layer_1_right_0/convolution 226738828800
unet_layer_2_left_0/convolution 208980000000
unet_layer_0_left_1/convolution 164826316800
unet_layer_3_left_0/convolution 123832800000
unet_layer_1_right_1/convolution 105305702400
unet_layer_1_left_0/convolution 87354028800
unet_layer_0_right_0/convolution 84455094528

gradients/unet_up_3_to_2/conv3d_transpose_grad/Conv3D 83980800000
unet_layer_0_right_1/convolution 46982799360

gradients/unet_up_2_to_1/conv3d_transpose_grad/Conv3D 22560768000
unet_layer_0_left_0/convolution 14151319488

gradients/unet_up_1_to_0/conv3d_transpose_grad/Conv3D 7020380160
embedding_0/convolution 1242931200

affs_0/convolution 372879360
unet_layer_0_left_0/BiasAdd 262061472

gradients/unet_layer_0_left_0/BiasAdd_grad/BiasAddGrad 262061460
gradients/AddN_3 254361600

unet_layer_0_left_1/BiasAdd 254361600
gradients/unet_layer_0_left_1/BiasAdd_grad/BiasAddGrad 254361588

unet_layer_1_left_0/BiasAdd 134805600
gradients/unet_layer_1_left_0/BiasAdd_grad/BiasAddGrad 134805540

unet_layer_1_left_1/BiasAdd 128494080
gradients/AddN_2 128494080

gradients/unet_layer_1_left_1/BiasAdd_grad/BiasAddGrad 128494020
unet_layer_3_left_1/kernel/Initializer/random_uniform 60750000

mean_squared_error/num_present 44390399
mean_squared_error/SquaredDifference 88780800

unet_layer_0_right_0/BiasAdd 65165968
gradients/unet_layer_0_right_0/BiasAdd_grad/BiasAddGrad 65165954

unet_layer_2_left_0/BiasAdd 64500000
gradients/unet_layer_2_left_0/BiasAdd_grad/BiasAddGrad 64499700

unet_layer_0_right_1/BiasAdd 62146560
gradients/AddN 62146560

gradients/unet_layer_0_right_1/BiasAdd_grad/BiasAddGrad 62146546
unet_up_1_to_0/BiasAdd 58503168

gradients/unet_up_1_to_0/BiasAdd_grad/BiasAddGrad 58503156
unet_layer_2_left_1/BiasAdd 58060800

gradients/AddN_1 58060800
gradients/unet_layer_2_left_1/BiasAdd_grad/BiasAddGrad 58060500

embedding_0/BiasAdd 44390400
gradients/mean_squared_error/Mul_grad/mul 44390400

gradients/mean_squared_error/Mul_grad/mul_1 44390400
gradients/mean_squared_error/SquaredDifference_grad/Neg 44390400
gradients/mean_squared_error/SquaredDifference_grad/mul 44390400

mean_squared_error/Mul 44390400
gradients/mean_squared_error/SquaredDifference_grad/mul_1 44390400
gradients/mean_squared_error/SquaredDifference_grad/sub 44390400

mean_squared_error/Sum 44390399
gradients/embedding_0/BiasAdd_grad/BiasAddGrad 44390390
gradients/mean_squared_error/Mul_grad/Sum_1 39951360

unet_up_2_to_1/BiasAdd 37601280
gradients/unet_up_2_to_1/BiasAdd_grad/BiasAddGrad 37601220

unet_layer_1_right_0/BiasAdd 34990560
gradients/unet_layer_1_right_0/BiasAdd_grad/BiasAddGrad 34990500

unet_layer_1_right_1/BiasAdd 32501760
gradients/unet_layer_1_right_1/BiasAdd_grad/BiasAddGrad 32501700

unet_up_3_to_2/BiasAdd 27993600
gradients/unet_up_3_to_2/BiasAdd_grad/BiasAddGrad 27993300

mean_squared_error_1/SquaredDifference 26634240
mean_squared_error_1/num_present 13317119

unet_layer_3_left_0/kernel/Initializer/random_uniform 12150000
unet_up_3_to_2/kernel/Initializer/random_uniform 12150000

unet_layer_2_right_0/BiasAdd 24276000
gradients/unet_layer_2_right_0/BiasAdd_grad/BiasAddGrad 24275700

unet_layer_2_right_1/BiasAdd 20889600
gradients/unet_layer_2_right_1/BiasAdd_grad/BiasAddGrad 20889300
gradients/mean_squared_error_1/SquaredDifference_grad/mul 13317120
gradients/mean_squared_error_1/SquaredDifference_grad/Neg 13317120

