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Abstract Monitoring malaria transmission is a critical component of efforts to achieve targets20

for elimination and eradication. Two commonly monitored metrics of transmission intensity are21

parasite prevalence (PR) and the entomological inoculation rate (EIR). Using geostatistical22

methods, we investigate the relationship between Plasmodium falciparum PR and EIR using data23

collected over 38 months in a rural area of Malawi. Our results indicate that hotspots identified24

through the EIR and PR partly overlapped during high transmission seasons but not during low25

transmission seasons. The estimated relationship showed a one-month delayed effect of EIR on26

PR such that at low transmission levels increases in EIR are associated with rapid rise in PR, but at27

high transmission levels, decreases in EIR do not translate into notable reductions in PR. Our28

study emphasises the need for integrated malaria control strategies that combines vector and29

human host managements monitored by both entomological and parasitaemia indices.30

31

Introduction32

National malaria control programmes, working in collaboration with global stakeholders, have33

achieved extensive intervention coverage over the last two decades, leading to significant reduc-34

tions in morbidity and mortality due to malaria (Bhatt et al., 2015b). However, malaria is still a35

leading global health problem. The previous successes and current challenges have motivated36

ambitious, yet feasible, global and national targets towards malaria elimination. A key component37

of efforts to achieve these targets is surveillance and monitoring, which is critical for continued38
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assessment of intervention effectiveness, identification of areas or groups at the highest risk, and39

guiding the development and implementation of new intervention strategies (World Health Orga-40

nization, 2015).41

A wide range of metrics exists for monitoring malaria parasite transmission. The strengths42

and limitations of each metric are related, in part, to the step of the parasite transmission cycle it43

measures (Tusting et al., 2014). These strengths and weaknesses, including the sensitivity of each44

metric, which vary across epidemiological settings and as parasite transmission declines within a45

given setting (The malERA Refresh Consultative Panel on Characterising the Reservoir and Mea-46

suring Transmission, 2017). Two of the most commonly monitored metrics are the prevalence of47

Plasmodium parasites and the entomological inoculation rate (EIR), especially in moderate to high48

transmission settings.49

The prevalence of Plasmodium parasites in the human population at a given time point (i.e. the50

parasite rate; PR) approximates the reservoir of hosts potentially available to transmit the parasite51

from humans to mosquitoes. Whereas only the gametocyte stage of the parasite contributes to52

transmission, it remains relatively expensive to detect this stage of the parasite. Whereas rapid53

diagnostic tests (RDTs) that primarily detect asexual-stage antigens are inexpensive and easily de-54

ployed in large-scale community-based surveys (Poti et al., 2020), their limit of detection (50-20055

parasites/µl) is higher than that of expert microscopy or PCR (Chiodini, 2014), so that RDT-based es-56

timates of PR are biased by excluding low-density infections. Despite these limitations, RDT-based57

cross-sectional surveys to measure PR capture both symptomatic and asymptomatic infections,58

which is important because both are likely to contribute to transmission (Bousema et al., 2014;59

Slater et al., 2019), and changes in PR over time can indicate changes in transmission.60

EIR provides an estimate of the intensity of parasite transmission frommosquitoes to humans,61

expressed as the number of infectious bites received per person per unit time. EIR is calculated by62

multiplying the number of malaria vector bites per person per unit time, also known as the human63

biting rate (HBR), by the proportion of vectors carrying the infectious sporozoite stage of malaria64

parasites, referred to as the sporozoite rate (SR) (Onori andGrab, 1980). The accuracy andprecision65

of EIR estimates, therefore, depends on the accuracy and precision with which HBR and SR can66

be measured (Tusting et al., 2014). Two common methods for measuring HBR are the human67

landing catch and the Centers for Disease Control and Prevention Light Trap, but inter-individual68

variation in attractiveness to mosquitoes restricts standardisation across sampling points for both69

of these methods (Knols et al., 1995; Qiu et al., 2006). Alternative methods for estimating HBR70

include the Suna trap, which uses a synthetic blend of volatiles found on human skin and carbon71

dioxide to attract host-seeking Anophelesmosquitoes (Mukabana et al., 2012;Menger et al., 2014;72

Hiscox et al., 2014). The standardised odour blend allows for reliable comparisons among trapping73

locations (Mburu et al., 2019). Regardless of the method used to estimate HBR, the precision of74

SR decreases as the number of mosquitoes collected decreases. Despite these limitations, EIR75

is a vital metric of malaria parasite transmission because it directly describes human exposure to76

malaria parasites before post-inoculation factors such as immunity, nutrition, and access to health77

care (Killeen et al., 2000). Moreover, EIR provides information about the relative contributions78

of different vector species to transmission, which can impact malaria intervention effectiveness79

based on interspecies differences in biting behaviours related to time and location, non-human80

blood-meal hosts, larval ecology, and insecticide resistance profiles (Ferguson et al., 2010).81

Malaria parasite transmission is heterogeneous in space and time at fine resolution due to82

several factors, including the availability of larval mosquito habitat, socioeconomics, human be-83

haviour and genetics, and malaria intervention coverage (Carter et al., 2000; Bousema et al., 2012;84

McCann et al., 2017b). Repeated cross-sectional surveys continousely carried out in communities85

can reveal this fine-resolution heterogeneity (Roca-Feltrer et al., 2012), providing timely estimates86

of malaria control progress at the sub-district level and potentially identifying hotspots of malaria87

parasite transmission for targeted intervention (Kabaghe et al., 2017; Bousema et al., 2016). How-88

ever, understanding this heterogeneity and identifying hotspots in a way that is meaningful for89
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control programmes remains challenging (Stresman et al., 2019), in part because hotspot location90

and size can depend on which metric is used (Stresman et al., 2017). Given that PR and EIR are91

indicative of components of the parasite transmission cycle that are separated by multiple com-92

plex steps, each metric provides partial but useful information about the underlying risk of trans-93

mission. Therefore, measuring and mapping both metrics can provide a fuller picture of parasite94

transmission (Cohen et al., 2017).95

Additionally, modelling the functional relationship between EIR and PR can provide further in-96

sights into the underlying malaria epidemiology. For example, the functional relationship between97

EIR and PR can then, for monitoring and evaluation purposes, be used to quantify the average98

reductions in prevalence that may be gained as a result of reductions in EIR, and conversely, the99

expected increase in prevalencewhen the number of infectiousmosquito bites increases. Previous100

studies havemodelled the functional relationship between EIR and PRusing paired estimates of EIR101

and PR from sites representing a wide range of EIR and PR in Africa (Beier et al., 1999; Smith et al.,102

2005). These meta-analyses used one estimate each of EIR and PR per site from studies conducted103

before 2004 and excluded sites with reportedmalaria control activities, revealing consistently high104

PR (above 50%) for sites with EIR greater than 15 infectious bites (ib)/person/year and a steep de-105

crease in PR with decreasing EIR when EIR is below 15 ib/person/year. In the current study, we106

investigate the EIR-PR relationship over a finer time resolution of one month for 38 months, within107

a single geographical region. The EIR-PR relationship in this context, therefore, takes into account108

subannual changes in transmission, likely driven by seasonal weather patterns, and other (year-to-109

year) spatiotemporal variabilities, likely driven by a combination of climatic variation and changes110

in malaria control activities.111

The joint monitoring of EIR and PR in space and time allows us, in this paper, to investigate112

and find answers to the following questions. (1) How do spatiotemporal patterns of EIR and PR113

compare? (2) Do EIR and PR lead to the identification of the same malaria hotspots? (3) How do114

changes in EIR affect PR at different transmission levels? (4) Does EIR have a lagged effect on PR?115

