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Abstract 

We identify a striking correlation in the directionality and magnitude of gene expression changes in brain transcriptomes 

between Alzheimer’s disease (AD) and Progressive Supranuclear Palsy (PSP). Further, the transcriptome architecture in 

AD and PSP is highly conserved between the temporal and cerebellar cortices, indicating highly similar transcriptional 

changes occur in pathologically affected and “unaffected” areas of the brain. These data have broad implications for 

interpreting transcriptomic data in neurodegenerative disorders. 
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Neurodegenerative proteinopathies such as Alzheimer’s disease (AD) and progressive supranuclear palsy (PSP) are 

characterized by aggregation and accumulation of self-proteins within insoluble aggregates1. AD is a complex 

proteinopathy characterized by extracellular amyloid  (Aβ) protein deposits and intracellular neurofibrillary tangles 

(NFTs) composed of the microtubule associated protein tau2. In PSP, which is considered a pure tauopathy, tau 

pathology is observed in several cell types. Tau accumulates as NFTs in neurons, as “tufts” in astrocytes (hence, the 

descriptor “tufted astrocytes”), and in coiled bodies or glial inclusions in oligodendrocytes3. In both diseases, numerous 

lines of research show a strong link between protein aggregation, accumulation and degeneration, though precise 

mechanism of cellular dysfunction and death remain enigmatic. Indeed, there is little consensus as to the mechanisms 

underlying cell dysfunction and death in AD, PSP and other neurodegenerative proteinopathies.  Because of this 

incomplete understanding multiple studies are now using system level omics approaches to try and further understand 

the pathological cascades in AD, PSP and other neurodegenerative proteinopathies4-6. Here we compare the 

transcriptomic architecture in two brain regions from a large series of postmortem AD, PSP and control brains. 

Table 1A: Characteristics of samples in the study 

  Temporal Cortex (TCx) Cerebellum (CER) 

  AD PSP Control AD PSP Control 

N 80 82 69 80 79 65 

Females (%) 49 (61%) 33 (40%) 34 (49%) 48 (60%) 31 (39%) 28 (43%) 

Age: Mean (SD) 83.4 (8.6) 80.0 (6.5) 83.2 (9.5) 83.3 (8.6)  73.9 (6.6) 82.9 (9.6) 

RIN: Mean (SD) 8.6 (0.6) 8.5 (0.5) 7.7 (1.0) 8.4 (0.7) 8.5 (0.9) 7.8 (0.9) 

Transcriptome profiling was performed using RNA from the temporal cortex (TCx) and cerebellum (CER). TCx: temporal 

cortex. CER: cerebellum. AD: Alzheimer's disease. PSP: progressive supranuclear palsy. Control: No AD, PSP, or other 

neuropathological diagnoses. Age: Age at death. RIN: RNA integrity number. SD: Standard deviation. 

Table 1B: Summary of number of differentially expressed genes (DEGs)  

Region Comparison 
Simple Model Comprehensive Model 

Total Genes DEGs (q<0.05) % DEGs Total Genes DEGs (q<0.05) % DEGs 

TCx AD vs Control 14662 6669 45.5% 14557 911 6.2% 

TCx PSP vs Control 14662 374 2.6% 14557 517 3.5% 

CER AD vs Control 14662 4257 29.0% 14557 3038 20.7% 

CER PSP vs Control 14662 302 2.1% 14557 1355 (p < 0.05 )
#
 9.3% 

Simple Model does not adjust for cell type markers whereas Comprehensive Model does. #: because 0 DEGs was found 

in this comparison, nominal p-value cut off was applied.  

Transcriptomic changes are conserved between AD and PSP. 

We compared the change in gene expression between AD and control and PSP and control in the temporal cortex (TCx) 

and cerebellar cortex (CER)5,7.  Table 1A depicts the samples and data used. More extensive metadata, methodological 

details and raw RNAseq data can be found at AMP-AD Knowledge Portal (Supplementary Table S1). At a genome wide 

level, the data has been analyzed using two analytic models5. First, a simple model in which differential gene expression 

was conducted using linear regression with expression as the dependent variable, diagnosis as independent variable of 

primary interest, and RIN, age, sex, source of samples and flowcell as covariates (Supplementary Tables S2-S5). Second, 
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a comprehensive model was applied to partially account for cell-type changes (Supplementary Tables S6-S9). The 

comprehensive model uses expression of five genes that serve as cell type markers (ENO2 for neuron, CD68 for 

