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Abstract

The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized
transcriptomic studies. However, integrative analysis of scRNA-seq data remains a chal-
lenge largely due to batch effects. We present single-cell Embedded Topic Model (scETM),
an unsupervised deep generative model that recapitulates known cell types by inferring the
latent cell topic mixtures via a variational autoencoder. scETM is scalable to over 106 cells
and enables effective knowledge transfer across datasets. scETM also offers high inter-
pretability and allows the incorporation of prior pathway knowledge into the gene embed-
dings. The scETM-inferred topics show enrichment in cell-type-specific and disease-related
pathways.

Background

Advances in high-throughput sequencing technologies [1] provide an unprecedented oppor-
tunity to profile the individual cells’ transcriptome across various biological and pathological
conditions, and have spurred the creation of several atlas projects [2–5]. Emerged as a key
application of scRNA-seq data, unsupervised clustering allows for cell-type identification in a
data-driven manner. Flexible, scalable, and interpretable computational methods are crucial
for exploiting the full potential of the wealth of single-cell datasets and translating the transcrip-
tion profiles into biological insights. Despite considerable progress made on clustering method
development for scRNA-seq data analysis [6–16], several challenges remain.
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First, compared to bulk RNA-seq, scRNA-seq data commonly exhibit higher noise levels and
drop-out rates, where the data only captures a small fraction of a cell’s transcriptome [17].
Changes in gene expression due to experimental design, often referred to as batch effects [18],
can have a large impact on clustering [12, 18–20]. If not properly addressed, these technical
artefacts may mask true biological signals in cell clustering.
Second, the partitioning of the cell population alone is insufficient to produce biological inter-
pretation. The annotations of the cell clusters require extensive manual literature search in
practice and the annotation quality may be dependent on users’ domain knowledge [20]. There-
fore, an interpretable and flexible model is needed. In the current work, we consider model
interpretability as whether the model parameters can be directly used to associate the input fea-
tures with latent factors or target outcome. In particular, latent topic models are a popular ap-
proach in mining genomic data [21,22] as one can use them to infer the topic distribution for both
the samples and genomic features by problematically decomposing the samples-by-features
matrix into samples-by-topics and topics by features, respectively. However, their values in
modeling scRNA-seq data have not been fully realized [23].
Third, model transferability is an important consideration. We consider a model as transfer-
able if the learned knowledge manifested as the model parameters could benefit future data
modeling. In the context of scRNA-seq data analysis, it translates to learning feature represen-
tations from one or more large-scale annotated reference datasets and applying the learned
representations to a query dataset without annotation. As the number and size of scRNA-seq
datasets continue to increase, there is an increasingly high demand for efficient exploitation
and knowledge transfer from the existing reference datasets.
Several recent methods have attempted to address these challenges. Seurat [7] uses canon-
ical correlation analysis to project cells onto a common embedding, then identifies, filters,
scores and weights anchor cell pairs between batches to perform data integration. Harmony
[24] iterates between maximum diversity clustering and a linear batch correction based on the
mixture-of-experts model. Scanorama [10] performs all-to-all dataset matching by querying
nearest neighbors of a cell among all remaining batches, after which it merges the batches
with a Gaussian kernel to form a single cell panorama. These methods are often not scalable
to cope with the entire genes-by-cells data matrices, or are vulnerable to the noise inherent to
scRNA-seq read count data; hence they rely on feature (gene) selection and/or dimensional-
ity reduction methods. They are also non-transferable, meaning the knowledge learned from
one dataset cannot be easily transferred through model parameters to benefit the modeling of
another dataset. LIGER [9] uses integrative non-negative matrix factorization to jointly factor-
ize multiple scRNA-seq matrices across conditions using genes as the common axis, linking
cells from different conditions by a common set of latent factors also known as metagenes. Al-
though relying on Seurat’s preprocessing pipeline, LIGER is weakly transferable in the sense
that the global metagenes-by-genes matrix can be transferred when modeling new datasets,
whereas in the case of Seurat both the correlation components and the anchor cell pairs must
be recomputed.
Deep learning approaches, especially autoencoders, have demonstrated promising perfor-
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mance in scRNA-seq data modeling. scAlign [15] and MARS [25] encode cells with non-linear
embeddings using autoencoders, which is naturally transferable across datasets. While scAlign
minimizes the distance between the pairwise cell similarity at the embedding and original
space, MARS looks for latent landmarks from known cell types to infer cells of unknown type.
Variational autoencoders (VAE) [26] is an efficient probabilistic framework known to better ac-
count for noise compared to conventional autoencoders. scVAE-GM [11] changed the prior
distribution of the latent variables in the VAE from Gaussian to Gaussian mixture, adding a
categorical latent variable that clusters cells. Single-cell variational inference (scVI), another
VAE-based method, models library size and takes into account batch effect in generating cell
embeddings [6]. A key drawback for autoencoders for modeling scRNA-seq data is the lack
of interpretability. These approaches often require posthoc analyses to interpret the learned
model parameters and associate condition and cell-type-specific gene signatures. To improve
interpretability, a linear decoded VAE (hereafter referred to as scVI-LD) was proposed and
included in the scVI software package [14].
In this paper, we present single-cell Embedded Topic Model (scETM), a generative topic model
that facilitates integrative analysis of large-scale single-cell transcriptomic data. Our key contri-
bution is the novel, efficient and scalable Bayesian inference framework which utilizes a trans-
ferable neural-network-based encoder while having an interpretable linear decoder. scETM
simultaneously learns a set of highly interpretable cell embeddings, gene embeddings, topic
embeddings, and batch effect embeddings from scRNA-seq data. The flexibility and expressive-
ness of the encoder network enable us to model extremely large raw scRNA-seq datasets. By
the tri-factorization design, we are able to incorporate existing pathway information into gene
embeddings during the model training to further improve interpretability, which is a salient fea-
ture compared to the related methods such as scVI-LD. This incorporation allows scETM to
simultaneously discover interpretable cellular signatures and gene markers while integrating
scRNA-seq data across conditions, subjects and experimental studies. We demonstrate that
scETM offers state-of-the-art performance across a diverse range of datasets with desirable
runtime and memory requirements. We also show scETM’s capability of effective knowledge
transfer across datasets with different sequencing technologies and even cross-species. We
then use scETM to discover biologically meaningful gene expression signatures and to differ-
entiate known cell types as well as pathological conditions. We analyze scETM-inferred topics
and show that several topics are enriched in cell-type-specific or disease-related pathways.
Finally, we directly incorporate known pathway-gene relationships (pathway gene sets) into
scETM in the form of gene embeddings, and use the learned pathway-topic embedding to show
the pathway-informed scETM (p-scETM)’s capability of learning biologically and pathologically
meaningful information.
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Results