(5) Does the EIR-PR relationship vary between women of reproductive age and children between 6116

and 60months of age? To answer these questions, we first map P. falciparum entomological inocu-117

lation rate (PfEIR) and P. falciparum parasite prevalence (PfPR) at a high spatiotemporal resolution118

to identify and compare their spatial heterogeneities and temporal patterns. We then consider119

several statistical models for the relationship between PfEIR and PfPR, which can be distinguished120

as follows: mechanistic models that are based on different epidemiological assumptions and em-121

pirical models where the data inform the PfEIR-PfPR relationship. Finally, we discuss the possible122

implications of the estimated relationships for monitoring malaria control strategies.123

Methods124

Study site125

This study was part of the Majete Malaria Project (MMP), an integrated malaria control project in126

Chikwawa District, Malawi. The catchment area of MMP consisted of three distinct geographical127

regions, referred to as Focal Areas A, B and C (Figure 1), with a total population of about 25,000128

people living in 6,600 households in 65 villages.129

Chikwawaexperiences highly variable rainfall during its single rainy season, which spansNovem-130

ber/December to April/May. Temperatures are generally high, with daily maximum temperatures131

in December averaging 37.6 ◦C, and in July averaging 27.6 ◦C (Joshua et al., 2016). During the rainy132

season, the Shire and Mwanza rivers, which run near the study area, create marshy habitats, pad-133

dies, occasional depressions and watering holes, suitable as larval habitats for Anopheles funestus134

s.s., Anopheles arabiensis and Anopheles gambiae s.s. (Spiers et al., 2002). Dry season larval habitats135

consist primarily of burrow pits and pools of standing water along seasonal stream beds.136

Malaria control in the district is implemented through the Chikwawa District Health Office. Dur-137

ing the study period, interventions applied throughout the study area included the continuous138
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Figure 1. Map of study site. Map of Malawi (insert) highlighting the Majete Wildlife Reserve and the borders of19 community-based organisations (CBOs) surrounding the Majete perimeter. Three focal areas (red patches),labelled as A, B, and C, show the households (black points) selected for the parasitaemia and entomologicalsurveys by the Majete Malaria Project (MMP).

4 of 28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426709doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426709
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

provision of insecticide-treated nets (ITNs) to pregnant women and children under five years old,139

mass distribution campaigns of ITNs, intermittent preventative therapy for pregnant women, and140

malaria case diagnosis and treatment with artemisinin-based combination therapy. The only mass141

distribution of ITNs in the district during the study period occurred in April 2016. As part of the142

MMP, a randomised trial was conducted to assess the effectiveness of additional, community-143

implemented malaria interventions between May 2016 and May 2018 (McCann et al., 2017a). The144

trial interventions were implemented at the village level, with villages assigned to one of four145

groups: a) no additional interventions; b) larval source management; c) house improvement; and146

d) both larval source management and house improvement (McCann et al., 2017a; van den Berg147

et al., 2018).148

Data149

To quantify PfPR and PfEIR over the course of the study, a rolling malaria indicator survey (rMIS)150

was conducted in conjunction with mosquito sampling (Roca-Feltrer et al., 2012). In the first two151

rounds of baseline data collection (April through August 2015), an inhibitory geostatistical sampling152

design (IGSD) was used to select 300 and 270 households, respectively, for the rMIS from an enu-153

meration database of all households in the catchment area (Chipeta et al., 2017). The IGSD helped154

to ensure that randomly sampled households are relatively uniformly spaced over the study re-155

gion by requiring each pair of sampled households to be separated by a distance of at least 0.1km,156

which increases the efficiency of hotspot detection (Kabaghe et al., 2017). In the three subsequent157

rounds of data collection during the baseline, an adaptive geostatistical sampling design (AGSD)158

was used to select 270 households per round (Chipeta et al., 2016). With AGSD, new households159

for the current round of rMIS were chosen from regions with high standard errors of estimated160

prevalence, based on data from all previous rounds. In the baseline period, previously sampled161

households were not eligible for sampling in subsequent rounds. For the trial period (starting May162

2016), IGSDwas again used to select households from the enumeration database of all households.163

All households were eligible for selection in each round of the trial period regardless of whether164

they were selected in a previous round. At each round of rMIS data collection in the baseline and165

trial phases, respectively, 75% and 72% of the households chosen at each round of the rMIS were166

then randomly selected for mosquito sampling.167

In each sampled household, children under five (0.5-5 y/o) and women of reproductive age (15-168

49 y/o) were tested for P. falciparum using an RDT (SD BIOLINE Malaria Ag P.f. HRP-II, Standard169

Diagnostics, Yongin-si, Republic of Korea).170

Mosquitoes were sampled from 5pm to 7am using Suna traps (Biogents AG, Regensburg, Ger-171

many) (Hiscox et al., 2014) with MB5 blend plus CO2 to mimic human odour (Mburu et al., 2019).172

For a selected household in a surveillance round, the trap was set for one night indoors and one173

night outdoors, with the order of indoor/outdoor determined randomly. For households where174

the residents were sleeping in more than one building, a trap was set at each building. Trapped175

female anophelines were preserved using a desiccant and identified using standardmorphological176

and molecular techniques (Gillies and Coetzee, 1987; Koekemoer et al., 2002; Scott et al., 1993).177

Female anophelines were further tested for the presence of P. falciparum in their head and thorax,178

after removing the abdomen, using quantitative polymerase chain reaction (qPCR ) (Bass et al.,179

2008; Perandin et al., 2004). Specimens with a Ct value below 37.0 were considered positive for P.180

falciparum.181

Environmental and climatic factors182

Environmental and climatic factors affect the abundance and suitability of water bodies that sup-183

port the development of immature mosquitoes (Madder et al., 1983; Loetti et al., 2011), the dura-184

tion of mosquito development (Ciota et al., 2014; Loetti et al., 2011; Craig et al., 1999), mosquito185

host-seeking and biting behaviour, and the development rate of malaria parasites in mosquitoes186

(Rumisha et al., 2014; Amek et al., 2011).187
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Using hourly measurements of temperature and relative humidity (RH) from a weather station188

in each focal area, we computed the average temperature and RH for different ranges of days189

before the day of data collection (Appendix 1).190

Spectral indices, namely normalised difference vegetation index (NDVI) and enhanced vegeta-191

tion index (EVI), were computed using remotely sensed multi-spectral imagery from the Landsat192

8 satellite. These data are freely available from the United States Geological Survey (USGS) Earth193

Explorer (earthexplorer.usgs.gov) as raster files at a spatial resolution of 30 × 30m for every 16 days.194

For our analysis, we averaged each spectral index over five years, from April 2013 to April 2018,195

while omitting scenes that were dominated by cloud artefacts.196

We extracted raster data of surface elevation from the global digital elevation model (DEM)197

generated usingmeasurements from the Advanced Space-borne Thermal Emission and Reflection198

Radiometer (ASTER) (Tachikawa et al., 2011). These data are freely available for download from199

the USGS Earth Explorer. Using a flow accumulation map derived from the DEM, a river network200

map was generated and used to calculate and store as raster images the distance to small rivers201

and large rivers (henceforth, DSR and DLR, respectively).202

Geostatistical Analysis203

The number of mosquitoes trapped by Suna traps can be used to estimate HBR, as these traps204

primarily target host-seeking mosquitoes. Hence, we first estimated HBR and the P. falciparum205

sporozoite rate (PfSR). We then estimated PfEIR as the product of these two quantities.206

We carried out separate analyses for A. arabiensis and A. funestus s.s., using explanatory vari-207

ables and random effects structures that we found to be suitable for each species. Details of208

the variable selection process and the final sets of explanatory variables for each of the models209

later described in this section are given in Appendix 1. The correlation structures adopted for210

the geostatistical models were informed by the variogram-based algorithm described in (Giorgi211

et al., 2018). The geostatistical models for the HBR and PfPR data described below were fitted us-212

ing PrevMap (Giorgi and Diggle, 2016), freely available from the Comprehensive R Archive Network213

