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A B S T R A C T 

Mapping the human connectome using fibre-tracking permits the study of brain connectivity and yields new insights 

into neuroscience. However, reliable connectome reconstruction using diffusion magnetic resonance imaging 

(dMRI) data acquired by widely available clinical protocols remains challenging, thus limiting the 

connectome/tractography clinical applications. Here we develop fibre orientation distribution (FOD) network (FOD-

Net), a deep-learning-based framework for FOD angular super-resolution. Our method enhances the angular 

resolution of FOD images computed from common clinical-quality dMRI data, to obtain FODs with quality 

comparable to those produced from advanced research scanners. Super-resolved FOD images enable superior 20 
tractography and structural connectome reconstruction from clinical protocols. The method was trained and tested 

with high-quality data from the Human Connectome Project (HCP) and further validated with a local clinical 3.0T 

scanner. Using this method, we improve the angular resolution of FOD images acquired with typical single-shell 

low-angular-resolution dMRI data (e.g., 32 directions, b=1000 s/mm2) to approximate the quality of FODs derived 

from time-consuming, multi-shell high-angular-resolution dMRI research protocols. We also demonstrate 

tractography improvement, removing spurious connections and bridging missing connections. We further 

demonstrate that connectomes reconstructed by super-resolved FOD achieve comparable results to those obtained 

with more advanced dMRI acquisition protocols, on both HCP and clinical 3T data. Advances in deep-learning 

approaches used in FOD-Net facilitate the generation of high quality tractography/connectome analysis from 

existing clinical MRI environments. 30 
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Introduction 

The human brain connectome, which maps structural brain connectivity in-vivo through non-invasive 

diffusion MRI (dMRI) techniques, yields invaluable insights for the frontier research fields of brain-

inspired artificial intelligence, psychiatry, neurology, and neurosurgery1–3. The reliability of dMRI-based 

connectomics is heavily dependent on the diffusion model employed for estimating local fibre 

orientations. The spherical deconvolution model4–6, with its inferred fiber orientation distribution (FOD) 

data, can be used to disentangle complex fibre structures within a voxel, and is currently considered 

among the state-of-the-art for tractography applications7. It is optimally applied to multi-shell (i.e. data 

acquired at multiple b-values), high angular resolution diffusion imaging (HARDI, i.e. dMRI data acquired 

with a large number of diffusion gradient directions at each b-value, e.g. typically over 60 directions) 40 

data. However, the availability of multi-shell HARDI data in clinical settings is hampered by scanner and 

protocol limitations and practical constraints on total acquisition time, thus limiting broad application in 

both clinical and clinical research environments. In this regard, single-shell low angular resolution 

diffusion imaging (LARDI) data are more commonly used in clinical settings, and often combined with 

lower b-values (e.g. b=1000 s/mm2). However, LARDI acquisitions cannot reliably resolve complex white 

matter fibre bundles configurations due to insufficient angular resolution, producing both spurious and 

missing connections8. This can degrade the connectome reconstruction, potentially impacting the validity 

of conclusions drawn from such data.  

A growing interest in healthy and diseased brain connectomics has highlighted a critical need to bridge 

the gap between high-angular resolution, multi-shell dMRI acquisitions and the restricted practical 50 

capacity of clinical MRI investigations. Pioneering work9,10 has attempted to overcome the limitations of 

clinical protocols by striving for dMRI angular super resolution, which in turn generates more reliable 

fiber tracking connectivity information. However, these methods require specific dMRI acquisition 

protocols (for example, a certain number of gradient directions), which is inflexible and impractical in 

.CC-BY-NC-ND 4.0 International licensedisplay the preprint in perpetuity. It is made available under a
holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to 

The copyrightthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.17.427042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

general clinical environments.  Here we present FOD network (FOD-Net), a deep-learning-based FOD 

angular super resolution method that directly enhances FOD data from single-shell LARDI computed 

from typical clinical-quality data, to obtain the super-resolved FOD data equivalent to those derived from 

high-quality multi-shell HARDI acquisitions, thereby enabling reliable structural connectome 

reconstruction using widely available clinical protocols. We trained and tested the method using high-

quality data from the Human Connectome Project (HCP) and further validated with single-shell LARDI 60 

data acquired at a local clinical 3.0T scanner. We demonstrate the success of FOD-Net by improving 

the accuracy of each step in the connectome reconstruction pipeline, including FOD angular super 

resolution, tractography, and connectome generation.  

Results 

FOD-Net provides a robust method for FOD enhancement. As mentioned in the Introduction, prior 

related work focused on the dMRI images as input data. Given that the input size of a deep learning 

model is fixed, models based on raw dMRI images have limited applicability given the variance of dMRI 

data size reflecting a diversity of acquisitions protocols. In contrast, FOD data, represented by the 

coefficients of spherical harmonic expansion4, can be set to have the same data matrix size regardless 

of the number of diffusion directions used in the dMRI acquisition protocol (e.g. by setting the maximum 70 

harmonic order, 𝑙𝑚𝑎𝑥, to a common value). We therefore developed the model based on FOD data to 

provide a robust connectome reconstruction task based on common clinical dMRI protocols (See Fig. 

1a), by making use of a 3D convolutional neural network (CNN) to exploit the implicit relationship 

between the single-shell LARDI and multi-shell HARDI FOD data (Please see Methods for more details 

regarding training and inferencing). 
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Fig. 1 | Schematic view of our fiber orientation distribution (FOD) network (FOD-Net) in a clinical 

connectome reconstruction pipeline and its network architecture. a, FOD-Net is flexible and can be 80 

embedded into a clinical connectome reconstruction pipeline to generate super-resolved FOD images, high-

quality tractograms, and ultimately reliable structural connectomes. Super-resolved images are generated based 

on single-shell low angular resolution diffusion imaging (LARDI) derived FOD images, computed from single-shell 

3-tissue (SS3T) constrained spherical deconvolution (CSD). b, The FOD-Net architecture consists of five 

convolutional layers, two fully connected layers and five spherical harmonic coefficient blocks (SHCB). It takes as 

input 4D SS3T CSD derived FOD patches and outputs the super-resolved version of the central voxel of the input 

patch. c, The architecture of spherical harmonic coefficient block, consisting of five two-dimensional convolutional 

layers. 

Successfully training a deep neural network often requires large amounts of annotated data. In our 

case, a high-quality multi-shell dataset from the Human Connectome Project11 was used to produce 90 

target ‘ground-truth’ multi-shell HARDI FOD; and a low angular resolution, 32- directions b1000 single 

shell dataset (extracted from the HARDI dataset) was used to generate the single-shell LARDI FOD 
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model input and enhancement target. Specifically, we subsampled the multi-shell HARDI data to 

simulate single-shell LARDI data captured by conventional clinical protocols, yielding multi-shell HARDI 

/ single-shell LARDI image pairs for model training. Subsequently, the single-shell LARDI and the 

corresponding ‘ground-truth’ (multi-shell HARDI) FOD data were generated respectively from these 

image pairs and then cropped into 3D patches to feed FOD-Net (Methods). Our data generation strategy 

enables our model to be trained in a data-driven manner and guarantees the convergence of FOD-Net. 