scETM model overview

Topic models are natural for scRNA-seq data modeling. Each sampled cell transcriptome can
be viewed as a bag of genes, and its cell type identity could be inferred from its topic propor-
tions. Each topic is a distribution over genes that would capture certain aspect of cell functions.
We choose Embedded Topic Model (ETM) [27] as the backbone of our model, as it inherits
the benefits of topic models, and is especially effective for handling large and heavy-tailed vo-
cabularies. The amortized inference process of ETM is very similar to that of VAEs, while the
data modeling of the former is much more interpretable. We model the cells-by-genes read-
count matrix by factorizing it into a cells-by-topics matrix θ and a topics-by-genes matrix β,
which is further decomposed into topics-by-embedding α and embedding-by-genes ρ matrices
(Fig. 1a,b). This tri-factorization design allows for the simultaneous embedding of cells, topics,
and genes into low-dimensional spaces, and exploring their relations in a highly interpretable
way through automatically inferred latent topics. To account for biases across conditions or sub-
jects, we introduce an optional batch correction parameter λ which acts as an intercept term in
the categorical softmax function to relieve the burden of modeling batch variations from the cell
topic mixture θd. We infer the topic mixture θ of a cell (also referred to as the cell embedding)
via a two-layer fully-connected neural network (Fig. 1c) using VAE [26]. Details are described in
Methods.

Clustering

We benchmarked scETM, along with seven state-of-the-art single-cell clustering or integrative
analysis methods – scVI [6], scVI-LD [14], Seurat (integrated) [7], scVAE-GM [11], Scanorama
[10], Harmony [24] and LIGER [9], on five published datasets, namely Mouse Pancreatic Islet
(MP) [28], Human Pancreatic Islet (HP) [7], Tabula Muris (TM) [3], Alzheimer’s Disease dataset
(AD), and Major Depressive Disorder dataset (MDD) [29]. Across all datasets, scETM performs
on par with the state-of-the-art methods in terms of Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI) (Table 1; Supp. Table S1). Specifically, it has the best clustering
performance among the transferable and interpretable models. scETM stably yields competitive
results, while others methods fluctuate across the five datasets. Overall, Harmony and Seurat
have slightly higher ARIs than scETM, with trade-offs of model transferability, interpretability,
and/or scalability (more details next).
To further verify the clustering performance and validate our evaluation metrics, we visual-
ized the cell embeddings using Uniform Manifold Approximation and Projection (UMAP) [30]
(Fig. S2). This result demonstrates that scETM effectively captures cell-type-specific informa-
tion, while accounting for artefacts arising from individual or technological variations. scETM
is also robust to hyperparameter changes, requiring very few or no hyperparameter tuning ef-
forts when applied to unseen datasets (Supp. Table S2). We also performed a comprehensive
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ablation analysis to validate our model choices. The ablation experiment demonstrates the
necessity of key model components, such as the batch effect correction λ and batch normaliza-
tion in the encoder. Normalizing gene expression as the input to the encoder also improves the
performance (Supp. Table S3).

Scalability

A key advantage of scETM is its high scalability and efficiency. We demonstrate this by com-
paring the run time, memory usage, and clustering performance of the state-of-the-art models
using their recommended pipelines when integrating a merged dataset consisting of MDD and
AD (Fig. 2; see Efficiency and scalability benchmark of the existing methods section). Because
of the simple model design and efficient implementation (sparse matrix representation, multi-
threaded data retrieval, to name a few tricks), scETM has the shortest run time among all deep-
learning based models. Specifically, on the largest dataset (148,247 cells), it runs 3-4 times
faster than scVI and scVI-LD, and over 10 times faster than scVAE-GM. Notably, although The
architectures are not exactly the same in these deep models, the run time is not heavily depen-
dent on the architecture choices but rather on the implementation. Harmony and Scanorama
are the only methods faster than scETM, yet they both operate on no more than a hundred prin-
cipal components, while scETM can operate on all genes for better model transferability and
interpretability.
Because of stochastic variational inference [26,31,32] and minibatch parameter update, scETM
takes almost constant run-time memory with respect to the sample size, with the increase at-
tributed to the data loader. In contrast, the memory requirement of Seurat increases rapidly
with the number of cells, due to the vast numbers of plausible anchor cell pairs in the two brain
datasets. In accord with the results above, scETM consistently yields first-class clustering re-
sults, whereas Harmony and Scanorama show sub-optimal performance when dataset sizes
vary. UMAP visual inspection of scVAE embeddings suggests that scVAE likely suffers from
under-correction of batch effects (Supp. Fig. S3). The sudden drop of Liger’s clustering perfor-
mance in the largest benchmark dataset may be due to overfitting because of the frequentist
numerical optimization of the least square objective in Liger in contrast to the Bayesian infer-
ence in ours and other approaches.