(CRAN, www.r-project.org). The PfSR models were fitted using the glmm package, also available on214

CRAN.215

Human biting rate216

Let Y (xi, ti), i = 1,… ,M , where M = 2432 is the total number of households, denote counts of217

mosquitoes trapped at location xi in month ti ∈ {1,… , 38}, where ti = 1 denotes April 2015. We218

modelled the Y (xi, ti) using Poisson mixed models expressed by the following linear predictor219

log{HBR(xi, ti)} = d(xi, ti)⊤� + f (ti; �) + S(xi) +Zi, (1)
where: d(xi, ti) is a vector of spatiotemporal explanatory variables with associated regression coef-220

ficients �; the f (ti; �) is a linear combination of several functions of time, including sines, cosines221

and splines, with an associated vector of regression parameters �, accounting for trends and sea-222

sonal patterns; theZi are independent and identically distributed Gaussian random variables with223

variance �2; S(x) is a zero-mean stationary and isotropic Gaussian process with variance �2 and224

exponential correlation function �(u) = exp(−u∕�), where � regulates the pace at which the spatial225

correlation decays for increasing distance u between any two locations. We allow the explanatory226

variables d(xi, ti) and f (ti; �) to differ between different mosquito species since different species227

may respond differently to environmental changes.228

Plasmodium falciparum sporozoite rate229

Let Y ∗(xi, ti) be the number of mosquitoes that tested positive for the presence of P. falciparum230

sporozoites. We assumed that the Y ∗(xi, ti) follow a Binomial mixed model with number of trials231

N∗(xi, ti), i.e. the total number of successfully testedmosquitoes, and probability of testing positive232
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PfSR(xi, ti). We model the latter as a logit-linear regression given by233

log
{

PfSR(xi, ti)
1 − PfSR(xi, ti)

}

= d(xi, ti)⊤�∗ + f ∗(ti; �∗) +Z∗
i , (2)

where each term in Equation 2 has an analogous interpretation to those of Equation 1.234

Estimating the Plasmodium falciparum entomological inoculation rate235

Let PfEIRf (x, t) and PfEIRa(x, t) denote the PfEIR for A. funestus s.s. and A. arabiensis at a given236

location x and month t. We estimated each of these two as237

PfEIRf (x, t) = HBRf (x, t)PfSRf (x, t)l(t)

PfEIRa(x, t) = HBRa(x, t)PfSRa(x, t)l(t),

where l(t) is the number of days in month t. Finally, we estimated the overall PfEIR as238

PfEIR(x, t) = PfEIRf (x, t) + PfEIRa(x, t). (3)
We thenmapped PfEIR as in Equation 3 over a 30×30m regular grid covering the whole of the study239

area for each month across 38 months.240

Plasmodium falciparum prevalence241

We mapped PfPR in women and in children by fitting a geostatistical model to each group. More242

specifically, let I(xi, ti)denote the number of RDT positives out ofNit sampled individuals at location243

xi in month ti. We then assumed that the I(xi, ti) follow a Binomial mixed model with probability244

of a positive RDT result p(xi, ti), such that245

log
{

p(xi, ti)
1 − p(xi, ti)

}

= d(xi, ti)⊤' + g(ti; %) + T (xi) + Ui, (4)
where T (xi) is a stationary and isotropic Gaussian process with exponential correlation function246

and Ui are Gaussian noise, g(ti, %) is a linear combination of splines, and sine and cosine functions247

of time accounting for trends and seasonality, and ' and % are vectors of regression parameters248

to be estimated.249

Hotspot detection using PfEIR and PfPR250

We mapped the respective predictive probabilities that PfEIR and PfPR exceeded predetermined251

threshold values. We then demarcated hotspots as areas where these probabilities exceeded 0.9.252

For PfEIR, we chose the threshold of 0.1 ib/person/month. For PfPR, we chose a threshold of 31%253

for children and 17% for women to correspond to the PfEIR threshold based on the best of six254

functional relationships between PfEIR and PfPR as described in the next section.255

Modelling the relationship between PfEIR and PfPR256

In this section, we describe the statistical methods we used to model the relationship between257

PfEIR and PfPR. Since PfEIR may have a delayed effect on PfPR, possibly due to the time taken for258

P. falciparum to develop in the human host, we considered that current PfPR may depend on PfEIR259

l months prior. In particular, we considered l = 0, 1, 2. We then assumed that the number of RDT260

positive individuals, I(xi, ti), follow independent Binomial distributions such that261

PfPR(xi, ti) = ℎ{ ̂PfEIR(xi, ti − l)}, (5)
where ℎ(⋅) is a function depending on a vector of parameters � that governs the relationship be-262

tween PfPR and PfEIR, and ̂PfEIR(xi, ti − l) is the estimated PfEIR as in Eq (3). We considered six263

models, each of which provided a different specification for ℎ(⋅).264

We now describe the six models for ℎ(⋅). Models 1 to 4 make explicit assumptions on the un-265

derlying mechanism of transmission, whereas models 5 and 6 describe the functional relationship266

between PfEIR and PfPR through regression methods.267
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Model 1: The susceptible-infected-susceptible (SIS) model268

Let b be the probability that an infectious mosquito bite results in an infection, referred to as269

the transmission efficiency. Then, infections at (xi, ti − l) are assessed to occur at a rate of b ×270

PfEIR(xi, ti − l). We assumed that each infection cleared independently over a duration 1∕r so271

that the ratio 
 = b∕r is the time taken to clear infection per infectious bite. We assumed that272

the relationship between PfEIR and PfPR holds throughout the study region. If PfEIR(x, t − l) is273

constant, the relationship between PfEIR(x, t − l) and PfPR(x, t) is described by the Ross Model274

(Ross, 1911)275

) PfPR(x, t)
)t

= b × PfEIR(x, t − l)(1 − PfPR(x, t)) − r × PfPR(x, t). (6)
We obtained our first model as the non-zero equilibrium solution of Equation 6, given by276

PfPR(x, t) =

PfEIR(x, t − l)


PfEIR(x, t − l) + 1
. (7)

Model 2: The SIS model with different infection/recovery rates (D.I/R)277

Model 1 assumes that women and children get infected and recover at the same rate. However,278

the transmission and recovery rates in children may differ from those in women. We, therefore,279

modified Model 1 by allowing different values of b and r for each category of people. Let �1,it and280

�2,it respectively be the proportion of children and women sampled at (xi, ti) and 
k = bk∕rk, where281

k = 1 denotes children and k = 2 denotes women. The resulting Model 2 is282

PfPR(x, t) =
2
∑

k=1
�k,it


kPfEIR(x, t − l)

kPfEIR(x, t − l) + 1

. (8)

Model 3: The SIS model with superinfection (S.I.)283

If individuals are super-infected with P. falciparum, then the rate at which infections clear depends284

on the infection rate, with clearance being faster when infection rate is low, and slower when infec-285

tion rate is high. To capture this feature, wemodelled infection clearance rate as g(#, r) = #∕(e#∕r−1),286

where # = b × PfEIR (Smith et al., 2005; Walton, 1947; Dletz et al., 1974; Aron and May, 1982).287

The resulting model for PfPR(x, t) is288

PfPR(x, t) = 1 − exp{−
PfEIR(x, t − l)} (9)
Model 4: The SIS model with S.I and D.I/R289

Combining the assumptions of heterogeneous infection/recovery rates, as in Model 2 and super-290

infection, as in Model 3, we obtain Model 4,291

PfPR(x, t) =
2
∑

k=1
�k,it

(

1 − exp{−
kPfEIR(x, t − l)}
)

. (10)