microglia, OLIG2 for oligodendrocyte, GFAP for astrocyte and CD34 for endothelial cells) as covariates, in addition to all 

covariates in simple model7.   For the analyses described here, we filtered the TCx and CER data for protein coding genes 

detected in both data sets above background based on their conditional quantile normalized values5.  This filtering 

resulted in the identification of 14662 common genes in TCx and CER with associated β coefficients and q values of 

differential expression (DE) between AD and control and PSP and control. For comprehensive model analyses, this 

number is 14557 due to the exclusion of five cell type marker genes. Table 1B shows the summary data of the 

differentially expressed genes (DEGs), revealing large-scale transcriptomic changes in the protein-coding transcriptome 

for the AD TCx and CER with fewer DEGs withstanding false discovery in PSP. Using this data, we generated plots of the β 

coefficients of AD versus control (x-axis) and PSP versus control (y-axis) DE, using either no additional filter or filtering 

for various q value (i.e. false discovery rate adjusted p value) cutoffs.  Even when examining all genes without a DEG q-

value filter, there is a strong positive correlation between the changes observed in AD versus control and PSP versus 

control (Fig. 1A, B). Assessing data from the simple model for all genes using linear regression the R2 is 0.27 (Fig. 1A, p < 

1.0e-10, slope 0.31) for TCx, and the R2 is 0.69 (Fig. 1B, p < 1.0e-10, slope 0.78) for CER. These R2 values are increased 

and remain highly significant when analyzed using the comprehensive model.  In TCx the R2 is 0.62 (Fig. 1C, p < 1.0e-10, 

slope 0.85) and in CER the R2 is 0.39 (Fig 1D, p < 1.0e-10, slope 0.46). In either model, increasing the cutoff for q-value to 

0.1, 0.05 or 0.01 reduces the number of genes but increases the strength of the correlations, with R2 ranging from 0.89 

to 0.98 and slopes ranging from 0.77 to 1.13 (Fig. 1E). 

These analyses show a striking conservation in the overall patterns of gene expression in two neurodegenerative 

disorders in two regions of the brain. These regions at the level of visible and gross pathologies are quite distinct. TCx is 

severely affected in AD8. It is atrophied with prominent neuronal synaptic loss and shows robust amyloid and tau 

pathologies and gliosis. In PSP, TCx tau pathology and neuronal loss is less severe than that in AD and even other regions 

of the brain affected earlier in the PSP disease course9.  In contrast, CER is not typically reported to be pathologically 

affected in either AD or PSP, though certainly, in PSP deep cerebellar nuclei are affected.  Nonetheless, connections 

between CER and brain areas may be damaged by both disorders10.  Both the overall correlations in the entire set of 

genes analyzed and the increasing correlations observed when a q-value filter is applied, demonstrate that the 

transcriptomic architecture for protein coding genes is highly similar in these two disorders and that DEGs selected 

based on q-value cutoffs represent core transcriptome changes observed during neurodegeneration. Further, as bulk 

RNAseq data from whole brain tissue is strongly influenced by changes in cell type composition11, we note that the 

comprehensive model that takes into account these cell type changes shows a stronger correlation in the TCx  between 

the disease states when compared to the simple model when no q-value cutoff is used. As the CER is relatively 

unaffected in terms of alterations in cell-type composition, when all genes are analyzed the correlation is actually 

weaker. Once a q-value filter is applied, there is little difference between the models. Such data indicates that cell-type 

changes indeed contribute to some of the transcriptome variance observed and correcting for that variance in the bulk 
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RNAseq data can increase the power of the study to detect DEGs replicably across neurodegenerative diseases, when a 

tissue has cell type changes in one or both conditions, but may impair analyses when no large-scale cell type changes are 

presents. 

 

Figure 1. Gene expression changes are conserved between AD and PSP. (A)-(D): Comparison between beta coefficients 

(β) of AD vs control (ADvC) and those of PSP vs control (PSPvC) DEG analyses. Each circle represents a gene. Red circles: 

DEGs of q value < 0.05 on both side comparisons, except for (D) CER PSPvC where p value < 0.05 was used. Simple 

model: β is from linear regression with expression as dependent variable, diagnosis as independent variable of primary 

interest, and with RIN, age at death, sex, source of samples and flowcell as covariates. Comprehensive model: β is from 

linear regression as in simple model, with five additional covariates - expression of five cell type markers (ENO2 for 

neuron, CD68 for microglia, OLIG2 for oligodendrocyte, GFAP for astrocyte and CD34 for endothelial cells). (E) Summary 

of slope and R2 values between β of ADvC and those of PSPvC. *: p value cutoff instead of q value cutoff was applied 

when selecting DEGs in CER PSPvC comprehensive model.   

