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Abstract 

Child educational development is associated with major psychological, social, economic and 

health milestones throughout the life course. Understanding the early origins of educational 

inequalities and their reproduction across generations is therefore crucial. Recent genomic 

studies provide novel insights in this regard, uncovering “genetic nurture” effects, whereby 

parental genotypes influence offspring’s educational development via environmental 

pathways rather than genetic transmission. These findings have yet to be systematically 

appraised. We conducted the first systematic review and meta-analysis to quantify genetic 

nurture effects on educational outcomes and investigate key moderators. Twelve studies 

comprising 38,654 distinct parent(s)-offspring pairs or trios from eight cohorts were included, 

from which we derived 22 estimates of genetic nurture effects. Multilevel random effects 

models showed that the effect of genetic nurture on offspring’s educational outcomes (βgenetic 

nurture = 0.08, 95% CI [0.07, 0.09]) was about half the size of direct genetic effects (βdirect genetic 

= 0.17, 95% CI [0.13, 0.20]). Maternal and paternal genetic nurture effects were similar in 

magnitude, suggesting comparable roles of mothers and fathers in determining their 

children’s educational outcomes. Genetic nurture effects were largely explained by parental 

educational level and family socioeconomic status, suggesting that genetically influenced 

environments play an important role in shaping child educational outcomes. Even after 

accounting for genetic transmission, we provide evidence that environmentally mediated 

parental genetic influences contribute to the intergenerational transmission of educational 

outcomes. Further exploring these downstream environmental pathways may inform 

educational policies aiming to break the intergenerational cycle of educational 

underachievement and foster social mobility. 

Keywords: educational attainment; educational achievement; genetic nurture; intergenerational 

transmission; meta-analysis 
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Public Significance Statement 

This meta-analysis demonstrates that parents’ genetics influence their children’s educational 

outcomes through the rearing environments that parents provide. This “genetic nurture” 

effect is largely explained by family socioeconomic status and parental education level, is 

similar for mothers and fathers (suggesting that both parents equally shape their children’s 

educational outcomes) and is about half the size of direct genetic effects on children’s 

educational outcomes. Interventions targeting such environmental pathways could help to 

break the intergenerational cycle of educational underachievement and foster social mobility. 
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Genetic nurture effects on education: a systematic review and meta-analysis 

 

Educational attainment is defined as the highest education level a person attains. A related 

construct is educational achievement, which refers to one’s school performance. These two 

constructs are prospectively associated with major psychological, social, economic and health 

milestones throughout the life-course (Conti, Heckman, & Urzua, 2010; Crespo, López-

Noval, & Mira, 2014; Foundation, Kaplan, House, Schoeni, & Pollack, 2008). Parents’ 

educational level is an important early predictor of their offspring's own educational 

attainment and achievement (e.g., Dubow, Boxer, & Huesmann, 2009). It is crucial to 

understand the processes underlying this transmission of educational attainment and 

achievement, which leads to continuing cycles of disadvantage across generations and 

hinders social mobility. 

 

Origins of Parent-offspring Resemblance on Education 

Positive associations between parents’ education and their offspring’s education are found in 

nearly every society (Björklund & Salvanes, 2011). For example, correlations between 

parents’ and offspring’s educational outcomes were consistent across twelve Western 

countries with estimates ranging from r = 0.30 (Denmark) to 0.46 (U.S.) (Hertz et al., 2008). 

The parent-offspring resemblance in educational outcomes can be attributed to nature 

(genetic variants that offspring inherit from their parents) and nurture (the environment that 

parents provide for their offspring)(Koellinger & Harden, 2018). These nature and nurture 

effects are complex and intertwined. For example, the environment created by parents can be 

partly shaped by genetic influences; parents with a higher genetic propensity for learning may 

have a greater interest in activities such as reading that, in turn, nurture learning in their 

offspring. The term “genetic nurture” is used to describe the phenomenon by which parental 
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nature (i.e., parental genotype) influences offspring outcomes by shaping the way that parents 

nurture (Kong et al., 2018). Genetic nurture effects can therefore be considered indirect 

effects from parental genotype to offspring’s outcomes that are mediated through the family 

environment, while nature effects can be considered direct effects through genetic 

inheritance. Importantly, the direct genetic transmission can generate correlations between 

parental and child educational outcomes in the absence of any effect of parental nurture in 

shaping child outcomes (a phenomenon akin to passive-gene environment correlation). 

Conversely, genetic nurture effects cannot exist in the absence of a nurturing effect. This is 

because parental genotypes that are not transmitted to children can only affect child outcomes 

via environmental pathways. As such, detecting significant genetic nurture effects provides 

strong evidence that environmental pathways matter when it comes to shaping children's 

educational outcomes, even after accounting for genetic transmission. 

 

Molecular Genetic Evidence of Environmentally Mediated Effects on Education 

Findings from genome-wide association studies (GWAS) in the last two decades have greatly 

advanced our understanding of complex traits, including educational outcomes (Visscher et 

al., 2017). The most recent GWAS for educational attainment (hereafter referred to as “EA 

GWAS”) identified 1271 lead variants associated with year of schooling completed  (Lee et 

al., 2018). Based on the EA GWAS, a polygenic score (PGS) can be derived to provide a 

single value reflecting an individual’s genetic propensity to educational attainment (referred 

to as “EA PGS”; it is a sum of an individual’s effect alleles weighted by effect sizes obtained 

from the EA GWAS)(Dudbridge, 2013; Ronald, 2020). The top performing EA PGS 

explained 11-13% of the variance in educational attainment in two replication samples (Lee 

et al., 2018).  
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Early studies have shown that the EA PGS relates to educational outcomes in parents and 

offspring, highlighting the potential role that genetics may play in the intergenerational 

transmission of educational outcomes (Ayorech, Krapohl, Plomin, & von Stumm, 2017; 

Belsky et al., 2016; Domingue, Belsky, Conley, Harris, & Boardman, 2015; Krapohl & 

Plomin, 2016; Selzam et al., 2017). More advanced designs were recently devised to further 

disentangle direct versus indirect pathways underlying the intergenerational transmission of 

educational outcomes. Two studies (Bates et al., 2018; Kong et al., 2018) assessed the 

magnitude of genetic nurture effects by constructing PGS from parental alleles that are not 

transmitted to the offspring. This approach is termed the “virtual parent design” (for more 

description see section 1.1 in the supplement) as it creates a ‘virtual parent’ that is not 

genetically related to the offspring. Hence, the association of the non-transmitted parental 