Model 5: The Beier model292

Beier et al. (1999) assumed that the log of PfEIR is linearly related to PfPR, and fitted the regression293

model294

PfPR(x, t) = a + b log(PfEIR(x, t − l)), (11)
the so called “log-linear model”.295

Model 6: The logit-linear model296

The Beier model has the limitation that PfPR approaches −∞ as PfEIR goes to 0 and approaches∞297

as PfEIR goes to ∞. To constrain PfPR to lie between 0 and 1, we applied the logit-link function to298

PfPR to give Model 6,299

log
( PfPR(x, t)
1 − PfPR(x, t)

)

= a + b log(PfEIR(x, t − l)). (12)
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We estimated the parameters of each of the six models by maximising the log-likelihood func-300

tion301

∑

ti

∑

xi

I(xi, ti) log(PfPR(xi, ti)) + (Nit − I(xi, ti)) log(1 − PfPR(xi, ti)). (13)
To fit each model, we first obtained 10,000 bootstrapped data sets of predicted PfEIR as in302

Equation 3 at the set of all space-time locations sampled for the rMIS. We did this for two reasons:303

to obtain PfEIR data at locations (xi, ti) that were sampled for rMIS but not for the entomological304

surveillance; to account for the uncertainty in PfEIR. By fitting each model to each of the 10,000305

datasets, we then obtained 10,000 bootstrapped samples {�̂1,… , �̂10000} for the vector of parameter306

estimates �̂ of each the six candidate models. we then summarised these samples by their mean307

and central 95% probability interval. We repeated this process for l = 0, 1, 2.308

We compared the fit of the six models based on the AIC values and compared their predictive309

ability by the bias and root-mean-square error when each model is used to predict prevalence at310

all the observed space-time locations.311

Results312

rMIS and mosquito sampling313

From April 2015 to May 2018, a total of 6870 traps (3439 indoors; 3431 outdoors) were placed at314

2432 houses resulting in the collection of 657 female Anopheles mosquitoes (Table 1). Following315

PCR of the 478 A. gambiae s.l. collected, 92% were identified as A. arabiensis, 2% as A. gambiae316

s.s., 1% as A. quadriannulatus, and 5% could not be identified further. From the 179 A. funestus317

s.l. collected, 95% were identified as A. funestus s.s. by PCR, while the remaining 5% could not be318

identified further. The observed vector composition is therefore 71%, 27% and 2% for A. arabiensis,319

A. funestus s.s. and A. gambiae s.s., respectively.320

Table 1. Details of Anopheles female mosquitoes collected. The table shows the observed numbers collectedindoors and outdoors, the HBR (number collected per trap multiplied by the number of days in each of the 38months of sampling), PfSR and PfEIR for the Anopheles species sampled.
Species Number Number Empirical Empirical Empirical

Collected Collected HBR PfSR PfEIR
Indoors Outdoors

A. arabiensis 175 263 73.66 5.48% 4.04
A. funestus s.s. 74 96 28.58 11.17% 3.19
A. gambiae s.s. 5 6 1.85 18.18% 0.34
A. quadriannulatus 1 3 0.67 0.00% 0.00
A. gambiae s.l.∗ 12 13 4.20 12.00% 0.50
A. funestus s.l.∗∗ 4 5 1.51 11.11% 0.17
TOTAL 271 386 110.47 8.24

A. gambiae s.l. ∗ and A. funestus s.l. ∗∗ are Anopheles female mosquitoes morphologically identified as belonging to the A. gambiae species complex
and A. funestus species group, respectively, but which could not be further identified by PCR.

Despite the relatively low abundance of A. funestus s.s. compared to A. arabiensis, the higher321

sporozoite rate of the former made the contribution of A. funestus s.s. to the total PfEIR almost322

equivalent to that of A. arabiensis (Table 1). The total PfEIR for the 38 months was 8.24 ib/person,323

equivalent to an average 2.60 ib/person/year.324

Over the same 38-month period, 5685 individual P. falciparum RDT tests were conducted across325

3096 household visits. Among the 2401 tests conducted on children aged 6 to 59 months, 25.5%326

were positive, while 14.3% of the 3284 tests conducted on women were positive.327
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Spatiotemporal patterns of PfEIR and PfPR328

We observed clear spatiotemporal heterogeneities in PfEIR, PfPR in children, and PfPR in women329

when mapped across the study region at a fine spatial resolution (30 x 30 m) and 1-month inter-330

vals. For convenient visualisation of the main features of the spatiotemporal maps, we have devel-331

oped an interactivity web-based application to show the maps at http://chicas.lancaster-university.332

uk/projects/malaria_in_malawi/pfpr/. Spatially, there were differences both within and between the333

three focal areas. Focal Area A generally showed the lowest PfEIR and PfPR, while Focal Areas B334

and C showed similar, higher levels of PfEIR. Within each focal area, the spatial patterns changed335

from month to month, with hotspots of both PfEIR and PfPR proceeding through seasonal cycles336

of expansion and retraction over time. Over the 3-year study period, hotspots of PfEIR and PfPR337

generally disappeared during the low transmission seasons, except for residual hotspots of PfPR338

that persisted throughout the study period.339

When summarised over the whole study region, each of PfPR and PfEIR exhibited seasonal340

patterns with a single annual peak. The monthly predicted PfEIRs and PfPRs were similar to the341

observed values (Figure 2). PfEIR increased from November to a peak in May and decreased to a342

trough in November. PfPR started increasing from December to a peak around July, after which it343

decreased to a trough between November/December.344

Three observations are clear from both the spatiotemporal maps and themonthly summarised345

data (Figure 2). First, children aged 6 to 59 months consistently had a higher level of PfPR than346

women throughout the study period. Second, PfPR in both groups generally decreased from the347

start of the study in April 2015 to December 2016, after which there was a general trend of increas-348

ing PfPR in both age groups. Finally, PfEIR was steady in the first two years of the study, followed349

by a general decrease after May 2016. Strikingly, the observed PfEIR was 0 between June 2017 and350

the end of the study, while the PfPR increased in both children and women between November351

2017 and May 2018.352

The relationship between PfEIR and PfPR353

Temporally, the seasonal patterns of PfEIR and PfPR within each year were nearly concurrent, with354

the estimated peak in PfEIR preceding that of PfPR by one month (Figure 2).355

Spatially, PfEIR and PfPR showed broadly similar patterns. When comparing the hotspots of356

PfEIR and PfPR using spatiotemporal maps of exceedance probabilities, the hotspots of PfEIR and357

PfPR partly overlapped during the high transmission season (http://chicas.lancaster-university.uk/358

projects/malaria_in_malawi/pfpr/). However, there were hotspots of PfEIR that were not necessarily359

hotspots of PfPR and vice versa (Figure 3).360

Scatter plots of the logit of PfPR against the log of PfEIR show an approximately direct linear361

relationship (Figure 4).362

For each of the six classes of model, the model with a one-month lagged-effect gave a better363

fit than the corresponding models with lag zero or two (AIC differences ≥ 9). For the models with364

one-month lagged-effect, the empirical models (i.e. logit-linear and Beier) showed lower AIC values365

(i.e. better model fit, Additional Table 6 in Additional file 1) than the mechanistic models (i.e. SIS366

1-4). The logit-linear model was the overall best model in terms of goodness of fit, as measured367

by AIC, and in terms of predictive performance, as measured by root-mean-square error and bias368

(Appendix 1 Table 6).369

The fitted logit-linearmodel (Figure 5) shows that PfPR rises quickly with increasing PfEIR at very370

low PfEIR, followed by a flattening off or saturation. From the estimated relationship for women371

and children combined (Figure 5 (a)), a decrease in PfEIR from 1 ib/person/month to a very low372