Transfer learning across single-cell datasets

A prominent feature of scETM is that its parameters, hence knowledge of modeling scRNA-
seq data, are transferable across datasets. As an example, we trained an scETM model on
the fluorescence-activated-cell-sorting-based Tabula Muris dataset (TM-FACS) from a multi-
organ mouse single-cell atlas, and evaluated it using the MP data, which only contains mouse
pancreatic islet cells (see Transfer learning with scETM section). Though the two datasets
were obtained using different sequencing technologies, the model yields an encouragingly high
ARI score of 0.94, considering that the ARI score is 0.95 if the model is directly trained on MP
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(Fig. 3a,b). Interestingly, the TM-FACS-pretrained model puts B cells, T cells and macrophages
far away from other clusters and separates B cells and T cells from macrophages, which is not
observed in the model directly trained on MP.
Our transfer learning can also be cross-species. Using the gene orthologs between human
and mouse, scETM trained on the human pancreas (HP) dataset achieves a 0.79 ARI on MP
(Fig. 3c), which surpassed scVI (0.39) and scVI-LD (0.49) on the same HP-MP transfer learn-
ing task. The performance is even better than scVAE-GM (0.66) trained directly on MP. This
improvement is attributable to the gene embedding learning and the explicit batch effect cor-
rection in our scETM model. To assess scETM’s capability to embed unseen query cells and
similar reference cells together in the embedding space, we trained a k-Nearest Neighbors clas-
sifier on the HP embeddings generated by the HP-pretrained scETM model, and evaluated it on
the MP embeddings generated by the same HP-pretrained model, which was not trained on the
MP data. The classifier achieves 79.8% accuracy in MP cell type prediction, demonstrating the
capability of automatically annotating query scRNA-seq datasets using the pretrained scETM
model on the reference scRNA-seq data. We expect that these results can be improved by fur-
ther tuning of the model on the unannotated query data, or by the use of a compatible transfer
learning framework such as MARS [25].

Gene set enrichment analysis of scETM topics

We next investigated whether the scETM-inferred topics are biologically relevant in terms of
known human gene pathways. We conducted pathway enrichment analysis using pathDIP4,
a data portal that integrates 24 major pathway databases [33]. For each topic, we selected
the top 30 genes based on topic intensity as the input gene set and identified significantly en-
riched pathways based on a hypergeometric test with false discover rate (FDR) below 0.05 [34].
We found that several topics learned from the human pancreatic islet dataset are significantly
enriched in pathways relevant to pancreas functions, including insulin signalling pathway, fat
digestion and absorption, starch and sucrose metabolism, etc (Supp. Table S4). Topic learned
from AD and MDD datasets are also enriched in brain function-related pathways: about 64%
and 37% of the topics respect to AD and MDD have significant hits with neuronal system path-
ways (Supp. Table S5, S6).
Interestingly, several topics are also enriched for disease-relevant pathways. In AD, the top
30 genes from topic 18 are enriched for Alzheimer’s Disease pathway itself, and the top 30
genes from topic 75 are highly enriched in amyloid fiber formation (Fig. 4a). Notably, amyloid
fibrils are widely known to be associated with aging and AD, and β-amyloid plaques are among
the major characteristics of AD brains [35–37]. We also found that the top 30 genes in topic
15 are enriched in the GABA synthesis pathway (FDR < 0.001), which is known to have an
important role in AD pathogenesis [38, 39]. In MDD, topic 7 is enriched for neurodegenerative
diseases such as Parkinson’s, Alzheimer’s and Huntington’s disease; topic 94 is enriched in
toll-like receptor (TLR) pathway (FDR < 0.05), which is known to be associated with MDD
severity [40,41] (Fig. S1a).
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Differential scETM topics in disease conditions and cell types

We sought to use the scETM topics to differentiate pathological conditions. We separated the
cells derived from the AD subjects from the cells derived from the control subjects. We then
performed two-sided t-tests to evaluate whether the two cell groups exhibit significant differ-
ences in terms of their topic expression (see Differential analysis of topic expression section).
Here we consider the topic expression for each cell as the metagene expression because we
projected the original gene expression of each cell onto the topic embedding (Fig. 4b), and
we also observed that each of these topics is highly selective of a small fraction of the genes
(Fig. 4a). We found that topic 12 and 58 are differentially expressed in the AD cells and control
cells (Fig. 4c, d; t-test p-value ≈ 0). Interestingly, topic 58 is highly enriched for mitochondrial
genes. Indeed, it is known that β-amyloids selectively build up in the mitochondria in the cells
of AD-affected brains [42]. The MDD topics 52, 68, 77, 82, 86 also exhibit differential expres-
sions between the suicidal and healthy populations (Supp. Fig. S1c) and interesting neurologi-
cal pathway enrichment (Supp. Table S6).
We also identified several cell-type-specific scETM topics from the AD and MDD datasets. In
AD, as shown by both the cell embedding heatmap and the differential expression analysis
(Fig. 4b), topics (or metagenes) 19, 50, 97 are up-regulated in oligodendrocytes, endothelial
cells, and oligodendrocyte progenitor cells (OPCs), respectively (t-test Bonferroni q-value ≈ 0;
Fig. 4, Supp. Fig. S4). Interestingly, two subpopulations of cells that exhibit high expression of
topics 12 and 58 colocalize within the oligodendrocytes and one of the excitatory subclusters,
respectively (Supp. Fig. S5). Meanwhile, a clear separation of AD and controls within those
two subpopulations is present in the cell embedding. Among the AD cells, there is also a strong
enrichment for the female subjects, which is consistent with the original finding [43]. For MDD,
topics 1, 20 and 72 are up-regulated in astrocytes, oligodendrocytes and OPCs, respectively
(Supp. Fig. S1c). This is consistent with the positive correlations observed in the heatmap
(Supp. Fig. S1b).