PGS with offspring outcomes occurs not though genetic transmission but environmental 

pathways. The effect of non-transmitted PGS on offspring outcomes therefore reflect genetic 

nurture effects by design because it is free from genetic confounding between parents and 

offspring due to shared genotype. Moreover, as the transmitted genotypes from both parents 

(i.e., the inherited offspring genotype) can have both direct and genetic nurture effects, the 

association between child PGS and their own outcomes can be overestimated when genetic 

nurture is not considered (Kong et al., 2018). Direct genetic effects represent genetic 

influences that originate in the child genetic variants and are corrected for the inflation 

arising from genetic nurture. Previous findings suggested that genetic nurture has substantial 

impacts on offspring’s educational attainment, while it is less important for other traits such 

as body mass index and height (Kong et al., 2018). This design has now been implemented in 

different contexts, such as using cohorts from different countries, constructing PGS based on 

more powerful/accurate GWAS, etc (e.g., Bates et al., 2019; de Zeeuw et al., 2020).  
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In addition to relying on non-transmitted and transmitted polygenic scores, genetic nurture 

and direct genetic effects can be obtained by estimating the effect of parental PGS on the 

offspring’s outcome, while statistically controlling for the offspring’s PGS (for more 

description see section 1.2 in the supplement). This statistical control approach has been 

applied in several studies (e.g., Armstrong-Carter et al., 2020; T. Morris, Davies, Hemani, & 

Smith, 2020; Willoughby, McGue, Iacono, Rustichini, & Lee, 2019). Estimating genetic 

nurture effects using statistical control requires genetic data on offspring and both parents to 

obtain unbiased estimates, but can provide an approximation of the genetic nurture effects 

when genetic data is available for one parent only.  

 

Sources of Heterogeneity in Genetic Nurture Effects 

The magnitude of genetic nurture effects on children’s educational outcomes may vary 

according to four key factors, namely (1) parent of origin, (2) analytic method (3) outcome 

type (4) and predictive accuracy of the GWAS used to derive the PGS. First, it is unclear 

whether the impact of genetic nurture differs depending on whether it originates in the 

mother or the father. While, historically, mothers might have been expected to have a greater 

“genetic nurturing” impact on their children (assuming a greater involvement in nurturing 

their offspring), emerging studies from modern contexts have emphasized the important role 

of fathers in children’s development (Barger, Kim, Kuncel, & Pomerantz, 2019; Kim & Hill, 

2015). However, previous studies have rarely directly compared effects of maternal versus 

paternal genetic nurture on children’s educational outcomes. Second, it is unclear whether the 

magnitude of genetic nurture effects in empirical studies differ depending on the analytic 

method used (i.e., virtual parent or statistical control). Moreover, due to lack of complete trio 

data (i.e. child and both parents), genetic nurture effects have often been estimated among 

parent-offspring pairs. It is unclear to what extent the missing parental genotype bias 
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estimates. Third, it is unclear whether the effect of genetic nurture differs depending on the 

type of educational outcome assessed (e.g., educational attainment or achievement). Previous 

genetically informed studies on educational outcomes have focused on attainment or 

achievement interchangeably (e.g., Allegrini et al., 2019; Krapohl & Plomin, 2016; Sorensen 

et al.; von Stumm et al., 2020). However, as both efforts relied on the GWAS of educational 

attainment, which is likely to more strongly correlate with educational attainment than 

achievement at the phenotypic level, studies examining educational attainment may capture 

genetic nurture effects more accurately. Fourth, to what extent the estimated genetic nurture 

effects differ depending on the accuracy of GWAS summary statistics used to derive the PGS 

remains untested. Studies have used different GWAS data depending on the most powerful 

data at that time of publication. For example, the number of detected lead genetic variants 

increased from three in the first (Rietveld et al., 2013) to 1,271 in the most recent (Lee et al., 

2018) GWAS of EA, thereby increasing the ability to explain variance in children’s 

educational outcomes from 2% to 11% (additional details in section 2 of the supplement).  

 

Summary and Aim 

Here, we conduct the first meta-analysis of all PGS studies on educational outcomes in 

parent(s)-offspring samples published to date to answer the following questions: (1) What is 

the magnitude of genetic nurture effects on educational outcomes? (2) What is the magnitude 

of direct genetic effects on educational outcomes when accounting for genetic nurture 

effects? (3) Which factors moderate genetic nurture and direct genetic effects on educational 

outcomes? 

 

Method  

Search Strategy and Study Selection 
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This systematic review and meta-analysis was performed in line with the Preferred Reporting 

Items for Systematic Reviews and the Meta-Analyses (PRISMA (Moher, Liberati, Tetzlaff, 

Altman, & Group, 2009)) statement and Meta-Analyses of Observational Studies in 

Epidemiology (MOOSE (Stroup et al., 2000)) guidelines (checklists in sTables 1 and 2 in the 

supplement). The protocol was registered on the Open Science Framework 

(https://osf.io/q8b25/). The literature search was performed in July 2020 in Ovid (MEDLINE, 

EMBASE, PsycINFO), Web of Science Core Collection, PubMed for peer-reviewed articles 

written in English. To estimate genetic nurture effects on educational outcomes, we 

considered articles estimating parental genetic nurture using EA PGS. Therefore, the 

publication period was limited to 2013 onwards, when the first EA GWAS (Rietveld et al. 

2013) became available. To retrieve relevant publications, the search included terms related 

to: (1) educational outcomes, (2) polygenic scores, and (3) genetic nurture effects. Detailed 

literature search strategy and terms are presented in section 3.1 in the supplement. Two 

authors (B.W. and T.S.) independently screened titles and abstracts of all articles retrieved 

from the search before reviewing the full text of potentially eligible studies (see criteria 

below). Disagreements were resolved through discussion with the senior researcher (J.B.P). 