PfEIR of 0.001 ib/person/month is associated with a reduction in PfPR from 27.1% to 15.8% on373

average (i.e., a 42.0% decrease in PfPR). Note that even when transmission, as measured by PfEIR,374

has been driven close to zero, PfPR remains substantial.375

An indication of differences in the PfEIR–PfPR relationship between children and women lies376

in the logit-linear model fitted to children and women separately (Figure 5(b)). The average tra-377
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Figure 2. Summaries of monthly PfEIR and PfPR. The plot shows monthly median PfEIR (a), mean PfPR inchildren 0.5-5 y/o (b) and mean PfPR in women 15-49 y/o (c), over the study region. The round points are theobserved data and the triangular points are the predictions from our models. The shaded regions representthe corresponding 95% confidence interval of the predicted values.
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Figure 3. A plot of the proportion of the study region demarcated as hotspot. The solid (red) line showshotspots identified by both PfPR and PfEIR. The long dashed (blue) line shows hotspots identified uniquely byPfPR whilst the short dashed (green) line shows hotspot uniquely identified by PfEIR.

jectories of PfPR and corresponding 95% confidence intervals with varying PfEIR are distinct for378

women and children. PfPR in children tends to show a steeper rise with increasing PfEIR than in379

women. From the estimated relationship for children, a decrease in PfEIR from 1 ib/person/month380

to 0.001 ib/person/month is associated with a reduction in PfPR from 37.2% to 20.7% on average381

(i.e., a 44.5% decrease in PfPR). From the estimated relationship for women, the same decrease in382

PfEIR is associated with a reduction in PfPR from 19.7% to 12.1% (i.e., a 38.3% decrease in PfPR) on383

average. We make two observations. (1) With decreasing PfEIR, the percentage reduction in PfPR384

achieved in children tends to be higher than in women. (2) When transmission has been driven385

almost to zero, PfPR remains consistently high in children.386

Discussion387

Using data from 38 months of repeated cross-sectional surveys, we have mapped the fine-scale388

spatiotemporal dynamics of PfEIR and PfPR in a region of Malawi with moderately intense, season-389

ally variable malaria parasite transmission. We found evident spatial heterogeneity in both PfEIR390

and PfPR, with areas of higher PfEIR and PfPR expanding and contracting over time. We also found391

that hotspots of PfEIR and hotspots of PfPR overlapped at times, but the amount of overlap varied392

over time. Finally, we showed that month-to-month variations in PfEIR over the study period are393

strongly associated with changes in PfPR. These findings highlight the dynamic nature of malaria394

parasite transmission and underscore the value of monitoring both PfEIR and PfPR at fine spatial395

and temporal resolutions.396

Previous studies (Beier et al., 1999; Smith et al., 2005) have demonstrated the relationship be-397

tween PfEIR and PfPR using paired estimates of these metrics from several sites throughout Africa,398

characterised by a wide range of transmission intensities (PfEIR <1 to >500 ib/person/year). Esti-399

mates of PfEIR in our study were lower (2.6 ib/person/year, on average) so that measuring both400

metrics in the same geographical region, across different transmission seasons, and with a tem-401

poral resolution of one month has demonstrated that fluctuations in PfEIR over short periods are402

associated with predictable changes in PfPR in the same region. More specifically, our data better403

supported a one-month delayed effect of PfEIR on PfPR than no delayed effect or a two-month404

12 of 28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426709doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426709
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

−2.1

−1.8

−1.5

−1.2

−0.9

−8 −6 −4 −2 0
Log of Median PfEIR (ib/person/month)

Lo
gi

t o
f O

bs
er

ve
d 

M
on

th
ly

 P
fP

R
 (

%
)

Figure 4. Plot of the linear relationship between the logit of PfEIR and the log of PfEIR. Each point representsa focal area and a month where there was empirical data for PfPR (n=100). PfEIR is the median (model-basedpredicted) PfEIR over the focal area. Prevalence is the average empirical prevalence over the focal area, withchildren and women put together. The shaded regions represent the corresponding 95% confidence region.

delayed effect. The one-month delayed effect is likely due to the incubation period of the parasite405

(Ruan et al., 2008) and the duration of infections (Felger et al., 2012). For settings with a simi-406

lar range of parasite transmission intensity, our results imply that PfPR is sensitive to short-term407

changes in malaria parasite transmission and, therefore, can be useful for monitoring changes in408

the intensity of parasite transmission linked to either environmental conditions or the effects of409

malaria interventions. At the same time, this sensitivity to short-term changes in parasite transmis-410

sion in low to moderate transmission settings suggests that single, annual, cross-sectional surveys411

intended to monitor inter-annual variation by aiming for a peak in PfPR are more likely to miss412

the actual peak than in settings with higher parasite transmission intensity (Kang et al., 2018). Our413

repeated cross-sectional sampling strategy (rolling MIS) (Roca-Feltrer et al., 2012; Kabaghe et al.,414

2017) ensured that we were able to capture both short-term changes and longer-term trends in415

both PfEIR and PfPR. Settings where these considerations are applicable have become increasingly416

common over the last 20 years (Weiss et al., 2019), largely driven by increasing coverage of ITNs417

(Bhatt et al., 2015b) and ACTs (Bennett et al., 2017). Comparing 2017 with 2010, 122 million fewer418

people were living in areas with PfPR ≥ 50% (corresponding to PfEIR >15 ib/person/year), and419

the number of people living in settings with PfPR between 10–50% (i.e. mesoendemic (Hay et al.,420

2008)) increased to an estimated 600 million in 2017 (Weiss et al., 2019). In settings with higher421

PfEIR, PfPR likely remains relatively stable, even as PfEIR fluctuates from month to month with422

weather patterns (Churcher et al., 2015), and therefore the timing of single cross-sectional surveys423

is less critical.424

Whereas within-village and between-village spatial heterogeneities of malaria parasite trans-425

mission are well documented across many sites (Greenwood, 1989; Thompson et al., 1997; Amek426

et al., 2012; Mwandagalirwa et al., 2017), this is the first study of which we are aware to directly427

compare the fine-scale spatial patterns of PfEIR and PfPR, and these two related but distinct met-428

rics provided a fuller picture of spatial heterogeneity in malaria parasite transmission than could429

have been provided by monitoring either metric in isolation. As expected, the hotspots of each430

metric expanded and retracted over time. However, the hotspots of PfEIR and PfPR only partially431
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Figure 5. A plot of the estimated logit-linear relationship between PfPR and PfEIR. The solid lines are theestimated relationships and the shaded areas are the associated 95% confidence region for children andwomen combined (a) and for children and women separately (b).
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overlapped, with the most substantial amount of overlap observed during the high transmission432

seasons. Given the limitations of all currently available metrics of malaria parasite transmission433

(Tusting et al., 2014), our findings suggest that monitoring two transmission metrics, aligned with434

widely separated steps of the transmission cycle, may increase our ability to define transmission435

hotspots accurately. Furthermore, areas with higher transmission risk according to an entomo-436

logical metric (e.g. PfEIR) than a measure of the potential transmission reservoir (e.g. PfPR) may437

indicate a need for increased vector control, whereas areas with lower PfEIR and higher PfPR may438

indicate a need for increased treatment of malaria cases (Cohen et al., 2017); thus, optimising439

the impact of control activities with minimum resources by targeting different control activities to440

different types of hotspots.441

We found that a logit-linear model explained the PfEIR-PfPR relationship better than any of the442

other five model classes examined. Our results are similar to the results of Beier et al. (1999), who443

assumed that the log of EIR is linearly related to PR, although our model differs from that of Beier444

et al. (1999) in that we account for spatiotemporal heterogeneities. Our model ranking contrasts445

with Smith et al. (2005), who favoured an SIS model analogous to our Model 4 that assumes both446

heterogeneous infection rates and superinfection. However, unlike themodel of Smith et al. (2005),447

we did not assume a model for age-related heterogeneities but accounted for these directly since448

these data were available. These differences in the overall best model between our work and that449

of Smith et al. (2005) suggest that model performance relative to other models may be context-450

dependent and cautions against the use of a single model for the whole of Africa. This also high-451

lights the importance of flexible modelling frameworks that allow accounting for spatiotemporal452

heterogeneity, as is the case with model-based geostatistics (Diggle and Giorgi, 2019).453