Pathway-informed scETM topics

In the above analysis of the MDD dataset, we found that several topics are dominated by long
non-coding RNAs (lincRNAs) (Fig. S1a). While previous studies have suggested that lincRNAs
can be cell-type-specific [44], it remains difficult to interpret them [45]. This prompted us to in-
corporate the known pathway information in the form of gene embedding. In particular, we fixed
the gene embedding ρ to a pathways-by-genes matrix obtained from the pathDIP4 pathway
database (see Incorporation of pathway knowledge section) [33,46] and learn only the pathways
by topics embedding α, which provides a direct interpretation of disease-pathways associa-
tions. We tested our pathway-informed scETMs (p-scETM) on the HP, AD and MDD datasets.
Without compromising the clustering performance (Supp. Table S8), p-scETM learned func-
tionally meaningful topics as shown by the pathway-topic embedding α (Fig. 5). In the topic
α-embedding inferred by p-scETM trained on HP, we found 6 topics with top pathways related
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to insulin signaling, and 6 topics related to nutrient digestion and metabolism (Fig. 5a). In the
MDD α embedding, we found 8 topics with top pathways known as therapeutic targets for MDD
treatment (Fig. 5b, Supp. Table S9) [47–55], 2 topics with top pathways related to MDD patho-
genesis [53, 56], and 3 topics with top pathways correlated with MDD [57–59]. Notably, the
top pathway in topic 40, “beta-2 adrenergic receptor signaling", is also statistically enriched
(p=0.021) in MDD genome-wide association studies (GWAS) [60].
In the AD topic α-embedding, we found 6 topics with top pathways related to AD treatment
and 1 topic related to AD pathogenesis (Fig. 5c, Supp. Table S10) [38,39,61–65]. Importantly,
“Alzheimer disease-amyloid secretase" pathway, which is directly related to AD pathogene-
sis [66], is the seventh-highest expressed pathway in topic 9. Therefore, the p-scETM inferred
topics are highly related with not only the primary tissue types but also the disease of inter-
ests, although overall the former case tends to be the predominant signals we observe in our
analyses.

Discussion

As scRNA-seq technologies become increasingly affordable and accessible, large-scale datasets
have emerged. This challenges traditional statistical approaches and calls for robust, reliable
and scalable representation learning methods to mine the latent biological knowledge from
the vast amount of scRNA-seq data. To address this challenge, we developed scETM and
demonstrated its state-of-the-art performance on the unsupervised clustering task across
diverse datasets. scETM demonstrates excellent capabilities of batch effect correction and
knowledge transfer across datasets. Many integration methods require running on both refer-
ence and query datasets to perform posthoc analyses such as joint clustering and label trans-
fer [7, 9, 10, 24]. In contrast, our method enables a direct knowledge transfer of the reference-
based pretrained parameters in annotating a new dataset, which is more efficient than the
existing methods. Recently proposed by [23], single-cell Hierarchical Poisson Factor (scHPF)
model applies hierarchical Poisson factorization to discover interpretable gene expression
signatures in an attempt to address the interpretability challenge. However, compared to our
model, scHPF lacks the flexibility in learning the gene embedding and incorporating existing
pathway knowledge, and is not designed to account for batch effects. Moreover, scETM has
the benefits of both interpretability in the linear decoder and flexibility in the neural network
encoder. Our qualitative experiments show that scETM topics preserve cell functional and
state-specific biological signals within single-cell transcriptome profiles. By seamlessly incor-
porating the known pathway information in the gene embedding, p-scETM finds biologically
and pathologically important pathways without the need for posthoc analyses. Together, with
the scalability and interpretability, scETM serves as a useful tool for large-scale single-cell tran-
scriptome analysis.
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Methods

scETM data generative process

To model scRNA-seq data distribution, we take a topic-modeling approach [67]. In our frame-
work, each cell is considered as a “document", each scRNA-seq read as a “token" in the doc-
ument, and the gene that gives rise to the read is considered as a “word" from the vocabulary
of size V . We assume that each cell can be represented as a mixture of latent cell types, which
are commonly referred to as the latent topics. The original LDA model [67] defines a fixed set of
K independent Dirichlet distributions β over a vocabulary of size V . Following the ETM model,
here we decompose the unnormalized topic distribution K × V β∗ into the topic embedding
α ∈ RK×L and gene embedding ρ ∈ RL×V , where L denotes the size of the embedding space.
Therefore, the unnormalized probability of a gene belonging to a topic is proportional to the dot
product between the embeddings of the topic and gene. Formally, the data generating process
of each scRNA-seq profile d is:

1. Draw a latent cell type proportion θd for a cell d from logistic normal θd ∼ LN (0, I):

δd ∼ N (0, I), θd = softmax(δd) =
exp(δd,k)∑K
k=1 exp(δd,k)

(1)

2. For each gene g in cell d, draw its expression from a categorical distribution:

yd,g ∼ Cat(rd,g) =

Nd∏
i=1

r
[wi,d=g]

d,g = r
∑

i[wi,d=g]

d,g = r
yd,g
d,g (2)

Here Nd is the library size of cell d, wi,d is the index of the gene that gives rise to the ith read in
cell d (i.e., [wi,d = g]), and yd,g is the total read counts of gene g in cell d. The transcription rate
rd,g is parameterized as follows:

rd,g =
exp(r̂d,g)∑
g′ exp(r̂d,g′)

, r̂d,g = θdαρg + λs(d),g (3)

Here θd is the 1×K cell topic mixture for cell d, α is the global K × L cell topic embedding vari-
able, ρg is a L×1 gene-specific transcriptomic embedding, and λs(d),g is the batch-dependent and
gene-specific scalar effect, where s(d) indicates the batch index for cell d. Notably, to model
the sparsity of gene expression in each cell (i.e., only a small fraction of the genes have non-
zero expression), we use the softmax function to normalize the transcription rate over all of the
genes.
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scETM model inference

In scETM, we treat the latent cell type mixture θd for each cell d as the only latent variable. We
treat the topic embedding α, the gene-specific transcriptomic embedding ρ, and the batch-
effect λ as point estimates. Let Y be the D × V gene expression matrix for D cells and V
genes. The posterior distribution of the latent variables p(Θ|Y) is intractable. Hence, we took
a variational inference approach using a proposed distribution q(δd) to approximate the true
posterior. Specifically, we define the following proposed distribution: q(δ | y) =