Eligible studies met the following criteria: (1) They assessed offspring educational attainment 

(e.g., years of education, highest degree obtained) or educational achievement (e.g., national 

tests scores or levels, school grades) in the general population. (2) The exposure variable(s) 

included genomic proxies of education in parents and offspring, measured in the form of PGS 

derived from the EA GWAS. (3) Studies derived estimates for genetic nurture effects on 

education based on one of the following designs that rely on genotype data from parents and 

their biological offspring: (a) virtual parent: testing whether the PGS calculated from parents’ 

non-transmitted alleles predict offspring educational outcomes; or (b) statistical control: 

testing whether parents' PGS predict offspring educational outcomes over and above 
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offspring's own PGS. For more information on inclusion criteria see section 3.2 in the 

supplement. 

 

Quality Assessment, Data Extraction and Effect Size Calculation  

The methodological quality of the included studies was assessed by two authors (among 

B.W., J.B., W.B. and R.C.) using an adapted version of the Newcastle–Ottawa scale (NOS 

(Stang, 2010)). The NOS was adapted for its use on genetically informed studies and 

included nine questions tapping into four wider aspects relevant to study quality, including 

the quality of cohort selection, the assessment of exposure, the level of comparability of the 

cohort, and the assessment of outcomes. Overall study quality was indexed as a sum score 

ranging from 0 to 9 (see section 3.3 for detailed scoring criteria and sTable 4 for score of 

each study in the supplement).  

Data extraction for each included study was independently performed by two of the authors 

(among B.W., J.B., W.B. and R.C.). The following data were extracted: publication 

characteristics (study name, first author, year), sample characteristics (cohort name, sample 

size, population source, ethnicity, sex distribution), study design (virtual parent or statistical 

control), calculation of PGS (GWAS used to derive the PGS, PGS threshold, source/parent of 

origin of genotype, whether standardized), education-related outcome assessed (educational 

outcome, outcome type, age at assessment, whether standardized), effect size (estimation 

type, estimation, 95% CI or standard error of the estimation), and adjusted confounding 

variables. Where information was missing, original study authors were contacted to request 

the information.  

As a common metric, we extracted (or converted effect sizes to) standardized beta 

coefficients and corresponding standard errors from all individual studies. These data were 

then included in our meta-analytical models to derive the pooled estimate of genetic nurture 
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effects. For studies using the virtual parent design, we extracted standardized regression 

coefficients of non-transmitted PGS. For studies using the statistical control design, we 

extracted adjusted standardized regression coefficients of parental PGS, while controlling for 

offspring’s PGS. For studies reporting effect estimates in metrics other than standardized beta 

or without corresponding standard errors, we transformed the reported statistics using the 

formulae included in the R package compute.es_0.2-4 (Del Re, 2013). One estimate of 

genetic nurture derived from an average parental PGS was recalibrated to be comparable with 

other studies using PGS of individual parent (for justification see section 7.2 in the 

supplement). Estimates of direct genetic effects were extracted when available or imputable, 

i.e., the difference between standardized regression coefficients of transmitted PGS and non-

transmitted PGS in the virtual parent design or adjusted standardized regression coefficients 

of offspring’s PGS while statistically controlling for parental PGS. Whenever applicable, we 

also derived unadjusted parental or child effects, namely regression coefficients of 

offspring’s educational outcomes on parental or offspring’s PGS. For more information on 

the effect size transformation and calculation see section 4.1 in the supplement.  

With each article reviewed and coded by two authors, the two coders had interrater 

reliabilities of 92.6% on quality assessment and 97.8% on data extraction. Before moving 

onto analyses, discrepancies were reviewed and arbitrated by the two coders, and 

disagreements were resolved through discussion with the senior researcher (J.B.P).  

 

Statistical Analysis 

Analyses were conducted in R version 3.6.1 (R Core Team, 2019) using the package metafor 

version 2.4-0 (Viechtbauer, 2010). Since multiple effect sizes were reported in individual 

studies and cohorts, we used three-level Multilevel Random-Effects Models (MREMs) to 

account for dependency among effect sizes within single studies/cohorts (i.e., correlation 
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between effect sizes). These models incorporate three variance components, namely sampling 

variance at level 1 (variance that is unique for each estimated effect size), within-cohort 

variance at level 2 (variance across outcomes within a cohort), and between-cohort variance 

at level 3 (variance across cohorts). For more information on multilevel random-effects 

models see section 4.2 in the supplement. We assessed the heterogeneity between studies 

using the I2 statistics and tested whether heterogeneity of effect sizes at level 2 (within-cohort 

heterogeneity) and level 3 (between-cohort heterogeneity) was significant by conducting two 

separate one-sided log-likelihood ratio tests (Assink & Wibbelink, 2016). Publication bias 

were visualized by checking the asymmetry of funnel plots and more formally tested by using 

precision (sampling variance) as a moderator in meta-analysis models (Rodgers & 

Pustejovsky, 2020).  

Meta-regression analyses were performed to explore potential sources of heterogeneity in 

effect sizes. We tested four main categorical moderators: (1) The type of parental genotype 

used for constructing PGS, which can be maternal or paternal genotype, or the mixture of 

both. (2) The type of analytic method used to measure the genetic nurture effects, which can 

be virtual parent, partial or full statistical control. (3) The type of educational outcome 

assessed, which can be educational attainment or educational achievement. (4) The specific 

GWAS summary statistics used to derive PGS, which can be EA1 with N = 101,069 

(Rietveld et al., 2013), EA2 with N = 293,723 (Okbay et al., 2016), EA3 with N = 1,131,881 

(Lee et al., 2018). In addition, we tested the moderating role of study characteristics (i.e., 

methodological quality, sample size and attrition in cohort), for details see section 4.3 in the 

supplement. We also tested whether adjusting for observed parental educational level and 

family socioeconomic status (SES) attenuated genetic nurture (details in section 6 in the 

supplement).  
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We undertook a series of sensitivity checks to evaluate the robustness of our results 

including: computing robust confidence intervals, evaluating the impact of recalibrating 

effects derived from average parental PGS in one study (Willoughby et al., 2019), assessing 

the impact of a potentially influential study (Kong et al., 2018), performing jack-knife leave-

one-out analyses and assessing the moderating effect of outcome type within study (i.e., 

when educational attainment and achievement were measured in the same study). For more 

information on sensitivity analyses, see section 7 in the supplement. In all tests, a 2-tailed p 

< .05 was considered statistically significant. 