As shown in previous studies (Beier et al., 1999; Smith et al., 2005), our logit-linear model indi-454

cates that PfPR saturates rather than increasing at a constant rate with increasing PfEIR. This satu-455

ration in PfPRmay be explained by several factors, which are notmutually exclusive. One set of fac-456

tors relates to people being heterogeneously exposed to vectors (Guelbéogo et al., 2018) because457

of differences in attractiveness (Knols et al., 1995;Qiu et al., 2006), behaviour Sherrard-Smith et al.458

(2019); Finda et al. (2019), access to ITNs (Bhatt et al., 2015a), housing design (Tusting et al., 2015,459

2017), or the spatial distribution of vector habitat (McCann et al., 2017b), so that as PfEIR increases,460

it is more likely that infectious vectors are biting already infected individuals (Smith et al., 2007b,461

2010). The second set of factors relates to inter-individual variation in acquired immunity, which in462

some individuals may prevent vector-inoculated sporozoites from progressing to blood-stage in-463

fection (John et al., 2005; Offeddu et al., 2017), keep blood-stage infections at densities lower than464

the level of detection (Doolan et al., 2009) (about 50-200 parasites/µl for RDTs as used in our study),465

or increase the rate at which blood-stage infections are cleared (Hviid et al., 2015). Regardless of466

the reason, the saturation of PfPR has practical implications for the selection and interpretation of467

malaria parasite transmission metrics. When PfEIR is high, initial reductions in PfEIR will likely not468

be met with an immediate appreciable reduction in PfPR. Additionally, the quick rise in PfPR with469

increasing PfEIR at lower levels of PfEIR suggests two things, (1) that in elimination settings, a little470

rise in the rate of infectious bites could result in a rapid increase in parasite prevalence, making471

elimination extra difficult if extra efforts are not in place to avoid vector-host contacts in elimina-472

tion settings; (2) that both metrics will reflect short-term changes in transmission as observed in473

our study.474

The monthly PfEIR in our study region was 0 ib/person/month in multiple months. This may475

indicate that the number of infectious bites received per person during these months was below476

the level of detection, rather than an actual interruption of transmission during those months, es-477

pecially in the first two years of the study when these periods only lasted 2-3 months. Our finding478

that a monthly PfEIR near or equal to zero is associated with substantial PfPR is, therefore, un-479

surprising given that previous studies have had similar findings when comparing annual PfEIR to480

PfPR (Kabiru, 1994; Mbogo et al., 1995; Beier et al., 1999; Smith et al., 2005). On the other hand,481

we observed an increase in PfPR from about November 2017 to May 2018 while PfEIR remained at482
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zero. It remains unclear whether this rise in PfPR was due to new infectious bites that nevertheless483

remained below the level of detection or to previously infected individuals with parasite densities484

that increased to detectable levels (Drakeley et al., 2018). Either way, this result shows that a rise485

in PfPR may be observed even when PfEIR cannot be detected by current methods, and, there-486

fore, both interventions and monitoring need to continue for some time after PfEIR has not been487

detected. Our results also highlight the importance of monitoring additional metrics of parasite488

transmission (in addition to PfEIR) when the annual PfEIR is <10 ib/person/year, especially when489

expecting a reduction in transmission as in the case of testing malaria interventions. Nonethe-490

less, when PfEIR is above the level of detection, it provides information about the vector species491

involved in transmission, which is critical because different mosquito species may respond differ-492

ently to vector control interventions (Ferguson et al., 2010;Wilson et al., 2020).493

Prior to our study, the most recent assessment of PfEIR in this district of Malawi was from494

2002, with an estimated annual PfEIR of 183 ib/person/year (Mzilahowa et al., 2012). The dras-495

tic reduction in annual PfEIR since then to an estimated 2.60 ib/person/year in our study is likely496

due, at least in part, to an increase in the use of ITNs and ACTs. Nationwide, use of ITNs by chil-497

dren under five years old in Malawi has increased from nil in 2000 and 14.8% in 2004 (Mathanga498

et al., 2012) to 67.8% in 2014 (Malawi National Malaria Control Programme and ICF International,499

2014). Treatment for malaria in Malawi switched from sulfadoxine–pyrimethamine to ACT with500

artemether–lumefantrine in 2007 (Mathanga et al., 2012), and by 2014, 39.3% of children under501

five reporting a fever had taken ACT (Malawi National Malaria Control Programme and ICF In-502

ternational, 2014). Nationwide malaria interventions also likely impacted malaria parasite trans-503

mission over the course of our study. The most recent mass distribution of ITNs in Malawi prior504

to our study took place in 2012 (World Health Organization, 2013), with a subsequent mass ITN505

distribution in April 2016 that included our study site. Additionally, randomly selected villages im-506

plemented community-led larval source management, house improvement, or both as part of a507

randomised trial betweenMay 2016 andMay 2018 (McCann et al., 2017a; van den Berg et al., 2018).508

A separate paper assesses the effects of these interventions on PfEIR and PfPR.509

We observed a consistently higher PfPR in children 0.5-5 y/o than in women 15-49 y/o through-510

out the study region and study period, as expected. The extent of difference in PfPR between chil-511

dren and adults for a given region generally increases with parasite transmission intensity. How-512

ever, even in mesoendemic settings (PfPR between 10–50%), it is common for PfPR in children to513

be appreciably higher than in adults (Smith et al., 2007a). This pattern is due to increasing ac-514

quired immunity with increased exposure to malaria parasites over time (Baird, 1995), which may515

decrease transmission efficiency and time to clear a P. falciparum infection in adults compared to516

children (see Appendix 1 Table 6 and Smith et al. (2005)). Moreover, the higher PfPR in children517

than adults, even at the lowest levels of transmission, suggests that children may play a more sig-518

nificant role in transmission, consistent with other studies (Walldorf et al., 2015; Lin Ouédraogo519

et al., 2015).520

One limitation of our study was the use of RDTs to estimate PfPR. RDTs can show false positives521

after anti-malarial drug treatment due to persistence of the antigens detected by RDTs (Dalrymple522

et al., 2018). Also, the limit of detection (usually 50-200 parasites/µl ) is higher than that of expert523

microscopy or PCR (Chiodini, 2014). In modelling the relationship between PfEIR and PfPR, we did524

not account for the sensitivity and specificity of the RDT used to detect P falciparum infection. If525

the sensitivity � and specificity � were known, we could account for them by setting PfPR(x, t) as526

used in our analysis to �PfPR(x, t)+ (1−�)(1−PfPR(x, t)). Thus, strictly, what we have called PfPR527

should be interpreted as the probability of testing positive for P. falciparum using RDT. However,528

the use of RDTs as a diagnostic test for the detection of malaria infection provides PfPR estimates529

that are comparable to national malaria indicator surveys.530

PfPR and PfEIR are causally linked by the malaria parasite transmission cycle, which alternates531

between the human host and the mosquito vector. A higher rate of infectious bites received per532

person (i.e. EIR) increases the probability of the person becoming infected when bitten. Similarly,533
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a higher rate of parasite infection in people (i.e. PR) increases the probability of a mosquito becom-534

ing infected after any given blood meal. Therefore, future modelling efforts may be improved by535

considering the EIR-PR relationship as cyclic.536

Conclusion537

Measuring PfEIR and PfPR using the rolling MIS framework allowed us to assess the fine-scale spa-538

tial and temporal distributions of malaria parasite transmission over 38months in amesoendemic539

setting. The relationship between PfEIR and PfPR estimated here shows that at low transmission540

levels, changes in EIR are associated with rapid changes in PR, while at higher transmission levels,541

changes in EIR are not associated with appreciable changes in PR. Comparing hotspots of PfEIR542

and PfPR revealed that each metric could identify potential transmission hotspots that the other543

fails to capture. Our results emphasise that PfEIR and PfPR are essential, complementary metrics544

formonitoring short term changes in P. falciparum transmission intensity inmesoendemic settings,545

which have become increasingly common asmany regions reduce transmission and shift from the546

highest malaria endemicity levels. Our study emphasises the need to couple vector control with547

identifying and treating infected individuals to drive malaria to elimination levels and to monitor548

both entomological and parasitaemia indices in malaria surveillance.549
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Appendix 1782