∏
d q(δd|yd),

where q(δd|yd) = µd + diag(σd)N (0, I) and [µd, logσ2
d] = NNET(ỹd; Wθ). Here ỹd is the normal-

ized gene expression as the read counts for each gene divided by the total reads in cell d. The
function NNET(v; W) is a two-layer feed-forward neural network used to estimate the sufficient
statistics of the proposed distribution for the cell topic mixture θd.
To learn the above variational parameters Wθ, we optimize the evidence lower bound (ELBO)
of the log likelihood, which is equivalent to minimizing the Kullback-Leibler (KL) divergence be-
tween the true posterior and the proposed distribution: ELBO = Eq[log p(Y|Θ)]−KL [q(Θ|Y)||p(Θ)].
The Bayesian model is learned by maximizing the reconstruction likelihood with regularization
in the form of KL divergence of the proposed distribution from the prior. For computational effi-
ciency, we optimize ELBO with respect to the variational parameters by amortized variational
inference [26, 31, 32]. Specifically, we draw a sample of the latent variables from q(δ | y) for a
minibatch of cells from reparameterized Gaussian proposed distribution q(δ | y) [26], which has
the mean and variance determined by the NNET functions. We then use those draws as the
noisy estimates of the variational expectation for the ELBO. The optimization is then carried out
by back-propagating the ELBO gradients into the variational parameters.

scETM implementation details

We implemented scETM using the PyTorch library. We chose the encoder to be a 2-layer neu-
ral network, with hidden sizes of (256, 128), ReLU activations [68], 1D batch normalization [69],
and 0.1 dropout rate between layers. We set the gene embedding dimension to 300, and the
number of topics to 100. We optimize our model with Adam Optimizer and a 0.02 learning rate.
To prevent over-regularization, we start with zero weight penalty on the KL divergence and lin-
early increase the weight of the KL divergence in the ELBO loss function during the first 300
epochs. We show that our model is robust to changes in the above hyperparameters (Supp.
Table S2). During the evaluation, we used the variational mean of the unnormalized topic mix-
ture µd as the scETM cell embedding for cell d. With a minibatch size of 2000, scETM typically
needs 5k-20k training steps to converge.

Transfer learning with scETM

We trained scETM on the MP dataset and visualized the cell embedding using UMAP (Fig. 3a).
For TM-FACS, we first subset the genes of both TM-FACS and MP to their intersection (13263
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genes). We then trained scETM on the processed TM-FACS and evaluated it on MP (Fig. 3b).
For HP, we first matched the orthologous genes (12603 genes) based on the Mouse Genome
Informatics database [70,71]. We then trained and evaluated scETM on the aligned gene sets
(Fig. 3c). The k was set to 5 for the k-NN classifier trained on the reference embeddings and
the reference cell types and used to predict cell types of the query cells.

Differential analysis of topic expression

We aimed to identify topics that are differentially associated with known cell type labels or dis-
ease conditions. For each label (e.g., AD positive), we first separated the cells into cells with
the label and cells without the label. We then performed two-sided t-tests to evaluate whether
the cells with the label exhibit significantly higher or lower topic expression relative to the cells
without the label. Here we used the Gaussian topic expression (i.e., δ) without the softmax
transformation because it is more suitable to the normality assumption of the t-test. We deter-
mine a topic to be differentially expressed (DE) if the Bonferroni corrected p-value is lower than
0.01 (i.e., q-value < 0.01). Supp. Table S7 summarizes the number of DE topics we identified
for each cell type and disease conditions from the AD and MDD data.

Incorporation of pathway knowledge

We downloaded the pathDIP4 pathway database from [46]. Pathway gene sets containing
fewer than five genes were removed. We represent the pathway knowledge as a pathways-by-
genes ρ matrix, where ρij = 1 if gene set i contains gene j, and ρij = 0 otherwise. For the
fixed-rho version of p-scETM, we fix the gene embedding matrix ρ to the pathways-by-genes
matrix.

Clustering performance benchmark of the existing methods

We assessed the performance of each method by three metrics: Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI). ARI [72] and NMI are widely-used representatives
of two families of clustering agreement measures, pair-counting and information theoretic mea-
sures, respectively. A high ARI or NMI indicates a high degree of agreement for a given cluster-
ing result against the ground-truth cell type labels.
All embedding plots were generated using the Python scanpy package [16]. We use UMAP [30]
to reduce the dimension of the embeddings to 2 for visualization, and Louvain [73] and Lei-
den [74] to cluster the cell embeddings. During clustering, we tried multiple resolution values
and reported the result with the highest ARI for each method. We ran all methods under their
default pipeline settings (see Experimental details of other scRNA-seq methods), and we use
batch correction option whenever applicable to account for batch effects. All results are ob-
tained on a compute cluster with Intel Gold 6148 Skylake CPUs and Nvidia V100 GPUs. We
limit each experiment to use 8 CPU cores, 128 GB RAM and 1 GPU.
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Efficiency and scalability benchmark of the existing methods

To create a benchmark dataset for evaluating the run time of each method, we merged MDD
and AD, keeping genes that appear in both datasets. We then selected 3000 most variable
genes using scanpy’s highly_variable_genes(n_top_genes=3000, flavor=‘seurat_v3’)
function, and randomly sampled 28,000, 14,000, 70,000 and 148,247 (all) cells to create our
benchmark datasets. The memory requirements reported in Fig. 2 were obtained by reading
the VmRSS entry in /proc/[pid]/status at the end of each process. We kept the same experi-
mental settings (RAM size, number of GPUs, etc) as in the Clustering performance benchmark
of the existing methods section above.
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Figures

Figure 1: scETM model overview. (a) Probabilistic graphical model of scETM. We model the
scRNA-profile read count matrix yd,g in cell d and gene g across S subjects or studies by a
multinomial distribution with the rate parameterized by cell topic mixture θ, topic embedding
α, gene embedding ρ, and batch effects λ. (b) Matrix factorization view of scETM. (c) Encoder
architecture for inferring the cell topic mixture θ.

Figure 2: Benchmark of the efficiency and scalability of seven scRNA-seq clustering al-
gorithms. The line styles in the plot indicate model inputs. The number of genes was fixed
to 3000 in this experiment. See Efficiency and scalability benchmark of the existing methods
section for experimental details.

Figure 3: scETM enables effective transfer learning across single-cell datasets. The em-
beddings of cells in the Mouse Pancreatic islet (MP) dataset inferred by three scETM models
trained on (a) MP, (b) TM-FACS, (c) HP, respectively.