Transcriptomic changes are conserved across TCx and CER.  
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The DEG changes between AD and PSP in two regions of the brain demonstrate a striking conservation of transcriptomic 

changes across these different neurodegenerative diseases.  In designing these studies, we considered CER as an internal 

control for a relatively unaffected area of the brain.  However, given the large number of highly significant DEGs in the 

AD CER, we evaluated whether the transcriptomic changes in the TCx and CER were also conserved within a disease 

classification (Fig. 2).  In this case, we plotted the β coefficients for AD versus control in the TCx (x-axis) versus the β 

coefficients for AD versus control in the CER (y-axis) and likewise generated plots of the β coefficients of TCx versus CER 

for PSP versus control. Data from both the simple and comprehensive models are plotted.  These analyses showed 

robust correlations. In AD, the overall R2 between TCx and CER was 0.35 (Fig. 2A p < 1.0e-10, slope 0.40) using the simple 

model and R2 = 0.32 (Fig. 2C, p < 1.0e-10, slope 0.63) using the comprehensive model.   In PSP the overall R2 was 0.31 

(Fig 2B, p < 1.0e-10, slope 0.59) in the simple model and R2 was 0.15 (Fig. 2D, p < 1.0e-10, slope 0.3) in the 

comprehensive model. Again, as the stringency of the q-value used to select the DEGs was increased both R2 (ranging 

from 0.70 to 0.95) and the slope (0.62 to 1.03) of the best-fit line increased when comparing the transcriptomes for the 

TCx and CER within disease states (Fig. 2E). Thus, not only is the transcriptomic architecture conserved between AD and 

PSP, it is also conserved across a severely affected and “unaffected” brain region in AD and  a moderately  affected and 

less affected brain region in PSP. 
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Figure 2. Gene expression changes are conserved between brain regions within disease analyses. (A)-(D): Comparison 

between beta coefficients (β) of TCx AD vs control (ADvC) and those of CER ADvC, and between TCX PSPvC and CER 

PSPvC DEG analyses. Each circle represents a gene. Red circles: DEGs of q value < 0.05 on both side comparisons, except 

for (D) PSPvC where p value < 0.05 was used. Simple model: β is from linear regression with expression as dependent 

variable, diagnosis as independent variable of primary interest, and with RIN, age at death, sex, source of samples and 

flowcell as covariates. Comprehensive model: β is from linear regression as in simple model, with five additional 

covariates - expression of five cell type markers (ENO2 for neuron, CD68 for microglia, OLIG2 for oligodendrocyte, GFAP 

for astrocyte and CD34 for endothelial cells). (E) Summary of slope and R2 values between β of TCx ADvC (or PSPvC) and 

those of CER ADvC (or PSPvC). *: p value cutoff instead of q value cutoff was applied when selecting DEGs in CER PSPvC 

comprehensive model. 

Gene Ontology Analyses  

Given these striking correlations of DEG changes across two neurodegenerative disorders and two brain regions, we 

used gene ontology analyses to provide some biological context to these data. In this case, we binned the input into the 

GO analyses by focusing on DEGs (q value < 0.1) that were changed in the same direction. Thus, we first analyzed DEGs 

down in AD and PSP or up in AD and PSP using FUMA GWAS web server (https://fuma.ctglab.nl/)12. These data are 

summarized in Fig. 3 with more detailed versions provide in Supplementary Tables S10-S15.  Shared upregulated DEGs in 

the TCx of AD and PSP are enriched (enrichment q value < 0.05) for biologic processes related to chromatin modification, 

gene expression, chromosome organization and metabolism of nucleotides.  In the CER the shared upregulated genes 

link to biological processes relating to RNA and RNA transcription, cell-cell junctions, and heart, kidney, gland, and 

circulatory system development.  Shared down regulated genes in AD and PSP are associated with GO cell compartment 

terms related to mitochondrial and ribosomal functions in both the TCx and the CER. These data and the extended GO 

analyses (Supplementary Tables S10-S15), point to highly complex biological changes shared in both AD and PSP.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.18.426999doi: bioRxiv preprint 

https://fuma.ctglab.nl/
https://doi.org/10.1101/2021.01.18.426999


 

Figure 3. Gene ontology (GO) enrichment of differentially expressed genes (DEGs). Left panel: GO BP (biological 

process) terms of enrichment q-value < 0.05 were illustrated; when no such BP or molecular function term exists, CC 

(cellular compartment) terms of enrichment q-value < 0.05 were illustrated. Middle panel: -log10 enrichment q-value 

(blue bar) and proportion of DEGs in GO term over GO term genes (red bar). Right panel: top 25 DEGs that are mostly 

observed in selected GO terms.   DEGs were identified at q<0.1 in both AD vs control and PSP vs control comparisons. 