 

Results 

Study Description 

Twelve studies met the inclusion criteria (see Figure 1 for study selection procedure and 

Table 1 for study summary. Further details see sTable 3 in the supplement). The studies 

comprised 38,654 distinct offspring individuals (computation of total sample size see section 

4.3 in the supplement) plus at least one of their parents across eight study cohorts. We 

derived k = 22 estimates of genetic nurture effects on educational outcomes and k = 16 

estimates of direct genetic effects. Additionally, estimates of unadjusted parental (k = 8) and 

child (k = 11) effects were extracted. The majority of genetic nurture estimates were derived 

from studies using the statistical control approach [68.2% (k = 15)] and the rest from virtual 

parent design [31.8% (k = 7)]. Slightly more studies focused on educational achievement 

[54.5% (k = 12)] versus educational attainment [45.5% (k = 10)].  

 

Genetic nurture effects on offspring’s educational outcomes  

As shown in Table 2 and Figure 2, the magnitude of genetic nurture effects was small but 

precisely estimated (βgenetic nurture = 0.08, 95% CI [0.07, 0.09], robust CI [0.06, 0.10]). Among 
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estimates of genetic nurture effects, the variance was largely attributed to sampling 

differences (I2Level 1 = 76.80%). Within-cohort heterogeneity was close to null (I2Level 2 = 

<0.01%, χ2Level 2 < .01, p = .50) and between-cohort heterogeneity was minimal (I2Level 3 = 

23.20%, χ2Level 3 = 1.94, p = .0817), suggesting largely homogeneous genetic nurture effects 

across contexts. The funnel plot was visually symmetric (see sFigure 1 in the supplement) but 

a formal test with precision as the moderator (Q = 6.12, p = .0134) found some evidence of 

publication bias in genetic nurture effects. This bias was no longer significant in the 

sensitivity analysis when excluding the potentially influential study (Kong et al., 2018)(Q = 

0.88, p = .3486, see sTable 5 in the supplement). Results from jack-knife analyses suggest no 

substantial role of unduly large effect arising from any individual study (see sFigure 2 in the 

supplement). The supplement includes findings regarding: meta-analytical estimates of 

unadjusted parental effects and the joint meta-analysis of genetic nurture and unadjusted 

parental effects (section 5.1), and the impact of recalibrating the average parental PGS 

(section 7.2).  

 

Direct genetic effects on offspring’s educational outcomes  

As shown in Table 2 and Figure 3, the magnitude of direct genetic effects was larger than the 

genetic nurture effects (βdirect genetic = 0.17, 95% CI [0.13, 0.20], robust CI [0.12, 0.21]). 

Among estimates of direct genetic effects, 17.67% (i.e., I2Level 1) of the variance among effect 

sizes was explained by random sampling. While within-cohort heterogeneity was negligible 

(I2Level 2 = <0.01%, χ2Level 2 < .01, p = .50), the variance was largely attributable to between-

cohort heterogeneity (I2Level 3 = 82.33%, χ2Level 3 = 5.09, p = .0120). The funnel plot (see 

sFigure 3 in the supplement) and formal test with precision as a moderator (Table 2) 

suggested no publication bias in estimates of direct genetic effects. The jack-knife analyses 

suggested that no single study unduly influenced meta-analysis estimates (see sFigure 4 in the 
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supplement). For findings on unadjusted child effects and the joint meta-analysis of direct 

genetic and unadjusted child effects, see section 5.2 in the supplement. 

 
Sources of Heterogeneity in genetic nurture and direct genetic effects on educational 

outcomes 

We tested potential sources of heterogeneity across estimates with meta-regression analysis. 

Results for genetic nurture and direct genetic effects are displayed in Table 3 (see sTable 6 in 

the supplement for findings on unadjusted parental and child effects).  

Parent of Origin 

First, we tested whether the parent of origin moderated effect sizes of genetic nurture and 

direct genetic effects. The MREM suggested similar effects of genetic nurture on educational 

outcomes when polygenic scores were derived from mothers or fathers (βmother = 0.08, 95% 

CI [0.07, 0.10] for maternal PGS only, βfather = 0.07, 95% CI [0.06, 0.09] for paternal PGS 

only, βparents = 0.08, 95% CI [0.06, 0.10] for mixed parental PGS, e.g., maternal or paternal 

PGS, mean of maternal and paternal PGS) as well as direct genetic effects βmother = 0.17, 95% 

CI [0.12, 0.23], βfather = 0.20, 95% CI [0.13, 0.27], βparents = 0.16, 95% CI [0.12, 0.20]). There 

was no evidence for moderating effects (pgenetic nurture = .6680 and pdirect genetic = .4885). These 

findings were robust to the removal of the potentially influential study (Kong et al., 2018)(see 

sTable 7 in the supplement).  

Study Design 

Second, we examined whether using different designs moderated effect sizes by comparing 

estimates relying on virtual parent (using parental non-transmitted PGS to predict children’s 

education), partial statistical control (using PGS of one parent to predict children’s education 

while controlling for the child’s PGS) and full statistical control (using PGS of one parent to 

predict children’s education while controlling for the child’s and the other parent’s PGS). 

Here, genetic nurture effects detected by the virtual parent design (βvirtual parent = 0.07, 95% CI 
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[0.06, 0.08]) were lower than those obtained from the statistical control approach (βpartial control 

= 0.09, 95% CI [0.07, 0.10], βfull control = 0.09, 95% CI [0.06, 0.11], p = .0443). In contrast, 

different designs captured similar effect sizes for direct genetic effects (βvirtual parent = 0.15, 

95% CI [0.08, 0.21], βpartial control = 0.18, 95% CI [0.13, 0.24], βfull control = 0.15, 95% CI [0.08, 

0.22], p = .5039).  

Type of Educational Outcome 

Third, we considered whether the type of educational outcome moderated effect sizes by 

comparing studies assessing educational attainment and educational achievement. Similar 

effect sizes of genetic nurture effects were found for educational attainment and achievement 

(βattainment = 0.09, 95% CI [0.07, 0.11], βachievement = 0.07, 95% CI [0.05, 0.10], p = .3079). 