Figure 4: scETM topic embeddings of the Alzheimer’s Disease snRNA-seq data. (a) Gene
topics heatmap of top 10 genes in each topic based on topic intensity. We annotated the top
genes by the significantly enriched AD-related pathways per topic (rows). For visualization
purposes, we divided the topic values by the maximum absolute value within the same topic.
Only select topics are shown. (b) Topics intensity of cells (n=10,000) sub-sampled from the
AD dataset. Topic intensities shown here are the Gaussian mean before applying softmax.
Only the select topics with the sum of absolute values greater than 1500 across all sampled
cells are shown. The three color bars show disease conditions, cell types, and batch identifiers
(i.e., subject IDs). (c) Differential expression analysis of topics across the 8 cell types and 2
clinical conditions. Z-scores of the two-sided t-tests were shown. Asterisks indicate Bonferroni
q-value < 0.05 for one-sided t-test of up-regulated topics in each cell-type and two-sided t-test
for disease-relevant topics.

Figure 5: p-scETM pathway-topics embeddings of three datasets (a) The pathway-topics
heatmap of top 5 pathways in selected topics, inferred by a p-scETM model trained on HP.
Pathways related to pancreas function, insulin signalling and digestion are highlighted. (b) The
pathway-topics heatmap of top 5 pathways in selected topics, inferred by a p-scETM model
trained on MDD. Pathways related to MDD pathogenesis and therapeutic targets are high-
lighted. (c) The pathway-topics heatmap of top 7 pathways in selected topics, inferred by a
p-scETM model trained on AD. Pathways related to AD pathogenesis and therapeutic targets
are highlighted.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426593
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables

Transferable Interpretable MP HP TM AD MDD

Harmony 0.974 0.955 0.705 0.996 0.787
Scanorama 0.915 0.859 0.566 0.991 0.616
Seurat Integrated 0.954 0.968 0.700 0.997* 0.795

scVAE-GM X 0.878 NA NA 0.997 0.554
scVI X 0.884 0.754 0.642 0.910 0.511

LIGER X X 0.901 0.904 0.579 0.933 0.718
scVI-LD X X 0.882 0.868 0.596 0.998 0.668
scETM X X 0.951 0.937 0.706 0.976 0.734

Table 1: Model properties and unsupervised clustering performance on 5 datasets. The
clustering performance is measured by Adjusted Rand Index (ARI) between ground truth cell
types and Leiden [74] clusters. NA is reported for models that did not converge. See Cluster-
ing performance benchmark of the existing methods section for experimental details. *Batch
integration was turned off to prevent over-correction.

Additional Files

Additional file 1

Supplementary Information, including Tables S1-3,7-11, Figures S1-4, and supplementary
methods.

Additional file 2

Table S4: scETM 100-topic enrichment for Human Pancreas scRNA-seq data.
Table S5: scETM 100-topic enrichment for Alzheimer’s Disease snRNA-seq data.
Table S6: scETM 100-topic enrichment for Major Depressive Disorder snRNA-seq data.
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Supplementary Methods

.1 Data processing

All of the single-cell datasets used in this study are from publicly available repositories or data
portals. We describe below the acquisition and quality control (QC) for each of the datasets
used in the current work.

.1.1 Human pancreatic islet

We obtained the human pancreatic islet dataset and the ground truth cell type labels from
Satija Lab at the following link: https://satijalab.org/seurat/v3.0/integration.html (ac-
cessed 1 Dec 2020), originally deposited by Stuart et al. [7]. This dataset is a compilation of
scRNA-seq data from five studies which can be accessed using the following Gene Expression
Omnibus (GEO) accession numbers: GSE81076 (CelSeq), GSE85241 (CelSeq2), GSE86469
(Fluidigm C1), E-MTAB-5061 (SMART-Seq2), and GSE84133 (inDrops). A QC step was con-
ducted by [7], and no additional QC was performed. In our benchmarking experiment, we use
the different scRNA-seq technologies as the batch variable.

.1.2 Mouse pancreatic islet

We obtained the mouse pancreatic islet data and ground truth cell type labels from GSE84133
(inDrops) without conducting an additional QC step. There are 1,886 mouse cells from two
mice of different strains, ICR and C57BL/6 [28]. The cell counts from the two trains are of ap-
proximately equal proportions. In our benchmarking experiment, we treated the mouse strain
as the batch variable because of the different genetic backgrounds.
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.1.3 Major Depressive Disorder (MDD)

We obtained the 10X Genomics-based MDD snRNA-seq dataset with ground truth cell type
labels from GSE144136. A strict QC step was conducted in the original empirical study by
[29], where cells with fewer than 110 detected genes were removed. The top 0.5% of cells
based on the total number of UMI (unique molecular identifiers) detected in each cell were
also excluded because they are likely to be multiplets rather than single nuclei. No additional
QC was performed. The MDD dataset consists of 78,886 cells from the dorsolateral prefrontal
cortex of 34 male participants. The participants in the control group (n=17) who died due to
natural cause and case group (n=17) who died by suicide were matched for age (18–87 years),
postmortem interval (12–93h) and brain pH (6–7.01) [29]. The number of cells from each donor
is approximately the same.