Discussion 

Numerous studies analyzing large-scale transcriptomic alterations in AD reveal a large number of network abnormalities 

that demonstrate widespread changes in pathways including but not limited to immune function, myelination, synaptic 

transmission and lipid metabolism4,5,11,13-16. Though these postmortem cross-sectional data sets provide a detailed 

systems level description of changes that have occurred over the disease course, in isolation they do not provide a 

framework for cause and effect relationships.  The conservation in the overall transcriptome signature of AD and PSP 

relative to control brains indicates that the transcriptomic changes observed are more likely attributable to common 

downstream events in the neurodegenerative cascade and not initiating events. The fact that these conserved 

transcriptomic changes are observed in regions with neuropathologies varying from minimal to significant suggests that 
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these conserved expression changes are unlikely to be driven by gross neuropathology or cell proportion changes. We 

have previously identified reduced expression of myelination network transcripts and proteins in both AD and PSP TCx 

and nominated it as a common disease mechanism for both conditions5. Given that AD and PSP are both tauopathies, 

conserved transcriptional alterations may not generalize to all neurodegenerative disorders. That said, the conservation 

holds in the CER, which is thought to be largely unaffected in these disorders, and therefore we would speculate that 

carefully conducted transcriptomic studies that are expanded to include other neurodegenerative proteinopathies may 

well show similar shared transcriptomic changes reflecting a long-standing neurodegenerative process triggered by 

protein accumulation. 

Our finding that there is a shared transcriptomic architecture between the TCx and the CER within AD and PSP is 

noteworthy and consistent with our prior findings in transcriptional networks5. As noted previously, we had intended 

the CER to serve as a “control” for a largely pathologically unaffected brain region in AD; however, these transcriptomic 

data indicate a strong correlation between DEGs in both regions. Though this correlation is more robust due to the 

larger number of DEGs in AD vs. control, the correlation holds in PSP. This observation has several implications. First, 

these data demonstrate that long-standing neurodegenerative disease processes have a broad impact on the brain that 

extends well beyond visible pathology. Thus, there needs to be appropriate caution when inferring that a brain region in 

disease is “unaffected” based on an absence of pathological abnormalities as assessed using standard methods. Second, 

highly similar transcriptomic alterations in the brain driven by a regional or multi-regional proteinopathy likely reflect a 

mixture of common degenerative and compensatory responses attributable to long standing pathology within the brain, 

such as dysregulations of mitochondria17. Third, it is possible that the combination of epigenetic and genetic factors 

contributes to the similar transcriptomic alterations, as indicated by the DEGs of chromatin modification 

pathway18,19(Fig. 3).       

In summary, the concept that AD, PSP or any other neurodegenerative disease has a specific transcriptomic signature 

may be inaccurate; rather there appears to be conserved transcriptomic alterations due to common proteinopathies or 

their downstream effects. This assertion will require additional large-scale transcriptomic analyses of other age 

associated neurodegenerative diseases conducted in a manner that eliminates many of the experimental confounds, 

such as batch effects. The large  number of  highly perturbed networks in  AD that have been established in prior studies 

and  our analyses in this study reinforce the notion that in the symptomatic phase, neurodegenerative diseases are 

characterized by incredibly complex biology that likely represents a mix of long-standing degenerative and 

compensatory processes. Such data reinforce the need to both develop paradigms that allow for the earliest possible 

intervention in these disorders that typically have long prodromal phases, and to develop multifaceted therapies that 

might be able to better alter the complex alterations present in the symptomatic phases of disease. Our findings also 

demonstrate the widespread perturbations of systems in the whole brain in neurodegenerative diseases, which requires 

novel biomarkers capable of tracking these changes in relatively “unaffected” brain regions and formulating therapies 

that address these ubiquitous alterations. 
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Methods: 

Subjects and Samples 

The study dataset has been made available to the research community and described in detail previously7,20. Briefly, AD, 

PSP and control subjects were diagnosed neuropathologically at autopsy. AD subjects are from the Mayo Clinic Brain 