Direct genetic effects were larger for educational achievement (βachievement = 0.19, 95% CI 

[0.14, 0.24]) than for educational attainment (βattainment = 0.14, 95% CI [0.08, 0.19]) and there 

was evidence of a moderating effect (p = .0466). The robustness of this finding was 

confirmed by restricting the analysis to studies reporting effects for both attainment and 

achievement (see sTable 8 in the supplement). 

Predictive accuracy of the GWAS used to derive the PGS 

Fourth, we tested whether the accuracy of GWAS used to derive the PGS moderated effect 

sizes by comparing studies constructing PGS based on different EA GWAS. Estimates of 

genetic nurture effects based on more accurate GWAS were significantly larger (βEA3= 0.09, 

95% CI [0.08, 0.11], βEA2= 0.07, 95% CI [0.06, 0.08], pgenetic nurture = .0066). There was no 

significant difference for direct genetic effects due to the larger uncertainty in estimates (βEA3 

= 0.18, 95% CI [0.14, 0.23], βEA2 = 0.14, 95% CI [0.08, 0.20], pdirect genetic = .1784).  

We also considered whether study characteristics could explain heterogeneity in effect sizes. 

Attrition in the cohort did not clearly moderate any estimate (p > .05). Methodological 

quality (p = .0072) and sample size (p = .0225) were negatively associated with the 
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magnitude of genetic nurture effects, which can be attributed to the potentially influential 

study (Kong et al., 2018) with the highest quality score and sample size (see sTables 7 in the 

supplement).  

After adjusting for phenotypic family-level factors (i.e., parental educational level or family 

SES), genetic nurture effects attenuated to a large extent (kunadjusted = 22, βunadjusted = 0.07, 

95% CI [0.07, 0.08] vs. kadjusted = 18, βadjusted = 0.02, 95% CI [0.01, 0.03], padjustment < .0001), 

for more details see section 6 in the supplement.  

 

Discussion 

Across 12 studies including 38,654 distinct parent(s)-offspring pairs or trios from eight 

cohorts, we found strong evidence for genetic nurture, i.e., parental genotypes affecting child 

outcomes via environmental pathways. The magnitude of genetic nurture effects is similar in 

both parents and is about half the size of direct genetic effects originating in the offspring due 

to genetic inheritance. In the following sections, we discuss in turn: (a) the impact of genetic 

nurture and direct genetic effects on offspring’s educational outcome, (b) sources of 

heterogeneity in genetic impacts, and (c) implications. 

 

Genomic Prediction of Education: Evidence for Genetic Nurture and Direct Genetic 

Effects 

Pooled estimates showed significant effects of parental genetic propensity for educational 

attainment on offspring educational outcomes. Importantly, effects of parental genetic 

propensity for education on offspring’s educational outcomes can reflect both genetic nurture 

and direct genetic transmission. We observed a small effect of genetic nurture (βgenetic nurture = 

0.08) on educational outcomes, which is similar to estimates obtained from family-informed 
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designs not including measured genomic data, such as adoption designs (β = 0.10)(Domingue 

& Fletcher, 2020).  

Relative to effects of genetic nurture, we observed larger direct genetic effects on educational 

outcomes. Our pooled estimate of the unadjusted effect of offspring genotype (βchild unadjusted = 

0.21) is comparable to estimates obtained from studies assessing the explanatory power of 

EA PGS on one’s educational outcome without accounting for genetic nurture effects, which 

typically range between β = 0.15 and β = 0.39 (Allegrini et al., 2019; Belsky et al., 2016; 

Domingue et al., 2015; von Stumm et al., 2020). Direct genetic effects, which correspond to 

effects of the offspring’s genotype on their own phenotype, are free from inflation due to 

genetic nurture. Our pooled estimate of direct genetic effects (βdirect genetic = 0.17) corresponds 

to the lower bound of previous genomic predictions of educational outcomes within twin 

pairs (e.g., β = 0.17-27 (Selzam et al., 2019; Willoughby et al., 2019).  

Genetic nurture effects are about half the size of direct genetic effects (βgenetic nurture /βdirect genetic 

= 0.47) in our pooled estimate, which is consistent with the largest study of genetic nurture 

effects so far (ratio = 0.43) even when this potentially influential study (Kong et al., 2018)1 is 

excluded from the meta-analysis. Recent studies have also implemented other methods to 

investigate genetic nurture effects with twin (Selzam et al., 2019) and adoption (Cheesman et 

al., 2020; Domingue & Fletcher, 2020) designs. As evidence from these alternative designs 

accumulate, it will be key to examine the consistency of estimates across designs to 

strengthen confidence in findings on genetic nurture for educational outcomes (Lawlor, 

Tilling, & Davey Smith, 2017). 

It is worth noting that the evidence included in this meta-analysis can only detect genetic 

nurture and direct genetic effects to the extent that the PGS capture heritability in educational 

                                                
1 In Kong et al. 2018, estimated genetic nurture effects were 0.067, estimated direct effects were 0.157. The ratio 
of genetic nurture/direct genetic effects is thus 0.067/0.157 = 0.43. 
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outcomes. To date, PGS based on the most accurate GWASs still only capture a fraction of 

heritability (Allegrini et al., 2019; Cesarini & Visscher, 2017). A recent study using 

Relatedness Disequilibrium Regression (RDR), which estimated heritability by exploiting 

variation in relatedness due to random Mendelian segregation, provided a ‘ceiling’ for 

potential gain from increasing the predictive accuracy of PGS (Young et al., 2018). We found 

our estimate of genetic nurture based on PGS explained 0.64% (βgenetic nurture2) of child 

educational outcomes versus 6.6% for RDR, and direct genetic effects based on PGS 

explained 2.89% (βdirect genetic2) versus 17% for RDR (Young et al., 2018).  

While missing heritability may lead to underestimating the true extent of genetic nurture, 

assortative mating and population stratification may have inflated our genetic nurture effects 

(Shen & Feldman, 2020). Bias resulting from assortative mating is thought to be small in 

magnitude (Kong et al., 2018; Shen & Feldman, 2020). Population stratification was 

controlled for by using principal component analysis in most studies included in the meta-

analysis but residual population stratification may still exist. Emerging methods should, in 

future, better account for remaining biases for example by capitalizing further on family-

based designs (Balbona, Kim, & Keller, 2020; Demange et al., 2020; Young et al., 2020).  