To assess the quality of FOD angular super-resolution, we compared the FOD-Net predictions with 

the ‘ground-truth’ (obtained by conducting multi-shell multi-tissue (MSMT) constrained spherical 100 

deconvolution (CSD) on the multi-shell HARDI data6) and with the single-shell LARDI FOD data 

computed from the current state-of-the-art method (i.e. single-shell three-tissue (SS3T) CSD12). A 

randomly selected LARDI FOD image containing two anatomical regions of interest (ROI) is shown Fig. 

2 a. Fig. 2 b-d and e-g show the two zoomed-in regions of interest, revealing 3D FODs associated with 

crossing fiber tract regions. FOD-Net was applied to single-shell LARDI FOD data of subjects (i.e., test 

data) previously unseen by the network during the training process, with the resulting super-resolved 

FOD images shown in Fig. 2c,f: the complex fibre architecture features are clearly resolved by FOD-

Net, and the FODs show consistent agreement with the ‘ground-truth’ FOD data shown in Fig. 2 d,g. 

Furthermore, quantitative assessment of FOD-Net using the angular correlation coefficient (ACC – see 

Methods) metric (Fig. 3) approximated the ‘ground-truth’ when applied to both pure white matter voxels 110 

and to voxels of mixed gray-white matter type (See addition scores in Supplementary Table 1). 
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Fig. 2 | Super-resolved fiber orientation distribution (FOD) images using FOD-Net. a) Single-shell LARDI 

FOD image generated from single-shell LARDI data using single-shell 3-tissue (SS3T) constrained spherical 

deconvolution (CSD). Two regions of interest (ROIs) are magnified and shown in b-d (ROI 1) and e-g (ROI 2), 

respectively. (b,e), (c,f), and (d,g) are single-shell LARDI, single-shell LARDI super-resolved, and multi-shell 

HARDI ‘ground-truth’ FOD images generated using SS3T CSD, FOD-Net, and multi-shell multi-tissue (MSMT) 

CSD, respectively. Similar findings were obtained with 50 subjects in the Human Connectome Project test data.    
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Fig. 3 | FOD-Net provides more accurate FOD estimates compared to SS3T CSD in both pure white matter 

(WM) and partial volumed white matter voxels. a-c) inference results of 50 subjects from the Human 

Connectome Project test set, measured by the angular correlation coefficient (ACC) metric to the ‘ground-truth’. a) 

Pure WM tissue. b-c) Voxels of WM partial volumed with cortical grey matter (GM), i.e. in the interface between 

WM & cortical GM, and with subcortical GM (i.e. in the interface between WM & subcortical GM), respectively. 

Half-violin plots report the distribution of the ACC of the FOD estimates of each method. The statistical 

information, including the minimum, maximum, upper/lower half quartile, and mean values are shown in each 

boxplot. Compared with SS3T CSD, FOD-Net results are much closer to the ‘ground-truth’. 130 

FOD-Net removes spurious fibers and recovers missing fiber tracts in anatomical regions of 

interest. To further demonstrate the resolution improvement and the flexibility of FOD-Net, we replaced 

SS3T CSD with FOD-Net in the tractography pipeline of MRtrix3, a widely used dMRI software tool13 

(Methods). Whole-brain tractograms are generated based on super-resolved FOD data; then, three 

anatomical ROIs (See Methods for the definition of the three anatomical ROIs) containing representative 

fiber tract configurations are selected for qualitative comparison with SS3T CSD. Fig. 4 a-c illustrate 

corpus callosum fibres generated using SS3T CSD, FOD-Net, and ‘ground-truth’, respectively. In 

general, FOD-Net produced smoother, clearer and less noisy (see Fig. 4 a,b) fiber tracts than SS3T 

CSD, more closely corresponding to the configurations observed with the ‘ground-truth’. In crossing fiber 

regions (Fig. 4 d-f), tractograms generated based on our method produced denser fiber tracts (Fig. 4 140 

e,h, respectively) that more closely aligned with the ‘ground-truth’ (Fig. 4 f,i) than SS3T CSD-derived 

FOD images (Fig. 4 d,g), in which spurious and missing (sparse) connections were frequently observed. 

We have also observed that the FOD-Net results are inclined to produce tractograms with smoother 

fiber tracts compared to the ground truth, especially for large single fiber bundles (Fig. 4 a-c). This result 

agrees with the neuroanatomical fact that a fiber tract and its neighbors are most likely to have a 

consistent direction and FOD-Net has gained this knowledge from the training data. 
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In addition, quantitative results measured by the peak error14, mean angular error (MAE), and 

apparent fiber density15 (AFD) error (Fig. 5 a-c) were used to assess quantitatively the quality of FOD 

estimation (see Methods). For the tissues containing large, coherent fiber tracts (ROI 1, corpus 

callosum), our method achieved a peak error of 0.076 ± 0.005 (mean ± SD) and an apparent fiber 150 

density error of  0.075 ± 0.006, while SS3T CSD attained 0.23 ± 0.04 (𝑝 < 0.0001, p indicates two-tailed 

p value obtained from t-test to test if SS3T CSD results is statistically significant when compared to 

FOD-Net values) and 0.22 ± 0.04 (𝑝 < 0.0001) , for these values, respectively. Furthermore, FOD-Net 

achieved similar results (peak error, 0.073 ± 0.005 ; apparent fiber density error, 0.062 ± 0.004) on 

tissues containing two intersecting fiber tracts (ROI 2, intersected regions between middle peduncle and 

corticospinal tract); in this region, SS3T CSD achieved 0.12 ± 0.02 (𝑝 < 0.0001) and 0.11 ± 0.02 (𝑝 <

0.0001) respectively, which are lower by a large margin (around 60%). Finally, we report the FOD-Net 

results (peak error, 0.063 ± 0.008; apparent fiber density error, 0.051 ± 0.004) measured in three-fiber-

tract crossing regions (ROI 3, intersected regions between the superior longitudinal fascicle, 

corticospinal tract, and corpus callosum), where SS3T CSD attained 0.097 ± 0.007 (𝑝 < 0.0001) and 160 

0.081 ± 0.006 (𝑝 < 0.0001) respectively. Notably, FOD-Net outperformed SS3T at all three anatomical 

ROIs, which contained a range of representative fiber tract configurations. The cumulative distribution 

of mean angular error, computed from the angular discrepancy between estimated and ‘ground-truth’ 

fiber bundles, is shown for all three ROIs in Fig. 5 c.  We observed that the percent of ROI-1 voxels with 

a MAE less than 10° was approximately 95% for FOD-Net and only 84% for SS3T CSD. By observing 