Procedure for building the HBR, PfSR and PfEIR models783

Let Avg(Temp(xi, ti), s1, s2) and Avg(RH(xi, ti), s1, s2) respectively denote the average temper-
ature and relative humidity taken over s1 to s2 days prior to the data collection. Appendix 1
Table 1 shows the s1 and s2 values over which average temperature and relative humidity
were computed. A set of these variables were selected as the best predictors each of the
outcome variables based on the procedure in the next section.

784

785

786

787

788

We selected the best combination of fixed and random effects that best explain HBR,
PfSR and PfPR using the following procedure.

789

790

1. We first built a generalized linear model in which temperature and RH are consid-
ered together with time trends and sine and cosine functions for seasonality. For
Avg(Temp(xi, ti), s1, s2), Avg(RH(xi, ti), s1, s2), the choice of s1 and s2, as illustrated by Ap-
pendix 1 Table 1, was based on the deviance profile of the variable involved, i.e. either
temperature or RH. Piecewise-linear transformations of temperature and RH were
considered based on visual inspection and epidemiological knowledge.

791

792

793

794

795

796

2. Potential confounding between seasonal sinusoids, temperature andRHwere checked.
Covariates that did not improve the model fit as judged by the AIC were excluded. Sin-
cosine terms were always considered together as if they were one covariate.

797

798

799

3. With the current model as a basic model we include other available explanatory vari-
ables based on forward selection.

800

801

4. When no more explanatory variables significantly improve the model fit, we fit a gen-
eralized linear mixedmodel with a random effect for each unique space-time location.

802

803

5. We then check for the presence of residual spatial, temporal, and spatio-temporal
correlations using the algorithm described in (Giorgi et al., 2018), and then include
the random effect terms that improve the model fit.

804

805

806

The selected fixed effects for the HBR, PfSR and PfPR models807

We specify the set of fixed effects we selected to be in the final model for the A. arabiensis
HBR, A. funestus s.s. HBR, PfSR, and the PfPR models. Detailed description of the terms
involved in the fixed effects and the estimates of all the parameters of eachmodel are given
in S1 Tables 2 to 5.

808

809

810

811

• A. arabiensis human biting rate
d(xi, ti)⊤� + f (ti; �) = �11(xi ∈ ) + �21(xi ∈ ) + �31(xi ∈ ) + �41(Indoor) +

�5DSR(xi) + �6Avg(RH(xi, ti), 14, 35) +
�7 min{Avg(Temp(xi, ti), 7, 14), 22.9} +
�8 max{Avg(Temp(xi, ti), 7, 14) − 22.9, 0} +

�1 sin(2�ti∕12)∕t + �2 cos(2�ti∕12)∕t

812

813

814

815

• A. funestus s.s. human biting rate816
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Appendix 1 Table 1. Range of days prior to data collections over which temperature and relative humiditywere averaged
To (s2) 0 3 5 7 14 21 28 35 42

From (s1)0 ✓a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ ✓

14 ✓ ✓ ✓ ✓

21 ✓ ✓ ✓

28 ✓ ✓

35 ✓
a The check marks indicate the days from/to which temperature and relative humidity were averaged.

d(xi, ti)⊤� + f (ti; �) = �0 + Elevation(xi) + �1DSR(xi) + �2NDVI(xi) +
�3Avg(Temp(xi, ti), 0, 7) + �4Avg(Temp(xi, ti), 7, 14) +
+�5Avg(RH(xi, ti), 14, 21)
+�1 sin(2�ti∕12) + �2 cos(2�ti∕12) +

+�3 min{ti, 12} + �4 max{ti − 12, 0}

817

818

819

820

• A. arabiensis sporozoite rate
d(xi, ti)⊤�∗ + f ∗(ti; �∗) = �∗0 + �

∗
1DLR(xi) + �∗2DSR(xi) + �∗3Elevation(xi) +

�∗4EVI(xi) + �∗1 sin(2�ti∕12) + �∗2 cos(2�ti∕12) +
�∗3 min{ti, 12} + �∗4 max{ti − 12, 0}

821

822

823

824

• A. funestus s.s. sporozoite rate
d(xi, ti)⊤�∗ + f ∗(ti; �∗) = �∗0 + �

∗
1 sin(2�ti∕12) + �

∗
2 cos(2�ti∕12) +

�∗3 min{ti, 12} + �∗4 max{ti − 12, 0}

825

826

827

828

• P. faciparum prevalence829

d(xi, ti)⊤' + g(ti; %) = '11(xi ∈ ) + '21(xi ∈ ) + '31(xi ∈ ) +

'4Elevation(xi) + '5DLR(xi) +
'6Avg(Temp(xi, ti), 14, 42) + '7NDVI(xi) +
'8Wealth(xi) + %1 min{ti, 21} + %2 max{ti − 21, 0} +

+%3 cos(2�ti∕12) + %4 sin(2�ti∕12)

830

831

832

833
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Appendix 1 Table 2. Regression table for the A. arabiensis human biting rate model
Variable Description Parameter Point Estimate
Covariates
1(xi ∈ ) A binary indicator taking the value 1 if location xi �1 -13.525

belongs to Focal Area A and 0 otherwise. (-16.217, -10.833)a
1(xi ∈ ) A binary indicator taking the value 1 if location xi �2 -9.995

belongs to Focal Area B and 0 otherwise. (-12.656, -7.333)
1(xi ∈ ) A binary indicator taking the value 1 if location xi �3 -10.848

belongs to Focal Area C and 0 otherwise. (-13.514, -8.182)
1(Indoor) A binary indicator taking the value 1 if the mosquito �4 0.456

trap was set indoors and 0 otherwise. (0.264, 0.647)
DSR(xi) Distance from location xi to the closest small river �5 0.631 ×10−3

(0.143, 1.120 )×10−3
Avg(RH(xi, ti), 14, 35) Average relative humidity 14 to 35 days prior to the �6 0.056

data collection. (0.038, 0.073)
min{Avg(Temp(xi, ti), 7, 14), 22.9} The effect of temperature when temperature is �7 0.180

below 22.9◦C . (0.072, 0.289)
max{Avg(Temp(xi, ti), 7, 14) − 22.9, 0} The effect of temperature when temperature is �8 -0.132

22.9◦C or higher. (-0.22, -0.044)
Seasonality and Trends

sin(2�ti∕12)∕t �1 -0.291
(-0.907, 0.325)

cos(2�ti∕12)∕t �2 1.092
(-0.759, 2.943)

Spatial Correlation

Signal variance �2 4.114
(3.262, 5.189)

Scale (km) � 0.649
(0.492, 0.856)

Nugget variance �2 0.162
(0.124, 0.21)