Operation FLOPs

gradients/mean_squared_error_1/SquaredDifference_grad/mul_1 13317120
mean_squared_error_1/Mul 13317120

gradients/mean_squared_error_1/Mul_grad/mul_1 13317120
gradients/mean_squared_error_1/Mul_grad/mul 13317120

affs_0/BiasAdd 13317120
gradients/mean_squared_error_1/SquaredDifference_grad/sub 13317120

mean_squared_error_1/Sum 13317119
gradients/affs_0/BiasAdd_grad/BiasAddGrad 13317117

unet_layer_2_right_0/kernel/Initializer/random_uniform 4860000
unet_layer_3_left_0/BiasAdd 7644000

gradients/unet_layer_3_left_0/BiasAdd_grad/BiasAddGrad 7642500
unet_layer_3_left_1/BiasAdd 5184000

gradients/unet_layer_3_left_1/BiasAdd_grad/BiasAddGrad 5182500
unet_layer_2_right_1/kernel/Initializer/random_uniform 2430000
unet_layer_2_left_1/kernel/Initializer/random_uniform 2430000
unet_layer_2_left_0/kernel/Initializer/random_uniform 486000
unet_layer_1_right_0/kernel/Initializer/random_uniform 194400

unet_up_2_to_1/kernel/Initializer/random_uniform 162000
unet_layer_1_right_1/kernel/Initializer/random_uniform 97200
unet_layer_1_left_1/kernel/Initializer/random_uniform 97200
unet_layer_1_left_0/kernel/Initializer/random_uniform 19440
unet_layer_0_right_0/kernel/Initializer/random_uniform 9072

unet_up_1_to_0/kernel/Initializer/random_uniform 6480
unet_layer_0_right_1/kernel/Initializer/random_uniform 5292
unet_layer_0_left_1/kernel/Initializer/random_uniform 3888
unet_layer_0_left_0/kernel/Initializer/random_uniform 324

embedding_0/kernel/Initializer/random_uniform 140
affs_0/kernel/Initializer/random_uniform 42

gradients/Slice_1_grad/sub 5
gradients/Slice_1_grad/sub_1 5
gradients/Slice_2_grad/sub 5
gradients/Slice_2_grad/sub_1 5

gradients/Slice_grad/sub 5
gradients/Slice_grad/sub_1 5

mean_squared_error_1/Greater 1
unet_up_1_to_0/mul 1
unet_up_3_to_2/mul_2 1
unet_up_3_to_2/mul_1 1
unet_up_3_to_2/mul 1
unet_up_3_to_2/add_2 1
unet_up_3_to_2/add_1 1
unet_up_3_to_2/add 1

unet_up_2_to_1/mul_2 1
unet_up_2_to_1/mul_1 1
unet_up_2_to_1/mul 1
unet_up_2_to_1/add_2 1
unet_up_2_to_1/add_1 1
unet_up_2_to_1/add 1

unet_up_1_to_0/mul_2 1
unet_up_1_to_0/mul_1 1

gradients/mean_squared_error_1/div_grad/RealDiv_2 1
Adam/mul_1 1

add 1
gradients/mean_squared_error/div_grad/Neg 1

gradients/mean_squared_error/div_grad/RealDiv 1
gradients/mean_squared_error/div_grad/RealDiv_1 1
gradients/mean_squared_error/div_grad/RealDiv_2 1

gradients/mean_squared_error/div_grad/mul 1
gradients/mean_squared_error_1/div_grad/Neg 1

gradients/mean_squared_error_1/div_grad/RealDiv 1
gradients/mean_squared_error_1/div_grad/RealDiv_1 1

unet_up_1_to_0/add_2 1
gradients/mean_squared_error_1/div_grad/mul 1

mean_squared_error/Equal 1
mean_squared_error/Greater 1
mean_squared_error/div 1

mean_squared_error_1/Equal 1
Adam/mul 1

mean_squared_error_1/div 1
unet_up_1_to_0/add 1
unet_up_1_to_0/add_1 1

Total 4083673765073

Table 5: FLOPs breakdown by operation for MtLsd on Zebrafinch dataset.
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Figure 12: VoI Sum vs threshold across Zebrafinch RoIs. Points correspond to thresholds which minimized VoI Sum on the validation
dataset.
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Figure 13: ERL vs threshold across Zebrafinch RoIs. Points correspond to thresholds which maximized ERL on the validation dataset.
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(F) MCM Sum vs threshold 25 µm RoI
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Figure 14: VoI serves as a reasonable proxy for evaluating large volumes. Comparison between VoI and MCM on Zebrafinch on first
three RoIs. Similarities are consistent on both Hist Quant 50 (top two rows) and Hist Quant 75 merge functions (bottom two rows).
VoI plots are cropped to the threshold range used in the MCM.
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Figure 15: Demonstration of ERL sensitivity. When transitioning from a ∼61µm3 to a ∼68µm3 RoI, the VoI Sum increases as expected
(A). This is not the case when considering ERL. All networks, with the exception of FFN and AcLsd, show decreases (B). Notably,
AcRLsd shows a pattern not consistent with VoI Sum. Breaking VoI Sum into false splits (C.) and merges (D.) shows that there is a
slight increase in the AcRLsd merge score between these two RoIs. Even if it is just a single added false merge, the resulting ERL is
drastically decreased.
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Figure 16: Network architectures used on FIB-SEM datasets (2D representations). All architectures use the U-Net proposed in Funke
et al. (2019). Legend on bottom right. A. Network to generate the LSDs used in auto-context setups. An extra convolution is used to
get to 10 feature maps for the embedding. B. MtLsd network - both affinities and LSDs are learnt. Number of output feature maps is
increased from 12 to 14 to account for the 13 feature maps needed for the affinities and embedding. C. AcLsd network - the output from
A is used to predict embedding from raw input. The predicted embedding is then passed in to learn affinities. D. AcRLsd network -
same as C, but incorporates cropped raw as input in addition to the embedding.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.18.427039doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427039
http://creativecommons.org/licenses/by-nc-nd/4.0/