ROI-2 voxels with a MAE less than 10°, FOD-Net outperformed SS3T CSD by a large margin, i.e., the 

percent of voxels meeting the criteria increased from 35% to 65%. For ROI-3 voxels of which MAE is 

less than 10°, FOD-Net achieved significant improvement (10% to 50%) over SS3T CSD. Interestingly 

we found that FOD-Net yielded larger improvements in crossing-fibre regions (ROIs 2 and 3) than 

coherent single fiber regions (ROI 1), which indicates that ambiguities generated by a high number of 170 
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crossing-fibre voxels in ROIs 2 and 3 were successfully resolved by FOD-Net. We also found that the 

FOD-Net outperformed SS3T CSD in terms of MAE in pure and partial white matter tissues (See 

Supplementary Fig. 1). 
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Fig. 4 | Tractography improvement by FOD-Net in three anatomical regions of interest. a-i) Examples of 

tractography generated based on SS3T CSD of LARDI (a,d,g), FOD-Net of LARDI (b,e,h), and MSMT CSD of 

HARDI (ground truth) (c,f,i), and magnified view of the boxed regions. In the boxed region of (a), FOD-Net resolves 

the irregular pattern of a large single fiber, in close agreement with the ground truth (c). (e,h) Reconstructed higher 

density fiber tracts in the fiber crossing regions, which match the results obtained from (f,i). However, (d,g) have 

sparser appearance and generate numerous spurious fiber tracts. Similar findings were observed with 50 subjects 180 

from the Human Connectome Project test set. The colour-coding indicates the local fibre orientation, with red: left-

to-right, green: anterior-to-posterior, and blue: rostral to caudal 
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Fig. 5 | Average of voxel-wise quantitative results across 50 subjects from the test HCP dataset with 

respect to three anatomical regions of interest (ROI1: single fibre region; ROI2: 2-fibre crossing region; 

ROI3: 3-fibre crossing region). a) Peak error computed by the absolute difference between the amplitude of a 

FOD estimate at the maximum peak and its corresponding ‘ground-truth’. b) Apparent fiber density (AFD) error 

computed by the absolute difference between the integral of a given FOD estimate and its corresponding ‘ground-190 

truth’. c) The cumulative diagram represents the fraction of the number of fiber tracts measured by the angular 

error.  

More reliable connectomes are generated by the enhanced fiber orientation map. One widely used 

application for dMRI tractography is the macro-scale brain structural connectome16–18. After performing 

whole-brain tractography from the super-resolved FOD data, the regions defined in the Desikan-Killiany 

cortical atlas19 were employed as network nodes, and the tracks connecting these nodes were used to 

calculate the structural connectome (Methods). 

We report the accuracy of connectome reconstruction, quantified using absolute error in terms of the 

connectivity number of streamlines (Fig.6 a-c and see Methods for details). Fig.6 a (the first three 

columns) shows the average connectome matrices across healthy subjects generated by SS3T CSD 200 

from LARDI, MSMT CSD from HARDI, and FOD-Net from LARDI, respectively. Fig.6 a (the last two 

columns) shows the absolute disparity map between the connectome matrix of MSMT CSD and the 

LARDI estimates (SS3T CSD or FOD-Net). We can observe that FOD-Net yielded the most accurate 

connectome reconstructions, outperforming SS3T CSD by a large margin. In particular, for the group-

averaged connectomes, and using the MSMT CSD results as ‘ground-truth’, implausible connections 

(for example, lateral occipital and pericalcarine; posterior cingulate and rostral middle frontal; fusiform 

and inferior temporal; lingual and pars orbitalis; inferior temporal and pars orbitalis; etc.) and missing 

connections (for example, transverse temporal and insula; accumbens area and thalamus; rostral 

anterior cingulate and insula; etc.) from the conventional single-shell based method (SS3T CSD), are 

respectively rectified and ‘reconnected’ by FOD-Net (See Supplementary Fig. 2 for brain node pairs with 210 

.CC-BY-NC-ND 4.0 International licensedisplay the preprint in perpetuity. It is made available under a
holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to 

The copyrightthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.17.427042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

top 5 numbers of spurious and missing connections, respectively). Minor discrepancies between the 

FOD-Net and ‘ground-truth’ connectome are attributable to error conferred by low density connections 

(cuneus and fusiform; fusiform and lingual); and were also observed in the SS3T CSD-derived 

connectome. From Supplementary Fig. 2, we can also observe that the performance of both SS3T CSD 

and FOD-Net is degraded in inferior temporal and middle temporal; and superior parietal and precuneus 

regions. However, FOD-Net still outperformed SS3T CSD in these regions significantly. 

To further explore these results, we also examined the density of self-connections in the brain atlas, 

i.e. computed based on the streamlines connecting each node with itself; our results demonstrate that 

FOD-Net of LARDI data achieved more similar intra-node connectivity to MSMT CSD HARDI than SS3T 

CSD did (see Supplementary Fig. 3). The high proportion of SS3T CSD derived spurious intra-node 220 

connections in the corresponding brain regions could adversely affect the accuracy of the reconstructed 

connectome for clinical applications. 

Permutation testing was used to test whether the connectomes reconstructed using LARDI data 

significantly differed from the ‘ground-truth’ HARDI connectomes (Methods). Fig. 7 shows that over 74% 

connections generated by SS3T CSD (a) were statistically significant different from the ‘ground-truth’, 

suggesting that structural connectomes generated from single-shell LARDI FOD images are therefore 

likely to deviate from the ‘truth’ and fail to robustly model complex fiber tract configurations for existing 

clinical applications. In contrast, only 4% connections in the FOD-Net-based connectome show 

significant differences from the ‘ground-truth’, which demonstrates the superiority of super-resolved 

FOD data to reconstruct more reliable connectomes without the need for time-consuming multi-shell 230 

HARDI data. 
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Fig. 6 | Average structural connectivity matrices across fifty healthy adults from the test HCP dataset. a, 

Averaged structural connectome matrices generated by SS3T CSD from LARDI, MSMT CSD from HARDI, and 

FOD-Net from LARDI, respectively. The last two columns show the disparity matrices between MSMT CSD 

(considered as ‘ground-truth’) and the LARDI estimates (SS3T CSD or FOD-Net), respectively. b-c, Results are 

also rendered in anatomical space using the axial and coronal view. To better visualize the main differences 240 

between the ground truth and the estimates, only the connections of which the number of streamlines is larger than 

8000 (10% of the upper bound of the colour bar of the connectome matrices in a) are shown in the first three 

columns. The connection disparity visualisation threshold is set to 3000 (10% of the upper bound of the colour bar 

of the disparity maps in a) for the last two columns.  
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Fig. 7 | Statistical significance test between MSMT-CSD of HARDI based connectome matrices and LARDI 

based connectomes (blue indicates statistical significance found at p value < 0.05, false-discovery-rate-

corrected) for the HCP test dataset. Significantly different edges for: a, SS3T CSD, b, FOD-Net. More than 74% 

connections in SS3T CSD (a) were statistically significant different compared with the ‘ground-truth’, while only 250 

4% were for FOD-Net (b). 