 

Genomic Prediction of Education: Sources of Heterogeneity 
First, when comparing estimates of genomic measures from different parents, we found 

similar genetic nurture effects regardless of parent of origin. One explanation of such 

findings is that both parents are equally as important in shaping the environment that, in turn, 

influences their offspring’s educational outcomes. Our findings do not preclude that parents 

may contribute by different mechanisms (e.g. via distal factors like increased family income 

or by proximal factors like reading to the child). Behavioural studies showed that the 

relationship between parental involvement and children’s educational achievement was 
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equally strong for fathers and mothers (Barger et al., 2019; Kim & Hill, 2015).  A renewed 

emphasis on the role of fathers is needed and, whenever possible, fathers should 

systematically be included in research and intervention efforts. Research in the area should 

turn to examining more systematically genetic nurture effects in alternative family 

arrangements (e.g., single-parent families) and according to varying level of parental 

involvement (e.g., separated families where one parent is mostly uninvolved). We expect 

genetic nurture effects to vary accordingly, e.g., be stronger for the most involved parent, 

which should shed further light on environmental factors mediating genetic nurture effects.  

Another explanation of similar effect sizes for both parents could be that genetic nurture 

operates through the broad family-level environment which is shared by both parents (e.g., 

school quality in the neighbourhood). Future investigations are required to identify such 

environmental mediators.  

Second, the magnitude of genetic nurture effects was slightly smaller in the virtual parent 

design versus the statistical control approach. A recent study has shown the importance of 

using complete trio data, as missing the genotype of one parent can bias direct genetic effects 

and genetic nurture effects (Tubbs, Zhang, & Sham, 2020). Evidence from one of the 

included studies (T. Morris et al., 2020) using both partial and full statistical control approach 

echoed this view. In our meta-analysis however, we found no strong evidence for differences 

based upon findings from partial control (one parent) or full control (two parents). This may 

however reflect that these controls were estimated from different samples, hiding true 

differences. Additional work is needed to compare estimates of genetic nurture using 

different analytical methods within the same sample to better understand the equivalence and 

comparability of different approaches. 

Third, we expected to find larger genetic nurture effects on educational attainment relative to 

educational achievement, since the genomic measures were constructed using GWAS of 
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educational attainment. This was verified when restricting the analysis to studies where both 

educational attainment and achievement were assessed (de Zeeuw et al., 2020; Rustichini, 

Iacono, Lee, & McGue, 2018).  Another explanation of larger genetic nurture effects for 

educational attainment compared to educational achievement is that attainment may be more 

socially influenced than achievement (T. T. Morris, Davies, & Smith, 2020). That is, may be 

easier for parents to influence attainment (e.g. by accessing more exclusive schooling or 

financially supporting further education). However, developmental trends in genetic nurture 

effects warrant more investigation. Heritability of educational outcomes increases with age 

(T. Morris, Davies, Dorling, Richmond, & Smith, 2018). Conversely, the nurturing 

behaviours from parents may impact offspring more at earlier ages, as they spend more time 

at home rather than school, spend more time with their parents rather than peers, which might 

lead to genetic nurture effects decreasing with age. Moreover, genetic nurture may act 

distinctively over time through different pathways as suggested by a recent study showing 

parent non-cognitive but not cognitive related characteristics were more important for 

educational achievement at age 16 than age 12 (Demange et al., 2020).  

For direct genetic effects, estimates for educational achievement were significantly larger 

than attainment. This finding agrees with previous twin evidence, which suggested ~60% 

heritability for educational achievement measured in childhood and adolescence (Rimfeld et 

al., 2018) and ~40% for educational attainment measured in adulthood (Branigan, McCallum, 

& Freese, 2013; Silventoinen et al., 2020). Some plausible explanations of such higher 

heritability/direct genetic effects for educational achievement are discussed in the supplement 

(section 7.5).  

Fourth and as expected and consistent with previous studies (e.g., Bates et al., 2019; Selzam 

et al., 2017), the predictive accuracy of the GWAS used to construct the PGS significantly 
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moderated effect sizes of genetic nurture, with more accurate GWAS associated with larger 

effect estimates.  

Methodological quality and sample size were negatively associated with genetic nurture 

effects in a modest manner, which may reflect the impact of the largest and best quality study 

included (Kong et al., 2018). Nevertheless, it suggests that more reliable studies, namely with 

more rigorous methodology and larger sample size, may produce more conservative 

estimates of genetic nurture effects.   

Lastly, we found that accounting for observed measures of parental education or family SES 

decreased the effect of genetic nurture by ¾. This suggests that a substantial amount of 

genetic nurture effects can be attributed to environmental pathways directly related to 

parental education, occupation and income. It echoes the view that offspring’s educational 

outcomes are influenced by the availability of resources in their family, either indicated by 

socioeconomic background or the education of their parents (Björklund & Salvanes, 2011; 

Shavit & Blossfeld, 1993; Sirin, 2005). The finding that genetic nurture operates, to a large 

extent, on broad family-level environment helps to explain why both parents may have 

similar genetic nurture effects on offspring educational outcomes. Future investigations 

should explore specific family-level pathways through which genetic nurture operate to 

inform compensatory interventions (e.g., financial support vs. schooling access). Importantly, 

findings that broad family-level social economic characteristics largely explain genetic 

nurture effects do not preclude the importance of proximal factors such as parenting in the 

chain of factors leading to educational outcomes. 

 

Implications  

Genetic nurture had a robust effect on children’s educational outcomes, similar across 

parents. As genetic nurture effects are free from the genetic confounding induced by the 
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genetic relatedness between parents and offspring, it suggests that the environment created by 

parents impacts on offspring educational outcomes independent of genetic transmission. 