.1.4 Alzheimer’s disease (AD)

We obtained the droplet-based AD snRNA-seq data and the corresponding ground truth cell
type labels from Synapse (https://www.synapse.org/#!Synapse:syn18485175) under the
doi 10.7303/syn18485175, and the metadata from https://www.synapse.org/#!Synapse:
syn3157322. A strict QC step based on UMI counts and mitochondrial ratio values was con-
ducted in the original empirical study by Mathys et al. [43]. The AD dataset consists of 70,634
cells from the prefrontal cortex of 48 individuals, both male and female, in the Religious Order
Study (ROS) or the Rush Memory and Aging Project (MAP), two longitudinal cohort studies of
aging and dementia. The cases group consists of 24 individuals with high levels of β-amyloid
and other pathological hallmarks of AD, and the control group consists of 24 individuals who
have no or very low β-amyloid or other pathologies.
Study data were provided by the Rush Alzheimer’s Disease Center, Rush University Medical
Center, Chicago. Data collection was supported through funding by NIA grants P30AG10161
(ROS), R01AG15819 (ROSMAP; genomics and RNAseq), R01AG17917 (MAP), R01AG30146,
R01AG36042 (5hC methylation, ATACseq), RC2AG036547 (H3K9Ac), R01AG36836 (RNAseq),
R01AG48015 (monocyte RNAseq) RF1AG57473 (single nucleus RNAseq), U01AG32984
(genomic and whole exome sequencing), U01AG46152 (ROSMAP AMP-AD, targeted pro-
teomics), U01AG46161(TMT proteomics), U01AG61356 (whole genome sequencing, targeted
proteomics, ROSMAP AMP-AD), the Illinois Department of Public Health (ROSMAP), and the
Translational Genomics Research Institute (genomic). Additional phenotypic data can be re-
quested at www.radc.rush.edu.

.1.5 Tabula Muris

We obtained the Tabula Muris dataset with ground truth cell type labels from FigShare (https:
//figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_organs_
and_tissues_from_Mus_musculus_at_single_cell_resolution/27733) for the Version 2 re-
lease [3]. This dataset includes mouse single-cell transcriptome data sequenced by two tech-
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nologies: microfluidic droplet-based, and fluorescence-activated cell sorting (FACS)-based. A
QC cutoff was applied in the original empirical study where only cells with at least 500 genes
and 50,000 reads are kept. The droplet subset includes data for 422,803 droplets, 55,656 of
which passed the QC cutoff. The TM-FACS subset contains data for 53,760 cells, 44,879 of
which passed the QC cutoff.

.2 Experimental details of other scRNA-seq methods

Neural-network based models, including scVI, scVI-LD, scVAE-GM and scETM typically need
at least 5000 gradient updates to converge. When running on small datasets, the total number
of gradient updates per epoch may be very small (even 1). In these cases, we increase the
number of epochs T to ensure the model goes through at least 5000 gradient updates, i.e.
T = max(400, 5000B

N
), where N is the number of cells in the dataset and B is the mini-batch

size.

.2.1 Seurat v3

We downloaded Seurat v3 (version 3.1.5) from CRAN [8]. We followed the steps outlined by
the integration workflow (https://satijalab.org/seurat/v3.2/integration.html) which in-
cludes NormalizeData, FindVariableFeatures, FindIntegrationAnchors, and IntegrateData. To
make the comparisons more equitable, we set the min.features=0 to avoid exclusion of cells.
All other parameters were set as default. We noted that, with batch integration turned on, Seu-
rat reports error in the integration step due to the high number of anchors arising from the 48
individuals (batch variable in AD), which is a known implementation issue with the standard
Seurat v3 integration workflow [75]. We therefore turned off the batch integration for AD in
the benchmarking experiments (see Clustering performance benchmark of the existing meth-
ods and Efficiency and scalability benchmark of the existing methods) and followed the steps
described in the Guided Clustering Tutorial (https://satijalab.org/seurat/v3.2/pbmc3k_
tutorial.html).

.2.2 Scanorama

We downloaded the source code from GitHub brianhe/scanorama. We used the integrate_scanpy
function for dataset integration and batch correction as suggested by the guided tutorial. All pa-
rameters were set as default. The algorithm performs a PCA on the stacked datasets and uses
100 PCs for downstream computation.

.2.3 Harmony

We downloaded the source code from GitHub slowkow/harmonypy suggested by the primary
repository immunogenomics/harmony and followed the preprocessing (normalization and top
variable gene selection) described in the publication and the integration steps in the provided
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tutorial. We used the run_harmony function to obtain the corrected PCA embeddings and used
50 PCs as input. All other parameters were set as default.

.2.4 LIGER

We used the official implementation provided on the website of the Liger package. For the con-
venience of implementation, we followed the usage tutorial using Seurat Wrapper to process
the raw data and then ran Liger with default parameters.

.2.5 scVI/scVI-LD

We downloaded the implementation from the Github repository YosefLab/scVI. We used the
default model, which has one layer for both the encoder and decoder (for scVI-LD the decoder
is a latent dimensions-by-genes matrix), 128 hidden units, 10 latent dimensions and ZINB
distribution for modeling the data. We chose 10−3 as the learning rate and trained on each
unprocessed dataset for 400 epochs, following the provided tutorials. We change the training
batch size to 2000 for faster training. We obtained the cell embeddings via the get_latent
method.

.2.6 scVAE

We downloaded the implementation from Github repository scvae/scvae. We set the hidden
units to be (256, 128) for the encoder. The decoder is symmetric to the encoder. Latent dimen-
sion was set to 128 to match scETM. We chose 10−4 as the learning rate and NB distribution
for modeling the data following the authors’ recommendation. We trained on each unprocessed
dataset for 400 epochs with batch size of 250, including a 200-epoch warm-up for the KL diver-
gence loss. In the scalability benchmark, we disabled the time-consuming per-epoch check-
points to match other methods. The model did not converge on the Human Pancreatic Islet
dataset, where the ELBO went to infinity. It failed to extract meaningful information from the
Tabula Muris dataset, resulting in an ARI of 0.0.
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Supplementary Figures

Figure S1: scETM-topic embeddings learned from the Major Depressive Disorder scRNA-
seq data. (a) Gene embedding heatmap of top 10 genes in selected topics, where genes are
ordered based on topic intensity. Only topics with differential expression with respect to cell
types or MDD, or with significant enrichment in MDD-related pathways are shown, and these
properties are also reflected in the bottom annotations. Rows correspond to topic indices. (b)
Cell embedding heatmap of cells (n=10,000) sampled from the MDD dataset. Only topics in
which the sum of absolute intensity values across all of the sampled cells are above 1,500 are
shown. Both rows and columns are clustered using average linkage hierarchical clustering
and ordered accordingly. Blue arrows: topics enriched in MDD-related pathways; grey arrows:
topics with DE in MDD positive population; red arrows: topics with DE with respect to cell types
(c) DE analyses across 8 cell types and 2 clinical conditions. Z-scores of t-tests are shown.
Rows correspond to topic indices. Red arrows indicate topics with DE with respect to cell types,
and grey arrows indicate topics with DE with respect to MDD condtions. Asterisks indicate
Bonferroni q-value < 0.05 for one-sided t-test of up-regulated topics in each cell-type and two-
sided t-test for disease-relevant topics.