FOD-Net has good generalizability and reproducibility. We tested the generalizability of our trained 

deep learning model in improving FOD quality from clinical diffusion MR images acquired by unseen (not 

present in the training phase) protocols using a different clinical MRI scanner (Methods). From Fig. 8, 

improvement of connectome reconstruction obtained from super-resolved FOD images of LARDI data 

is very consistent with the HCP results from Fig. 6 despite the clinical data having been acquired from 

protocols unseen by FOD-Net in the training stage. In contrast to FOD-Net, the connectome matrices 

based on SS3T CSD on LARDI data exhibit large amounts of false positive and false negative edges 

(compared with the ‘ground-truth’ MSMT-CSD HARDI results), hampering the reliability of clinical 

connectomics applications.  260 

We also examined the reproducibility of our method by performing test-retest experiments on data 

acquired by clinical protocols that differed from those used in the training data (Methods). We assessed 

the reproducibility of the structural connectomes generated by SS3T CSD, FOD-Net, and MSMT CSD, 
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respectively, in the intra-subject scenario, with the connectome measured by SIFT2 connectivity. The 

intra-subject connectome difference for each FOD method therefore reflects the test-retest connectome 

reliability associated with a given FOD method. We computed weighed mean coefficient of variation 

(wmCoV) (a test-retest metric to provide a summary statistic of a group of connectomes, see Methods) 

for each subject, then averaged these metrics across all subjects to yield final scores of 0.61 (SS3T 

CSD), 0.75 (FOD-Net), and 0.72 (MSMT CSD). One can observe that the reproducibility score of FOD-

Net is very close to that of MSMT-CSD. While SS3T CSD achieved the best reproducibility (p=0.02) in 270 

our clinical dataset by a small margin, FOD-Net connectome reproducibility was not statistically 

significant when compared to MSMT CSD (p=0.79). Supplementary Fig. 4 shows the absolute difference 

between test-retest connectomes for each FOD method. 

  

Fig. 8 | The connectomes based on super-resolved FOD images yield more robust and reliable connection 

reconstruction for unseen clinical protocols (not present in the model training phase). a) Disparity map 

computed by subtracting the SS3T CSD based connectome with the MSMT CSD based (‘ground-truth’) 

connectome. b) Corresponding disparity map for the FOD-Net based connectome. All connectome matrices are 

calculated by averaging across 4 clinical subjects. 

Discussion 280 

The proposed deep-learning-based method, FOD-Net, facilitates the generation of angular super-

resolved FOD images directly from conventional clinical-type single-shell LARDI data.  FOD-Net 
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produces FODs of equivalent quality to those produced from more advanced multi-shell HARDI data, 

but requires only a fraction of the dMRI data (e.g. with as little as ~11% of the dMRI data for the HCP 

examples used here). Furthermore, FOD-Net achieves these FOD improvements without requiring high 

b-value data, which is most often not available in clinical protocols, but has been shown to be required 

for optimal performance when using current FOD algorithms20,21. The relaxing of the requirement for 

high b-values also leads to an associated increase in SNR of the dMRI data, as higher b-values require 

longer TEs, in turn resulting in reduced SNR22. In addition to FOD angular super-resolution, our method 

can be flexibly embedded into modern dMRI analysis pipelines for clinical research applications11,13. By 290 

exploiting super-resolved FOD images derived from clinical acquisitions, we demonstrate enhanced 

tractography applications including fiber tacking, attributable to fewer false positive and false negative 

connections in crossing fiber regions compared to the current state-of-the-art SS3T CSD method. 

Furthermore, we demonstrate that FOD-Net can produce structural connectomes from common clinical 

single-shell LARDI protocols of similar quality to those obtained with more sophisticated (but time-

consuming) multi-shell HARDI protocols used in advanced research applications. This opens up the 

possibility for more reliable connectomics analysis from widely used clinical protocols (e.g. 32 directions, 

b=1000 s/mm2), which are generally considered to be of insufficient quality for reliable analysis. 

Algorithmically, the deep network takes as input a 3D patch cropped from a single-shell LARDI FOD 

image and outputs the super-resolved FOD voxel corresponding to the central voxel of the input 3D 300 

patch. By repeating this process on all 3D patches of a low angular resolution FOD image, the deep 

network generates all super-resolved FOD voxels, which can be combined to form up the corresponding 

super-resolved FOD image. Since our method is patch-based, any size of FOD images can be ingested 

by our model to output the corresponding super-solved images, giving FOD-Net great flexibility when 

dealing with data with different spatial resolutions. Another merit of this patch-based design is that 

information from neighboring voxels is incorporated to provide clear clues to compensate for the 
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information lost in single-shell LARDI FOD voxels, given that anatomical white matter fibre tracts are 

likely to have consistent orientation with those in neighboring voxels. Importantly, our formulation is 

based on the use of FOD images, for which the size of the last volume axis can be fixed (i.e. by the 

choice of maximum harmonic order 𝑙𝑚𝑎𝑥  – see Methods), which can circumvent the problem of 310 

constructing dMRI-based deep learning models from a range of acquisition protocols: while the numbers 

of gradient directions (corresponding to the size of the last volume axes in the dMRI dataset) can 

considerably vary between acquisition protocols, deep learning models typically require a fixed input 

size; the use of a fixed 𝑙𝑚𝑎𝑥 overcomes this limitation, thus facilitating the generalization of FOD-Net to 

varying acquisition protocols. Moreover, the superior performance achieved by FOD-Net is achieved by 

the regression of the residual between the single-shell LARDI FOD images and the corresponding super-

resolved FOD images. This is because they share a high degree of mutual information, with an output 

probability distribution that is conditional upon the input single-shell LARDI FOD distribution. A necessary 

step before the use of FOD-Net is FOD normalization, which standardizes each dimension of a FOD to 

enhance the numeral stability of the network (see Methods). While original magnitudes of the coefficients 320 

of the high order terms of the FOD spherical harmonics expansion are very close to zero, these sort of 

coefficients have significant impact on the quality of the FOD estimates, as they determine the overall 

angular resolution20. A proper normalization step can rescale the value range of these higher order 

terms, such that the network can be more influenced by them to enhance the performance and converge 

faster. 