Bank, had definite neuropathologic diagnosis according to the NINCDS-ADRDA criteria21 and had Braak neurofibrillary 

tangle (NFT) stage of ≥4.0.  All PSP subjects are from the Mayo Clinic Brain Bank and were diagnosed according to NINDS 

neuropathologic criteria9. Control subjects, either from Mayo Clinic Brain Bank or Banner Sun Health Institute, had Braak 

NFT stage of 3.0 or less, CERAD neuritic and cortical plaque densities of 0 (none) or 1 (sparse) and lacked various 

pathologic diagnoses. TCx and CER samples underwent RNA extractions via the Trizol/chloroform/ethanol method, 

followed by DNase and Cleanup of RNA using Qiagen RNeasy Mini Kit and Qiagen RNase -Free DNase Set. The quantity 

and quality of RNA samples were determined by the Agilent 2100 Bioanalyzer using the Agilent RNA 6000 Nano Chip. 

Samples included in this study all have RIN ≥5.0. Among final samples included in this study (231 TCx samples and 224 

CER samples), 197 TCx and 197 CER samples were paired, i.e. from the same 197 subjects.  

RNA sequencing  

Library preparation and sequencing of the samples were conducted at the Mayo Clinic Genome Analysis Core using 

TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA). The library was sequenced on Illumina HiSeq2000 instruments, 

generating 101 base-pair, paired-end raw reads. Raw reads were processed through MAPR-Seq pipeline22 v1.0 which 

removed reads of low base-calling Phred scores, aligned remaining reads to human reference genome build GRCh37 

using Tophat v2.0.1223,24, counted reads in genes using Subread 1.4.425, and obtained QC measures from both pre-

alignment reads and post-alignment reads using RSeQC toolkit26,27 and fastQC ( 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ ). Samples that have high RNA degradation, or low reads 

mappability, or inconsistency between recorded sex and estimated sex using RNAseq chromosome Y expression were 

removed from downstream analysis. Raw reads of remaining samples were normalized using R cqn package28 which took 

into consideration library size, gene GC content and gene coding length, resulting in normalized expression in log2 scale. 

Additional information could be found in our previous publication5,20.     

Regression analysis 

Multiple linear regression (MLR) were performed for each gene using normalized gene expression as dependent 

variable, diagnosis as primary independent variable, and RIN, age at death, sex, source of samples and flowcell as 

covariates (simple model), plus expression of five cell type markers (ENO2 for neuron, CD68 for microglia, OLIG2 for 

oligodendrocyte, GFAP for astrocyte and CD34 for endothelial cells) as covariates (comprehensive model), as previously 

published5. Diagnosis groups in these MLR were TCx ADvC, TCx PSPvC, CER ADvC and CER PSPvC.  
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Using β coefficients of DEGs of q-value<=1 (namely,  <0.1, 0.05, 0.01) from the above MLR, simple linear regression was 

performed. Slopes and R2 were obtained (Fig 1-2) from the following models:  β.TCx.PSPvsCtrl ~ 1 + slope * 

β.TCx.ADvsCtrl, β.CER.PSPvsCtrl ~ 1 + slope * β.CER.ADvsCtrl, β.CER.ADvsCtrl ~ 1 +  slope * β.TCx.ADvsCtrl, and 

β.CER.PSPvsCtrl ~ 1 + slope * β.TCx.PSPvsCtrl.  

GO enrichment analysis 

Differentially expressed genes were analyzed for GO enrichment using FUMA GWAS web server at https://fuma.ctglab.nl 

with MSigDB v7.012,29. Background genes (N=14662) were the expressed coding genes in both TCx and CER cohorts, 

genes of interest were DEGs of q-value < 0.1 in both group comparisons and consistent in direction of expression 

change. Figures were made using R software environment.       

 

 

Data Availability: 

Data Synapse ID URL 

Overall description  syn5550404 https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage?Study=syn5550404  

normalized expression of TCx samples syn15833248 https://www.synapse.org/#!Synapse:syn15833248  

normalized expression of CER samples syn15889850 https://www.synapse.org/#!Synapse:syn15889850  

meta file of TCx samples  syn3817650  https://www.synapse.org/#!Synapse:syn3817650  

QC information of TCx samples syn6126114 https://www.synapse.org/#!Synapse:syn6126114 

meta file of CER samples  syn5223705 https://www.synapse.org/#!Synapse:syn5223705  

QC information of CER samples syn6126119 https://www.synapse.org/#!Synapse:syn6126119  
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