Although the magnitude of such an effect is small when interpreting on conventional metrics 

(Cohen, 1988), it is important to note it will likely increase as the explanatory power of 

polygenic scores increases. In addition, such an effect size is proposed to be of medium 

policy importance on education interventions (Kraft, 2020). More thorough investigations of 

specific environmental pathways through which genetic nurture operate may help in 

understanding how educational outcomes are maintained across generations and help design 

better compensatory interventions. Such interventions could target environmental pathways 

in two ways, either targeting distal risk factors for educational outcomes (e.g. parental 

education, income distribution, equal access to good quality schooling) or more proximal 

pathways (rearing environment such as parenting). Such interventions can, to some extent, be 

expected to disrupt the intergenerational cycle of educational underachievement and foster 

social mobility. It is important to note that how well children do in school does depend to a 

substantial degree on the genetic lottery (i.e., inheriting more genetic variants associated with 

educational success), which policy makers often overlook (Dewar et al., 2017). At a broader 

level, our findings provide among the strongest evidence to date that differences in education 

are consistently influenced by endogenous sources of educational inequalities (e.g. one’s own 

genetics) and exogenous sources of inequalities including genetic nurture effects originating 

in parents and mediated partially through broad-level family characteristics like SES. All 

these endogenous and exogenous sources of educational inequalities are beyond individual 

responsibility/control and therefore may be construed as justification for compensatory 

interventions. Interventions could thus aim to provide more support to children in need 

throughout their education, contributing to a building a fairer society with more equitable 

educational opportunities. 
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Limitations 

We cannot completely rule out bias from unmeasured assortative mating, residual population 

stratification and sibling genetic nurture  (Demange et al., 2020; Young et al., 2020), which 

may inflate genetic nurture effects. In addition, all included studies were based on European 

ancestry populations and thus have a profound Eurocentric bias. The generalizability of our 

estimates to non-European population is unclear as genomic measures are not necessarily 

accurate across populations (Martin et al., 2019). For example, PGS constructed from EA3, 

which was conducted in white Europeans, captures 10.6% of the variation of educational 

attainment in white Americans but only about 1.6% of the variation among African 

Americans (Lee et al., 2018). Third, differential measurement error in outcomes may affect 

genetic (nurture) effect sizes. Comparison between different outcome types (e.g. attainment 

and achievement) should therefore be interpreted with caution.   
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Table 1. Studies investigating genetic nurture effects on educational outcomes 

Cohorta Publication Outcomeb   Effective 

Nc 

Design GWASd NOS 

scoree 

Born in Bradford birth cohort (BiB), United Kindom Armstrong-Carter et al., 

2020 

Key stage 1 school-based 

exam score 

1267 Statistical control EA3 6.5 

The Brisbane Adolescent Twin Study (BATS), Australia Bates et al., 2018 The Queensland Core 

Skills Test 

2335 Virtual parent EA2 7.5 

The Brisbane Adolescent Twin Study (BATS), Australia Bates et al., 2019 The Queensland Core 

Skills Test 

2335 Virtual parent EA3 7.5 

The Environmental Risk Longitudinal Twin Study (E-Risk), 

United Kingdom 

Belsky et al., 2018 GCSE academic 

qualification level 

1574 Statistical control EA3 7.0 

The Framingham Heart Study (FHS), United States Conley et al., 2015 Years of schooling 968 Statistical control EA1 5.0 

The Netherlands Twin Register (NTR), Netherlands de Zeeuw et al., 2020 Highest obtained degree; 

Nationwide educational 

achievement test 

1931; 

1120 

Virtual parent EA3 7.0 

The Icelandic quantitative trait cohorts (deCODE), Iceland Kong et al., 2018 Years of education 

completed 

21637 Virtual parent EA2 7.5 

The Framingham Heart Study (FHS), United States Liu et al., 2018 Years of education 

completed 

6298 Statistical control EA2 6.5 

The Avon Longitudinal Study of Parents and Children 

(ALSPAC), United Kingdom 

Morris 2020 Key stage 4 school-based 

exam score 

1095 Statistical control EA3 7.0 

The Minnesota Twin Family Study (MTFS), United States Rustichini et al., 2018 Years of education 

completed; 

High school grades 

1690; 

1583 

Statistical control EA3 6.0 
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The Environmental Risk Longitudinal Twin Study(E-Risk), 

United Kingdom 

Wertz et al., 2019 GCSE academic 

qualification level 

860 Statistical control EA3 6.0 

The Minnesota Center for Twin and Family Research 

(MCTFR), United States 

Willoughy et al., 2019 High school gradesa 2517 Statistical control EA3 5.5 

Note. a  Participants in the MCTFR cohort were drawn from several longitudinal studies including the MTFS cohort, thus in the meta-analysis they were considered as the same 

cohort. b Educational outcomes consists of two broad categories, i.e., attainment and achievement. Years of schooling/education completed and highest obtained degree are 

categorized as educational attainment; the rest are categorized as educational achievement. More details of outcomes, including assessing time, are reported in sTable 3 in the 

supplement. c The largest sample size used to assess genetic nurture effects. d GWAS (genome-wide association studies) used to derive the polygenic scores, including EA1 

with N = 101,069 (Rietveld et al., 2013), EA2 with N = 293,723 (Okbay et al., 2016), EA3 with N = 1,131,881 (Lee et al., 2018). e Quality score ranged from 0 (lowest) to 9 

(highest) on methodological quality using an adjusted version of the Newcastle–Ottawa scale, criteria showed in sMethods and detailed scoring showed in sTable 4 in the 

supplementary material.  
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Table 2. Three-level random effects models of parental and child effects on educational outcomes 

Model 
MREM of parental effects  MREM of child effects 

Mixturea Genetic nurture effects Unadjusted parental effects  Mixtureb Direct genetic effects Unadjusted child effects 

kcohort 8 8 3  8 8 7 

kestimate 30 22 8  27 16 11 

βpooled 0.11 0.08 0.21  0.20 0.17 0.24 

β95% CI 0.08-0.14 0.07-0.09 0.15-0.26  0.16-0.24 0.13-0.20 0.20-0.28 

βrobust CIc 0.07-0.14 0.06-0.10 0.08-0.33  0.15-0.24 0.12-0.21 0.19-0.29 

σ2Level 2 χ2 = 45.23., p < .0001 χ2 < 0.01, p = .5000 χ2 < 0.01, p = .5000  χ2 = 60.17, p < .0001 χ2 < 0.01, p = .5000 χ2 = 1.55, p = .1067 