Despite FOD-Net providing more accurate FOD estimates than SS3T CSD in both pure white matter 

and partial volumed white matter voxels (see ACC metrics in Fig. 3), we found that the performance of 

FOD-Net in pure white matter voxels outperforms that in white matter voxels with partial volume with 

grey matter structures (see Fig. 3). This observation is in line with the fact that white matter voxels 

comprising partial volume with large amounts of grey matter, in which nerve cell bodies and dendrites 330 

do not have clear and coherent orientations, reduce the overall amplitude of the FOD23. Nevertheless, 
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connectomes reconstructed from super-resolved FOD images are still reliable and robust, as tracking is 

often terminated at the grey-white matter interface24.  

With respect to tractography, Fig. 4 shows that by using super-resolved FOD images, the tractography 

results are improved compared with the current state-of-the-art SS3T CSD method, providing 

tractograms that reflect better those obtained with the ‘ground-truth’ multi-shell HARDI data. This likely 

reflects the relatively lower angular resolution of clinical dMRI protocols, which provide insufficient 

information for SS3T CSD to reliably infer the specific fiber architecture within the voxels. Furthermore, 

the use of low b-values in typical clinical protocols exacerbates this problem by reducing the angular 

contrast of the diffusion effect4,5, which limits the ability to characterize fine-grained fiber tract properties. 340 

Our deep learning strategy helps to bridge this gap, increasing the angular resolution and generating 

super-resolved FODs: unlike conventional SS3T CSD, FOD-Net learned the inherent relationship 

between single-shell LARDI and multi-shell HARDI FOD data, which means it can reveal the 

sophisticated intravoxel white matter architecture in fine detail. It is also worth noting that the output of 

FOD-Net is smoother, in general, than the ‘ground-truth’ and SS3T CSD results, since this data-driven 

method discovers prior knowledge from local white matter information, i.e., white matter tracts in a 

compact region are likely to share a similar distribution. 

We observed discrepancies between connectome reconstructed by SS3T CSD of LARDI and MSMT-

CSD of HARDI, with false-positive connections (spurious connections that are not genuinely connected 

by fiber bundles) as well as false-negative connections (missing connections between pairs of brain 350 

regions) when compared to multi-shell HARDI data (used here as ‘ground-truth’). These false 

connections were greatly reduced in connectomes based on FOD-Net of LARDI data, demonstrating the 

practical benefits of our proposed method. This feature is of critical importance for clinical applications 

of connectomics, since missing and spurious connections between different regions could 

inappropriately affect clinical decision-making.  
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Moreover, FOD-Net was shown to have satisfactory generalizability and reproducibility, as 

demonstrated in Fig. 8 using data acquired with a different scanner and protocol from the data used for 

training the model. Compared to SS3T CSD, FOD-Net computed more reliable connectomes regardless 

of the different dMRI protocols. In the test-retest experiments, FOD-Net demonstrated similar 

reproducibility to MSMT-CSD despite requiring substantially less data. This is because the training data 360 

used in our method includes grey matter, which can be seen as a special type of ‘data augmentation’ to 

perform regularization to avoid model overfitting25, and as such that it can enhance the robustness of 

FOD-Net. To apply our method on new subjects acquired from different scanners and clinical protocols 

that were not part of the training process, the steps detailed in the Methods section (including resampling 

to harmonize spatial resolution) are required to obtain optimal results. As pointed out in prior literature26, 

using transfer learning to fine tune deep networks using samples in new datasets improves algorithm 

performance, and may therefore have a role to further enhance the FOD-Net model. 

There are a number of potential concerns with FOD-Net. For example, a common concern for angular 

super-resolution algorithms in neurocomputational imaging is the potential emergence of artifacts that 

may not only degrade imaging quality, such as noise spikes, but also provide misleading information to 370 

clinicians (in our case, false brain connections). To explore this, we examined the macroscale structural 

connectomes generated from the test dMRI data. We found that only a few FOD-Net derived connections 

(around 4%) statistically different from the ground truth. However, in all these statistically differed 

regions, FOD-Net-based estimates exhibit overwhelming advantages over the state-of-the-art SS3T 

CSD method: even the worst results yielded by FOD-Net still outperformed SS3T CSD. Another potential 

concern is the formulation of FOD-Net’s angular super-resolution task, which relies on the FOD model 

and thus is not applicable to other dMRI models (e.g. tensor model, etc). However, FOD is now 

considered the de facto state-of-the-art parameterization for modeling fiber tracts7 and an increasing 

number of clinical applications are FOD-based. Finally, our method was only trained on healthy subjects 

from a narrow age range (HCP young adults, aged 22-35), which may limit the application range of our 380 
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model. FOD-Net might therefore not necessarily generalize to infants, older people or diseased brains, 

and the model may need to be trained (or transfer learning considered) for such applications. 

In contrast to existing methods9,10, which strived for deep learning based dMRI angular super 

resolution to compensate for fibre tract quality loss induced by clinical protocols, FOD-Net directly super-

resolves local fiber tracts based on the state-of-the-art mathematic model, i.e., fiber orientation 

distribution. This strategy overcomes the limited applicability of existing deep learning based dMRI 

angular super resolution methods that model raw dMRI data, which in clinical settings are inherently 

acquired with a diversity of protocols and a variable number of gradient directions.  

Taken together, our work represents an important step to advance clinical neuroscience research by 

providing a deep learning - powered data enhancement framework for robust tractography and accurate 390 

connectome reconstruction.  FOD-Net will improve access to high quality cerebral connectivity analysis 

from common clinical MRI acquisitions, potentially accelerating discovery in brain disease through the 

study of multicenter-multiscanner populations; and ultimately driving precision neurology through 

connectome analysis in routine clinical settings. 

  

Methods 

Training dataset preparation. The human connectome project (HCP) dataset (see Data Availability) is 

selected as the training dataset for our deep learning model due to the fact that it is one of the largest 

dMRI datasets in the neuroimaging community acquired using sophisticated HARDI protocols27, which 

can be used to emulate the clinically accessible dMRI data via adequate subsampling operations, while 400 

still retaining the full high-quality dataset as ‘ground-truth’. Then the FOD data obtained from the 

subsampled dMRI (referred to here as LARDI) and the corresponding FOD data from HARDI 

.CC-BY-NC-ND 4.0 International licensedisplay the preprint in perpetuity. It is made available under a
holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to 

The copyrightthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.17.427042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427042
http://creativecommons.org/licenses/by-nc-nd/4.0/


24  

24 

 

respectively constitute the low angular resolution and high angular resolution pairs for the training of our 

model.  

The minimally pre-processed diffusion MRI data27 in the HCP was acquired at a resolution of 1.25mm 

isotropic, with 3 shells of b=1000, 2000, 3000 s/mm2 (90 directions/shell)11. In addition, 18 b0 volumes 

were also acquired, leading to an overall dMRI data of 288 volumes for each subject. Since single-shell 

32-direction dMRI data with low b-value is widely used in practical clinical settings, we generated 

clinically accessible dMRI data (i.e. single-shell low-angular-resolution) from the original multi-shell high-

angular-resolution using the following subsampling strategies: we subsample 32 directions from the 410 

b=1000 s/mm2 shell by selecting the first 32 directions sequentially from the original HARDI dataset, as 

the HCP acquisition pipeline samples directions in an incremental way such that an interruption at any 

point would result in an approximately optimal design28. Finally, the b0 volume is added into the 

extracted 32 directions to obtain the complete single-shell LARDI data (consisting of a total of 33 

volumes for each subject). 