Dependent Variable: log of A. arabiensis Mosquito Density
a 95% confidence intervals are in brackets.
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Appendix 1 Table 3. Regression table for the A. funestus human biting rate model
Variable Description Parameter Point Estimate
Covariates

Intercept �0 2.523
(-3.209, 8.256)a

Elevation(xi) Elevation of the location xi. �1 -5.583×10−3
(-7.896, -3.271)×10−3

DSR(xi) Distance from location xi to the nearest small river. �2 2.993×10−3
(2.329, 3.658)×10−3

NDVI(xi) Normalized difference vegetation index at �3 1.392
location xi. (-1.251, 4.035)

Avg(Temp(xi, ti), 0, 7) Average temperature one week prior to data �4 -0.154
collection. (-0.279, -0.028)

Avg(Temp(xi, ti), 7, 14) Average temperature 7 to 14 days prior to data �5 -0.116
collection. (-0.295, 0.064)

Avg(RH(xi, ti), 14, 21) Average relative humidity 14 to 21 days prior to data �6 -0.043
collection. (-0.078, -0.008)

Seasonality and Trends

sin(2�ti∕12) �1 -0.291
(-0.907, 0.325)

cos(2�ti∕12) �2 1.092
(-0.759, 2.943)

min{ti, 12} �3 -0.291
(-0.907, 0.325)

max{ti − 12, 0} �4 1.092
(-0.759, 2.943)

Spatial Correlation

Signal variance �2 4.456
(3.379, 5.876)

Scale (km) � 0.906
(0.66, 1.245)

Nugget variance �2 0.142
(0.105, 0.191)

Dependent Variable: log of A. funestus Mosquito Density
a 95% confidence intervals are in brackets.
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Appendix 1 Table 4. Regression table from fitting the P. falciparum sporozoite rate models.
Variable Description Parameter A. funestus s.s. A. arabiensis

Covariates

Intercept �∗0 0.139 -3.392
(-7.793, 8.071)a (-4.772, -2.125)

DLR(xi) Distance from location xi to the nearest small �∗1 -1.945×10−3 —
river. (-3.345, -0.545) ×10−3

DSR(xi) Distance from location xi to the nearest large �∗2 -4.309 ×10−3 —
river. (-7.499, -1.119)

Elevation(xi) Elevation of location xi. �∗3 7.786×10−3 —
(5.819, 9.752)×10−3

EVI(xi) Enhanced vegetation index of location xi. �∗4 -36.648 —
(-65.090, -8.206)

Seasonality
and Trends
sin(2�ti∕12) �∗1 -0.378 -0.253

(-0.565, -0.19) (-0.882, 0.375)
cos(2�ti∕12) �∗2 -0.722 -0.867

(-0.954, -0.489) (-1.864, 0.13)
min{ti, 12} �∗3 -0.056 0.027

(-0.072, -0.041) (-0.086, 0.140)
max{ti − 12, 0} �∗4 0.061 -0.089

(0.039, 0.084) (-0.305, 0.127)
Dependent Variables: logits of the probability of a positive test from children under 5 y/o and for women 15-49 y/o.

a 95% confidence intervals are in brackets.

Appendix 1 Table 5. Regression table for the P. falciparum parasite rate model.
Variable Description Parameter Children under 5 y/o Women 15-49 y/o
Covariates

1(xi ∈ ) A binary indicator taking the value 1 if '1 0.685 -0.506
xi belongs to Focal Area A and 0 otherwise. ( -1.877 , 3.247 ) ( -3.166 , 2.155 )

1(xi ∈ ) A binary indicator taking the value 1 if '2 2.829 2.568
xi belongs to Focal Area B and 0 otherwise. ( 0.41 , 5.248 ) ( 0.134 , 5.002 )

1(xi ∈ ) A binary indicator taking the value 1 if '3 3.192 2.641
xi belongs to Focal Area C and 0 otherwise. ( 0.806 , 5.577 ) ( 0.224 , 5.058 )Elevation(xi) Elevation of the location xi. '4 5.165×10−3 5.920×10−3( 2.322 , 8.008 )×10−3 ( 3.039 , 8.800 )×10−3DLR(xi) Distance from location xi to the nearest '5 -0.372 ×10−3 -0.181 ×10−3large river. ( -0.522 , -0.222) ×10−3 ( -0.353, -0.009) ×10−3

Avg(Temp(xi, ti), 14, 42) Average temperature 14 to 42 days prior to '6 -0.112 -0.096data collection. ( -0.201 , -0.023 ) ( -0.187 , -0.005 )NDVI(xi) Normalized difference vegetation index at '7 -2.424 -5.556location xi. ( -4.703 , -0.144 ) ( -7.63 , -3.482 )Wealth(xi) Wealth index of the i-th household. '8 -0.212 -0.159( -0.283 , -0.141 ) ( -0.215 , -0.102 )
Seasonality
and Trends
min{ti, 21} %1 -0.079 -0.079( -0.098 , -0.06 ) ( -0.1 , -0.059 )
max{ti − 21, 0} %2 0.072 0.086( 0.042 , 0.102 ) ( 0.056 , 0.117 )
cos(2�ti∕12) %3 -0.045 0.101( -0.265 , 0.175 ) ( -0.123 , 0.324 )
sin(2�ti∕12) %4 0.209 0.175( -0.138 , 0.556 ) ( -0.173 , 0.523 )
Spatial Correlation

Signal variance �2 0.347 0.602( 0.222 , 0.542 ) ( 0.416 , 0.872 )Scale (km) � 1.175 1.055( 0.617 , 2.238 ) ( 0.631 , 1.765 )Nugget variance �2 1.546 1.368( 0.956 , 2.500) ( 0.932 , 2.007 )
Dependent Variables: logits of the probability of a positive test from children under 5 y/o and for women 15-49 y/o.

a 95% confidence intervals are in brackets.
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Appendix 1 Table 6. Parameter estimates from the models for the relationship between PfEIR and PfPR. Themodels’ goodness of fit are assessed by the AIC and their predictive abilities by the root-mean-square error(RMSE) and bias.
Model p(x, t) 
 
1 
2 AIC RMSE Bias
1. SIS 
PfEIR(x,t−1)


PfEIR(x,t−1)+1
7.02 7633 0.361 7.597 × 10−3

(3.906, 12.284)
2. SIS with D.I/R 2

∑

k=1
�k,it


kPfEIR(x,t−1)

kPfEIR(x,t−1)+1

107.208 0.762 6719 0.353 27.386 × 10−3

(0.088, 381.139) (0.485, 24.344)
3. SIS with S.I. 1 − e−
PfEIR(x,t−1) 1.728 9231 0.351 78.301 × 10−3

(0.638, 3.087)
4. SIS with S.I. and D.I/R 2

∑

k=1
�k,it(1 − e−
kPfEIR(x,t−1)) 22.603 0.471 7677 0.392 99.390 × 10−3

(0.128, 67.048) (0.234, 7.02)
a b

5. Beier a + b log(PfEIR(x, t − 1)) 0.253 0.013 4628 0.328 5.376 × 10−3

(0.232, 0.283) (0.009, 0.021)
6. Logit-linear PfEIR(x,t−1)b

PfEIR(x,t−1)b+exp(−a)
-0.986 0.100 4620 0.327 4.874 × 10−3

(-1.160, -0.804) (0.062, 0.147)
Logit-linear for children only -0.523 0.119

(-0.742, -0.296) (0.073, 0.174)
Logit-linear for women only -1.427 0.083

(-1.575, -1.218) (0.046, 0.133)
S.I. denotes supper infection and D.I/R denotes different infection/recovery rates for children and women.95% confidence intervals are in brackets. AIC is the median AIC from 10,000 Simulations. RMSE is theroot-mean-square error.

28 of 28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.14.426709doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426709
http://creativecommons.org/licenses/by/4.0/