30

Figure 17: Example training data. A. Zebrafinch labels were heavily padded with raw data and some glia were set to zero (scale bar
= ∼ 1 µm). B. Padding was used to a lesser extent for Hemi-brain volumes. Example taken from Ellipsoid Body. C. No padding was
used for Fib-25 volumes.

Figure 18: Example training batches. Masked-out regions were factored into the training loss on the Zebrafinch dataset (A). Conversely,
the Hemi-brain and Fib-25 volumes used no masking during training (B,C, respectively). Scale bar = ∼300 nm.
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Figure 19: Example auto-context training batches on Fib-25. A. Batch in which no boundary masking is needed. The first pass predicts
LSDs in an intermediate RoI to provide context for affinity prediction in the second pass. B. Batch requires boundary masking.
The combination of elastic deformation and zero padding simulates the tissue irregularities seen in the full Fib-25 volume. In these
background areas, LSDs and affinities are taught to predict zero. Scale bar = ∼ 1 µm.
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Figure 20: Masks used in study. A. Zebrafinch mask removed cell bodies, myelin, blood vessels and background. Scale bar = ∼10 µm.
Inset scale bar = ∼3 µm. B. Hemi-brain mask restricted volumes to Ellipsoid Body neuropil. Scale bar = ∼ 10 µm. Inset scale bar =
∼2 µm. C. Fib-25 used an irregularly shaped tissue mask, mostly limited to neuropil. Scale bar = ∼8 µm. Inset scale bar = ∼1 µm.
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Figure 21: Potential side effects of cropping data. Ground truth (left) shows 5 correctly labeled neurons. Example Segmentation (right)
shows 3 labeled neurons as a result of false merges. Bottom squares show results from relabeling connected components inside the
cropped RoI. A. Correctly segmented neuron in total RoI would be counted as a false merge inside cropped RoI. This is fixed by
relabelling connected components and the merge/split scores are unaffected. B. A falsely merged neuron inside the cropped RoI is
caused by a false merge outside of the cropped RoI and should not be counted. Relabelling doesnt resolve the touching boundaries and
the merge score is subsequently overestimated. C. Incorrectly segmented neuron in total RoI is counted as correct in cropped RoI after
relabelling. Merge score is underestimated.
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Figure 22: Overview of the proposed Min-cut Metric (MCM). A. Simple case. Two ground-truth skeletons are contained inside an
erroneously merged segment. Dashed lines represent supervoxel boundaries and the closest skeleton nodes need to be split to resolve
the merge (1). A min-cut is performed (2), resulting in a new segment (3). B. Complex case. Two skeletons are contained in a falsely
merged segment as before (1), but the supervoxels are more fragmented. A min-cut is performed (2), resulting in a new segment (3).
However, two nodes contained within the original segment need to be split. A second min-cut is performed (4), which produces another
segment (5). This results in an additional split error caused by the original cut.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.18.427039doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427039
http://creativecommons.org/licenses/by-nc-nd/4.0/


35

Figure 23: Other potential uses of LSDs. A. Nuclei segmentation on full zebrafish brain (Hildebrand et al., 2017). Columns from left
to right: raw, LSD offset vectors, LSD direction vectors (covariance), LSD direction vectors (Pearson’s), size, resulting segmentation.
Scale bars from top to bottom: ∼ 150µm, 20µm, 5µm. B. Mitochondria segmentation on cropout from Fib-25. Inset shows LSD
predictions and corresponding segmentation. Bottom image shows 3D reconstructions of a random sample (n=1000) in predicted
RoI. Scale bars from top to bottom: ∼ 3µm, 750nm, 4µm. C. Error mapping. Example predicted LSDs between two neurons (1).
If the resulting segmentation is correct (2), segmentation LSDs do not differ from predicted LSDs. If the resulting segmentation is
incorrect (3), segmentation LSDs (4) might differ from the predicted LSDs. The difference (5) could expose errors in a segmentation.
D. Predicted direction vectors (covariance) on single section of full adult fly brain. Mushroom body pedunculi (1), optic chiasm (2),
cell rind (3) highlight directionality. Scale bar = ∼ 150µm.
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