Once clinical quality MR images and the corresponding multi-shell HARDI images are compiled, the 

next step is to generate their fiber orientation maps separately, using MRtrix13 . First, the Dhollander 

algorithm12  is used to compute the white matter response functions for all subjects’ data. Then, single-

shell three-tissue (SS3T)29  constrained spherical deconvolution (CSD) and multi-shell multi-tissue 

(MSMT)6 CSD are performed on the clinical quality MR images and multi-shell HARDI images to 420 

generate low angular resolution and high angular resolution FOD maps, respectively, by taking as input 

the computed white matter response functions. Subsequently, the multi-tissue informed intensity 

normalisation30 is performed on all the fiber orientation maps in the log-domain, which further corrects 

simultaneously for both global intensity difference as well as bias field. This step is necessary because 

it enables quantitative FOD comparison across subjects30. An intensity-normalised FOD dataset is four-

dimensional, of which the first three dimensions are the spatial brain dimensions, and the last dimension 

is the coefficient volumes of the spherical harmonics expansion4 . In our experiments, the maximum 
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harmonics order (𝑙𝑚𝑎𝑥) is set to 8, corresponding to 45 terms in the FOD spherical harmonic expansion, 

since it provides sufficient accuracy while remains low computational complexity20. For each intensity-

normalised FOD map, the mean and standard deviation of each coefficient volume are computed. Then 430 

the computed means and standard deviations are averaged across all the subjects to get the final means 

and standard deviations. Subsequently, the final means and standard deviations are used to perform z-

score standardization on the intensity-normalised FOD maps to generate the standardized FOD maps. 

These standardized LARDI and HARDI FOD maps are ready for use in the training and inference stage 

of the FOD-Net. 

110 subjects from the HCP dataset are randomly selected to build our dataset for conducting the 

experiments. Our dataset is split into 50 training, 50 evaluation, and 10 validation. The validation 

subjects are used for hyperparameter searching during the training process. Once the best 

hyperparameters of the network have been selected, all 50 subjects will be used to train the deep 

learning model. 440 

 

Local validation dataset. We conducted experiments with dataset acquired at our local clinical 3.0T 

scanner to further demonstrate the following two related key points. First, the good generalisation 

ability of FOD-Net, enabling assessing our model trained by HCP to be tested on data from a 

completely different clinical scanner/protocol. Second, to test the trained model on data from a more 

traditional clinical scanner and protocol (note that the Connectom HCP scanner is not a conventional 

clinical scanner, and thus the protocol used for the HCP dataset cannot be reproduced in standard 

clinical scanners). The local validation dataset was acquired using a 3.0T GE MR750 (General 

Electric, Milwaukee, WI, USA) with Nova 32-channel head coil. The multi-shell diffusion imaging 

parameters were: 70 axial slices, FOV 256 × 256 mm, TR/TE = 4000/82.3 ms, 2mm slice thickness, 450 

acquisition matrix 128×128 with a 2 mm in plane resolution, and an acceleration factor of 2. The dMRI 
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protocol included 136 diffusion-weighted images (32/32/72 directions of b=1000/2000/3000 s/mm2) 

and eight b=0 images. The acquisition time for the diffusion dataset was approximate 11 minutes. 

Additionally, a reversed phase encoding b0 “blip down” was obtained for susceptibility induced EPI 

distortion correction. An isotropic 1mm T1-weighted image were also acquired using fast spoiled 

gradient echo (FSPGR) with magnetization-prepared inversion recovery (IR) pulse 

(TE/TI/TR=2.62/450/7.06 ms, Flip Angle=12).  

To assess the generalizability, the aforementioned acquisition protocol was carried out on four 

healthy subjects (2 males, 2 females;  30 ± 5 years), in two occasions (for test-retest analysis) over a 

30 mins session. The first scan of each subject was used to perform generalizability test. To assess 460 

intra-subject reliability, test-retest experiments were conducted on two difference timepoints of each 

subject.  

 

Deep learning network architecture. Most of existing deep learning models9,10 for MRI angular super-

resolution tasks are based on fixed-size MRI images, which is not in principle suitable for our fiber 

orientation map angular super-resolution task because the size of dMRI data can vary considerably 

between acquisition protocols. To address this, our deep learning model in FOD-Net takes (sequentially) 

as input an FOD patch cropped from a single-shell LARDI FOD image and outputs the angular super-

resolved version of the central voxel of this patch. This formulation has two benefits: (1) FOD images 

with various sizes are able to be enhanced via the same trained FOD-Net model; (2) the use of a low 470 

angular resolution FOD patch for the central voxel angular super-resolution incorporates useful neighbor 

information given that the directions of FODs in a region are likely to be relatively consistent and, as 

such, this kind of information can compensate for lost angular information in LARDI. Although the larger 

patch size we choose, the more information we can include, we selected a 3D FOD input patch of size 

9 × 9 × 9, as tradeoff between increase computational complexity and gain brought by larger patch 
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sizes.  Furthermore, larger patch sizes lead to include more ‘noise’ (for example, unrelated information 

brought by grey matter voxels) from distant voxels, which may adversely affect the model performance. 

Our deep learning model consists of two stages: (1) the single-shell LARDI FOD patch feature 

representation stage, and (2) the super-resolved central FOD voxel estimation stage. The feature 

representation stage is designed for extracting the feature vector which can represent the input implicitly. 480 

Subsequently, the output of the feature representation stage forms the input to the fiber orientation voxel 

estimation stage to obtain the coefficients of the spherical harmonic expansion of the fiber configuration 

within the voxel. Both stages are trained jointly in an end-to-end manner. The feature representation 

stage is composed of four 3D convolutional layers and two fully connected layers. All the 3D 

convolutional kernels of the 3D convolutional layers are of size 3, if not explicitly specified. Each 3D 

convolutional layer is followed by a batch normalisation layer and a gated linear unit (GLU) activation 

layer. The batch normalisation layers are used to normalise the output of the 3D convolutional layers by 

re-centering and re-scaling, thus improving the stability of the training process. The first 3D convolutional 

layer, which has 128 filters, takes as input a LARDI FOD patch. Then it is followed by four 3D 

convolutional layers with 256, 512, 1024, and 2048 filters, respectively (see Fig. 1b). All these four 3D 490 

convolutional layers do not use the zero-padding operation, and the size of feature maps outputted by 

each layer is therefore 7 × 7 × 7 × 128 , 5 × 5 × 5 × 256 , 3 × 3 × 3 × 512 , and 1 × 1 × 1 × 1024 , 

respectively. Since the width, height, and length of the last feature map are all 1, this feature map is 

squeezed to the feature vector, which represents the input single-shell LARDI FOD patch. This feature 

vector is ingested by different spherical harmonic coefficient estimation blocks (SHCEBs) to estimate 

the residual between the coefficients of each order, respectively (see Fig. 1a). Since FODs are 

symmetric, the odd orders of the SH coefficients are all 0, and only even SH coefficients (five coefficients 

in our case) need to be estimated. Therefore, five SHCEBs are attached to the feature representation 

stage to compute the coefficients of each order of the central FOD voxel respectively. A SHCEB takes 
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as input the feature vector, which is then processed progressively via a series of fully connected layers 500 

to obtain the coefficients of each specific spherical harmonic order. The size of each SHCEB output is 