Figure S2: Cell embedding visualization using UMAP on the MP (left) and HP (right) datasets.

Figure S3: UMAP visualization of scETM, Liger and scVAE-GM cell embeddings on the bench-
mark dataset (MDD-AD) which includes 148247 cells and 3000 genes.

Figure S4: UMAP cell embedding visualization on the AD dataset, colored by differentially
expressed topics (or metagenes) and ground truth labels for the cell types. Circled cell clusters
were discussed in the main text (see Differential scETM topics in disease conditions and cell
types section).

Figure S5: UMAP cell embedding visualization on the AD dataset, colored by differentially
expressed topics (or metagenes) and AD/control or Male/Female labels. Circled cell clusters
were discussed in the main text (see Differential scETM topics in disease conditions and cell
types section).
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Supplementary Tables

MP HP TM AD MDD

Harmony 0.675 0.816 0.765 0.371 0.586
Scanorama 0.845 0.816 0.756 0.969 0.553
Seurat Integrated 0.919 0.945 0.825 NA 0.714

scVAE-GM 0.839 NA NA 0.989 0.518
scVI 0.846 0.778 0.834 0.920 0.501

LIGER 0.811 0.863 0.667 0.878 0.591
scVI-LD 0.844 0.839 0.792 0.990 0.620
scETM 0.902 0.896 0.832 0.986 0.620

Table S1: Normalized Mutual Information (NMI) between ground truth cell types and leiden
clusters on 5 benchmark scRNA-seq datasets. NA is reported for models that did not converge.

MP HP

Current model 0.951 0.937
Encoder arch (128) 0.932 0.937
Encoder arch (512, 256, 128) 0.958 0.938
Gene emb. dim. 128 0.956 0.937
Gene emb. dim. 1000 0.953 0.945
10 topics 0.920 0.923
1000 topics 0.959 0.759

Table S2: Robustness analysis of the scETM model. Changing the encoder architecture, gene
embedding dimensions and number of topics has limited impact on model performance. We
report the average ARI of three repeated trails. scETM was trained on MP for 6000 epochs and
on HP for 2000 epochs.

MP HP

Current model 0.951 0.937
- BatchNorm in encoder 0.884 0.873
- Input normalization 0.946 0.845
- BatchNorm in encoder - Input normalization 0.000 0.000
- Batch correction module 0.935 0.487

Table S3: Ablation study of the scETM model. We report the average ARI of three repeated
trails. scETM was trained on MP for 6000 epochs and on HP for 2000 epochs.
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Table S4: scETM 100-topic enrichment for Human Pancreas scRNA-seq data. Only pathway
hits with FDR < 0.05 are included. The table is saved in Additional file 2.xls.

Table S5: scETM 100-topic enrichment for Alzheimer’s Disease snRNA-seq data. Only pathway
hits with FDR < 0.05 are included. The table is saved in Additional file 2.xls.

Table S6: scETM 100-topic enrichment for Major Depressive Disorder snRNA-seq data. Only
pathway hits with FDR < 0.05 are included. The table is saved in Additional file 2.xls.

AD+ AD− MDD+ MDD−

DE cell-type and topics pairs 237 524 261 464
Cell types identified by DE topics 8 8 8 8
DE topics w.r.t. disease 15 44 65 25
Topics associated with cell types and
disease

15 44 65 25

Table S7: Differential expression (DE) analysis summary of topics in AD and MDD data. +
indicates up-regulation, and − indicates down-regulation.

HP MDD AD

scETM 0.937 0.734 0.976
p-
scETM

0.926 0.753 0.996

Table S8: Adjusted Rand Index (ARI) comparison of scETMs and p-scETMs in three human
single cell transcriptomics datasets. Refer to Incorporation of pathway knowledge section for
experimental details.

Pathway Relevance Reference

Methionine Metabolism MDD treatment [47]
Inflammatory mediator regulation of TRP channels MDD treatment [48]
Desipramine Action Pathway MDD treatment [49,50]
2-arachidonoylglycerol_biosynthesis MDD pathogenesis [56]
transcription factor creb and its extracellular signals MDD treatment [51,52]
role of erk5 in neuronal survival MDD pathogenesis and treatment [53]
Beta2_adrenergic_receptor_signaling same pathway enrichment found in a MDD study [60]
Tamoxifen Action Pathway correlation with MDD onset [57]
Isovaleric acidemia correlation with MDD [58]
Nicotine Action Pathway correlation with MDD onset [59]
Bumetanide Action Pathway MDD treatment [54]
3-Methylthiofentanyl Action Pathway MDD treatment [55]

Table S9: MDD-relevant pathways from the pathway-topic embedding inferred by p-scETM
trained on the MDD dataset.
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Pathway Relevance Reference

Wnt Signaling Pathway and Pluripotency AD treatment [61]
Alzheimer_disease_amyloid_secretase AD pathogenesis [66]
TNF receptor superfamily (TNFS) members mediating non-canonical NF-kB AD treatment [62]
Glutathione synthesis and recycling AD pathogenesis [63]
Endothelin_signaling AD treatment [64]
GABA-B_receptor_II AD treatment [38,39]
GABA_Transaminase_Deficiency_Metabolite AD treatment [38,39]
Leukotriene_modifiers_pathway_Pharmacodynamics AD treatment [65]

Table S10: AD-relevant pathways from the pathway-topic embedding inferred by p-scETM
trained on the AD dataset.
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(a) scETM probabilistic model
Fig. 1

(b) Matrix factorization view of scETM
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Fig. 2
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Fig. 4
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Fig. 5
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Fig. S1 
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