σ2Level 3 χ2 = 1.23, p = .1339 χ2 = 1.94, p = .0817 χ2 = 5.73, p = .0083  χ2 = 5.46, p = .0097 χ2 = 5.09, p = .0120 χ2 = 1.27, p = .1298 

I2 Level 1 10.17% 76.80% 19.14%  8.70% 17.67% 11.57% 

I2 Level 2 65.83% <0.01% <0.01%  36.17% <0.01% 28.51% 

I2 Level 3 24.00% 23.20% 80.86%  55.13% 82.33% 59.92% 

Publ, bias Q = 4.01, p = .0453 Q = 6.12, p = .0134 Q = 3.22, p = .0727  Q = 9. 56, p = .0020 Q = 0, p = .9976 Q = 0.47, p = 0.4917 

Note. a Effect sizes of genetic nurture and unadjusted parental effects were jointly modelled. b Effect sizes of direct genetic and unadjusted child effects were jointly modelled. 

c Robust confidence intervals were cluster-robust variance estimations not estimated from multilevel random effects model, for details see section 7.1 in the supplement.    

MREM = Multilevel random effects model; β = standardized regression coefficients (i.e., the metric of effect sizes); CI = confidence interval; χ 2Statistics from likelihood-ratio 

test to test within-cohort variance (σ2Level 2) and between-cohort variance (σ2Level 3) for significance; I2 = % of the total variance accounted for by random sampling variance 

(Level 1), variation within cohorts (Level 2), variation between cohorts (Level 3); Publi. Bias = publication bias, assessed by using precision (sampling variance) to predict the 

effect size.  
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Table 3. moderator analysis: sources of heterogeneity in MREM of genetic nurture effects and direct genetic effects 

  Genetic nurture effects  Direct genetic effects 

Moderator  Subgroup  kcohort kestimate  βpooled β95% CI pmoderator  kcohort kestimate  βpooled β95% CI pmoderator 

Parental PGSa Maternal  6 9 0.08 0.07-0.10 .6680  4 4 0.17 0.12-0.23 .4885 

 Paternal  4 6 0.07 0.06-0.09   2 2 0.20 0.13-0.27  

 Mixed parental 5 7 0.08 0.06-0.09   6 10 0.16 0.12-0.20  

             

Designb  Virtual parent 3 7 0.07 0.06-0.08 .0443  3 5 0.15 0.08-0.21 .5039 

 Partial statistical control 5 9 0.09 0.07-0.10   5 8 0.18 0.13-0.24  

 Full statistical control 2 6 0.09 0.06-0.11   2 3 0.15 0.08-0.22  

             

Outcomec  Educational attainment 4 10 0.09 0.07-0.11 .3079  4 7 0.14 0.08-0.19 .0466 

 Educational achievement 6 12 0.07 0.05-0.10   6 9 0.19 0.14-0.24  

             

GWASd EA3 6 15 0.09 0.08-0.11 .0066  6 11 0.18 0.14-0.23 .1784 

 EA2 3 7 0.07 0.06-0.08   3 5 0.14 0.08-0.20  

             

Methodological qualitye NOS score 8 22 -0.02 -0.03-0.00 .0072  8 16 0.01 -0.07-0.08 .8692 

             

Sample sizef Effective N 8 22 0.00 0.00-0.00 .0225  8 16 0.00 -0.01-0.00 .7390 

             

Attrition in cohortg Attrition rate 8 22 -0.01 -0.05-0.03 .7046  8 16 0.03 -0.07-0.13 .5466 

             

Parental education/ family SESh Unadjusted  8 22 0.07 0.07-0.08 <.0001  8 16 0.17 0.13-0.20 .0098 

 Adjusted  5 18 0.02 0.01-0.03   3 11 0.14 0.10-0.18  
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Note. a Parental genotype used to calculate polygenic score (PGS) as a categorical moderator with three categories [maternal (PGS derived from maternal genotype), paternal 

(PGS derived from paternal genotype), mixed parental (PGS derived from mixed information from mothers and fathers, such as PGS from maternal or paternal genotype, PGS 

from the average of maternal and paternal genotype)]. b Study design applied as a categorical moderator with three categories [virtual parent (using non-transmitted PGS to 

predict offspring EA), partial statistical control (using PGS of one parent to predict offspring educational outcomes while controlling for child’s PGS), full statistical control 

(using PGS of one parent to predict offspring educational outcomes while controlling for child’s and the other parent’s PGS)]. c Type of the outcome assessed as a dichotomized 

moderator [educational attainment (the highest level of education completed, e.g., year of schooling), educational achievement (performance at school, e.g., high school grades)]. 

d GWAS used to compute PGS as a dichotomized moderator [EA3 (Lee et al. 2018, N = 1,131,881), EA2 (Okbay et al. 2016, N = 293,723). One study used EA1 (Rietveld et 

al., 2013, N = 101,069) but only reported estimates adjusted with parent education level, and thus was not included in the main meta-analysis but was included in the moderator 

analysis (moderator h). e Quality score assessed by the adapted NOS (see details in eTable 3), reflecting the methodological rigor of the study, as a continuous moderator. f 

Number of participants to compute the estimate, reflecting the effective sample size, as a continuous moderator. g Attrition in the cohort due to selective genotyping or outcome 

availability, reflecting the cohort representativeness, as a continuous moderator. h Family-level adjustment as a binary moderator [0 = unadjusted estimates, 1 = adjusted 

estimates (estimates adjusted for parental education level or family socioeconomic status)]. 

For moderators abcdh, dummy variables were created for each category of the potential moderator. In order to obtain the mean effect (including significance and confidence 

interval) of all categories, separate meta-regressions were conducted, taking each category as the reference category in turn.  

For moderators efg, the moderator was treated as a continuous variable.  
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Figure 1. Flowchart 
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Figure 2. Forest plot of multilevel random effects model for unadjusted parental effects and genetic nurture 

effects on educational outcomes 

Note. Effect sizes were standardized beta coefficients, which represent how many standard deviations of change 

in educational outcome occur per standard deviation of change in EA PGS. 
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Figure 3. Forest plot of multilevel random effects model for unadjusted child effects and direct genetic effects 

on educational outcomes 

Note. Effect sizes were standardized beta coefficients, which represent how many standard deviations of change 

in educational outcome occur per standard deviation of change in EA PGS. 
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