1, 5, 9, 13, and 17, respectively (Fig. 1c). The insights behind the design of a SHCEB come from two 

aspects. First, coefficients at each order have different distribution from those at other orders: while they 

have been all z-score normalised, the value range of coefficients is still different for each order. Thus, 

estimating coefficients using different blocks can significantly mitigate this issue.  Second, spherical 

harmonics are orthogonal to each other, making it very difficult to predict all coefficients using the same 

vector. This motivates us to design a way to predict them separately. The final model is trained using 

the 𝑙2 loss function, as widely used in regression tasks. 

We have implemented our system using Pytorch31. The full network is trained in an end-to-end 

fashion from scratch, where  all  weights  are  initialized  using  the  Xavier initialisation32. Stochastic 510 

gradient descent (SGD) is employed as our optimizer because it generally acts well for regression tasks 

and has a favorable convergence speed. The parameters used for SGD are set to the defaults, with 

momentum 0.9. We use a learning rate of 0.01 with the learning rate decay 10-5 every epoch. The batch 

size is set to 64. The model has finished when training reaches around 20,000 epochs. One batch takes 

approximately 2s on a NVIDIA Tesla V100 GPU, and about two weeks for the model to converge. 

In the inference stage of FOD-Net, single-shell LARDI FOD images were generated using the current 

state-of-the-art spherical deconvolution method for SS3T CSD, and then these FOD images were zero-

mean unit-variance normalised using the statistics computed from the training dataset. A given 

normalised test image is sequentially cropped into 9 × 9 × 9 three-dimensional (3D) patches, that are 

successively ingested by FOD-Net to obtain the super-resolved version of the central voxel of each input 520 

patch. Once the super-resolved FOD voxel for each matched single-shell LARDI FOD patch has been 

obtained, they are combined together back to generate the super-resolved FOD data, which is the output 

of the FOD-Net. 
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White and grey matter tissue segmentation. To evaluate the performance of our method in 

pure/partial white matter tissues using angular correlation coefficients, a so-called ‘five-tissue-type’ 

mask, including cortical grey matter, sub-cortical grey matter, white matter, cerebrospinal fluid, and 

pathological tissue24, are generated using FSL software for each MR image – Note: for our healthy 

subject data, the fifth tissue type was empty. These generated five-tissue-type masks are also used to 

perform the anatomically constrained tractography. 530 

 

Definition of pure white matter and partial white matter regions. We quantitatively assessed the 

performance of our method on voxels containing pure white matter and in voxels containing a mix of 

white matter and grey matter (see Fig. 3), to assess whether the presence of GM contribution to the 

voxel dMRI signal impacted the performance of FOD-Net. We classified voxels in which the volume 

fraction of white matter is greater than 70% as pure white matter voxels. For voxels in the boundary 

between white matter and subcortical or cortical grey matter, we define them as partial volumed white 

matter voxels, as long as each of them contained at least 30% of white and subcortical/cortical grey 

matter tissues. The quantitative metric, i.e., angular correlation coefficient33, used to conduct both pure 

and partial white matter experiments can be calculated using: 540 

 ∑ ∑ 𝑢𝑙𝑚𝑣𝑙𝑚
∗𝑙

𝑚=−𝑙
8
𝑙=0

(∑ ∑ 𝑢𝑙𝑚
2𝑙

𝑚=−𝑙
8
𝑙=0 )1 2⁄ (∑ ∑ 𝑣𝑙𝑚

2𝑙
𝑚=−𝑙

8
𝑙=0 )1 2⁄

 ( 1 ) 

where 𝑙, 𝑚 represents a degree and order of a spherical harmonic function, respectively, and 𝑢, 𝑣 are 

defined as the ‘ground-truth’ FOD and the estimated FOD data, respectively. 

 

Anatomical tractography segmentation. To assess the tractograms generated by the super-resolved 

FOD images qualitatively (Fig. 4) and quantitatively (Fig. 5) in representative anatomic regions that might 

be of interest for clinical applications, we first segmented FOD data into different anatomical parts using 
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TractSeg software34, which is a deep-learning method for automatic white matter bundle segmentation 

based on FOD data.  The bundles of interest included corpus callosum (CC), middle cerebellar peduncle 

(MCP), corticospinal tract (CST) and superior longitudinal fascicle (SLF). Then a bundle-specific 

tractography algorithm35 was used to reconstruct anatomical tractograms from the segmented anatomic 550 

regions. Subsequently, three anatomical ROIs (see Supplementary Tab. 1) are defined to demonstrate 

the performance of FOD-Net on regions containing one-fiber-tract, two-fiber-tract, and three-fiber-tract, 

respectively. Specifically, ROI 1 is defined as a corpus callosum region, where is mainly comprised of 

large and coherent fiber tracts; we therefore use voxels only containing one fixel15 (a specific fiber bundle 

within a specific voxel) to evaluate our method in coherent fiber tract (non-crossing-fiber) regions. ROI 

2 is defined as the regions where the MCP and CST bundles intersect, both of which can be regarded 

as fiber tracts possessing coherent orientations; the performance of FOD-Net on two-fibre-tracts-

crossing regions can be evaluated using voxels in these intersected regions containing only two fixels. 

Regarding evaluations of regions with more complex fibre configurations (regions containing voxel with 

three distinct fixels), the intersected regions of SLF, CST, and corpus callosum are selected to conduct 560 

comparison experiments. 

  

Human connectomic analysis. The process of human connectome construction for a subject used in 

our connectomic analysis comprises five main steps: (1) whole-brain tractography; (2) computing a 

weighting for each streamline to make connectivity results quantitative14; (3) grey matter atlas selection; 

and (4) connectome construction by computing the degree of structural connectivity between each pair 

of nodes. In the first step, anatomical-constrained whole-brain tractography is performed on all subjects 

using the HCP tractography pipeline presented in MRTrix13. Specifically, by taking as input a given FOD 

image, the second-order integration over fiber orientation distributions (iFOD2) is used to compute the 

tractogram under the framework of anatomically-constrained tractography24 by providing the 570 

corresponding five-tissue-type mask. Relevant parameters were as follows: step size 0.625mm (0.5 × 
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voxel size), maximum curvature per step 45°, length 5-250mm, and FOD amplitude threshold 0.06. 

Seeding operations are randomly performed from the interface between gray matter and white matter 

and 10 million streamlines are generated. For each tractogram, the SIFT214 algorithm is used to 

determine a weight assigned to each streamline to make the tractogram quantitative and with more 

biologically meaningful properties. Subsequently, each subject’s anatomical image was segmented into 

biologically meaningful brain nodes using the Desikan-Killiany atlas in step 3. The fourth step is to 

construct the connectome matrix for each FOD-based tractogram: for each connectome reconstruction, 

streamlines were mapped to the relevant brain nodes using MRtrix13, which takes as input the 

tractogram, the streamlines weights, and the atlas parcellation, and outputs the connectome matrix from 580 

the sum of the SIFT2 weights of all the streamlines (as measure of ‘connectivity’) connecting each pair 

of nodes in the parcellation. 

The connectome disparity matrix, to evaluate the difference between a single-shell LARDI based 

connectome (estimates) and the corresponding multi-shell HARDI based connectome (‘ground-truth’), 

was computed as follows: 

 
∆𝐶 = |𝐶𝑒𝑠𝑡 − 𝐶𝑔𝑡| ( 2 ) 

where 𝐶𝑒𝑠𝑡 and 𝐶𝑔𝑡 are estimated connectome and ‘ground-truth’ connectome, respectively, and ∆𝐶 is 

the disparity matrix, which is used to measure the quality of connectome reconstruction. 

 

Generalizability test. To show how FOD-Net can adapt properly to new, previously unseen clinical 

acquisition protocols, the generalizability of FOD-Net was tested using the local clinical dataset (see 590 

above) acquired at our imaging centre. Since our model is trained using HCP data, in which each dMRI 

image is acquired at 1.25mm isotropic resolution, we resized each image in our clinical dataset from 

2mm to 1.25mm to match the configuration of our model. The resize operation is performed using cubic 
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downsampling in MRtrix. Once all dMRI images had been resized, the single-shell LARDI dMRI image 

dataset was constructed by extracting all gradient directions in the first shell (𝑏 = 1000𝑠/𝑚𝑚2) and the 

𝑏 = 0𝑠/𝑚𝑚2 image. Next, the state-of-the-art SS3T CSD method was applied to all single-shell LARDI 

dMRI images to generate the single-shell LARDI FOD images. Then these LARDI FOD data were 

enhanced by FOD-Net to obtain the super-resolved FOD data. We also applied MSMT-CSD to the 

original multi-shell HARDI dMRI local clinical data to be used as ‘ground-truth’.  Finally, tractography 

and connectome were reconstructed using the same processing pipeline as that described in the training 600 

stage.  

We conducted two experiments to demonstrate the generalizability of our method. First, we computed 

the disparity matrices between the ‘ground-truth’ and our estimates using the absolute difference 

operator. Second, permutation testing was used to test whether the edges in the connectomes 

reconstructed using the super-resolved FOD images significantly differed from the ‘ground-truth’. 

Specifically, the null hypothesis of the equality in the distribution of the ‘ground-truth’ (MSMT CSD of 

HARDI) and the LARDI estimates (FOD-Net or SS3T CSD) was assessed using permutation testing, 

where each edge in the zero-diagonal and symmetric connectome matrices are processed 

independently. Then false discovery rate correction was applied to the results of the permutation test to 

ensure that corrected p-values are obtained. The null hypothesis was rejected if the tail of the distribution 610 

of an edge was longer in the estimate compared with the MSMT CSD based connectome (p value < 

0.05).  

 

Test-retest reliability estimation. Measuring test-retest reliability is of great importance because good 

test-retest reliability ensures the measurements obtained in one sitting are both consistent and stable, 

and that any improvement in accuracy introduced by FOD-Net does not come at the expense of a severe 

impact to its precision. In our study, the test-retest reliability measurements are conducted on all three 

methods (SS3T CSD, FOD-Net, and MSMT CSD) using the local clinical dMRI data acquired 
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consecutively at two different timepoints. Specifically, for each timepoint, the single-shell LARDI dataset 

and multi-shell HARDI dataset are constructed using the same way as that in generalizability test. Then 620 

SS3T CSD and MSMT CSD are applied to the two single-shell LARDI and two multi-shell HARDI 

datasets, respectively. For the FOD images generated by SS3T CSD, we applied FOD-Net to generate 

the corresponding super-resolved FOD images. The connectome reconstruction pipeline which uses 

the SIFT2 weighted number of streamlines in MRTrix was performed for each FOD dataset generated 

by SS3T CSD, FOD-Net, and MSMT CSD. In test-retest experiments, the reliability of a method is 

measured by computing the average of the weighted mean coefficient of variation (wmCoV)36 across 

the four subjects. wmCov is a metric to provide a summary statistic reproducibility of the entire 

connectome, which can be calculated by: 

 
𝑤𝑚𝐶𝑜𝑣 =

∑ 2𝑙𝑜𝑔10𝜇𝐸 ∙ 𝐶𝑜𝑉𝐸𝐸

∑ 2𝑙𝑜𝑔10𝜇𝐸
𝐸

 ( 3 ) 

where 𝐶𝑜𝑉𝐸 =
𝜃𝐸

𝜇𝐸
 is the coefficient of variation (CoV) of edge 𝐸 ; 𝜇𝐸  and 𝜃𝐸  are the mean and the 

unbiased standard deviation estimate of mean connectivity of edge 𝐸  across the connectomes 630 

reconstructed from a same subject (intra-subject). wmCoV computes a representative mean CoV for a 

group of multiple scans on a same subject, where the contribution of each edge CoV to the mean is 

weighted using the mean connectivity of that edge. 

 

Data availability 

The human connectome project dataset11 is publicly available, being acquired and maintained by 

https://www.humanconnectome.org/ . These datasets are available for download to anyone agreeing to 

the Open Access Data Use Terms (https://db.humanconnectome.org/). The clinical validation dataset 
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used to assess the reproducibility and generalizability of the FOD-Net results is currently not publicly 

available.  640 

Code availability 

The PyTorch (v1.2) is adopted to implement the whole network. MRtrix (v3.0), which is used to perform 

FOD, tractography, and connectome as part of this study, is openly available at https://www.mrtrix.org. 

The following additional software packages used for this study are freely and openly available: DIPY 

(v.0.6.4.1) and NIFTI (v.0.6.1). FOD-Net codes are publicly hosted at ruizengalways/FOD-Net 

(github.com), where includes the preprocessing protocol, training data, trained models, and a reference 

set of features.  
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