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Abstract  

While blood transfusion is an essential cornerstone of hematological care, patients that 

require repetitive transfusion remain at persistent risk of alloimmunization due to the 

diversity of human blood group polymorphisms. Next-generation sequencing (NGS) is an 

effective means of identifying genotypic and phenotypic variations among the blood groups, 

while the accurate interpretation of such NGS data is currently hampered by a lack of 

accessibility to bioinformatics support. To address this unmet need, we have developed the 

RBCeq (https://www.rbceq.org/) platform, which consists of a novel bioinformatics algorithm 

coupled with a user-friendly web server capable of comprehensively delineating different 

blood group variants from genomics data with advanced visualization of results. The software 

profiles genomic data for 36 blood group systems, including two transcription factors and can 

identify small genetic alterations, including small indels and copy number variants.  The RBCeq 

algorithm was validated on 403 samples which include 58 complex serology cases from 

Australian Red Cross LifeBlood, 100 samples from The MedSeq Project (phs000958) and a 

further 245 from Indigenous Australian participants. The final blood typing data from RBCeq 

was 99.83% concordant for 403 samples (85 different antigens in 21 blood group systems) 

with that listed from the International Society for Blood Transfusion database.  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426510doi: bioRxiv preprint 

https://www.rbceq.org/
https://doi.org/10.1101/2021.01.13.426510


Introduction 

Transfusion has historically been an important facet of hematological care. Red blood cells 

(RBCs) are the most transfused blood product, with roughly 85 million RBC units being 

transfused per year to treat conditions ranging from severe anemia, sickle cell disease, severe 

hemorrhage, leukemia, or stem cell transplantation (1). While these transfusions are 

essential, patients requiring repetitive transfusion are at a high risk of alloimmunization that 

can lead to delayed or acute hemolytic transfusion reactions, fetal anemia, and complications 

during pregnancy (2).   To comprehensively minimize alloimmunisation extended typing of 

other blood groups besides ABO, RH and K is a necessity. It includes the typing for over 320 

antigens (1521 alleles) from other clinically significant blood groups (MNS, RH, LU, FY, JK, DI, 

DO, CO, H, XK, GLOB, and AUG (3-6) (7). Within these blood groups, antigens are population-

specific, and are subject to varying rates of polymorphism, further complicating transfusion 

safety efforts (8,9). Clinical interpretation of genetic blood typing variants based upon the 

guidelines of the American College of Medical Genetics (ACMG) is recommended (10). 

While effective for well-characterized and common variants, blood group typing conducted 

using traditional serological or molecular methods are alone insufficient for the 

characterization of blood group antigens that are rare, weakly detectable, recombinant (Rh, 

MNS), partial, or novel (11). Next-Generation sequencing (NGS) technologies can overcome 

the limitations of serological and SNP based molecular techniques and has the capability to 

characterize blood group gene variants in genetically diverse populations (12-14). Accurately 

predicting blood group phenotypes based upon NGS data requires immuno-genetic 

knowledge, given that multiple genotypes may result in the same phenotype (as with the 

ABO, MNS, LE, and XG groups), and not all blood group antigens are direct primary gene 

products (including the ABO, Rh, LE, and H groups). A number of different tools/algorithms 

implementing bespoke statistical and machine learning approaches have been designed to 

process NGS data (15,16). In order to achieve optimal sensitivity and specificity from these 

algorithms, a thorough understanding of the underlying informatics is required. The time 

spent analyzing and reporting blood group profiles depends on the complexity of a specific 

variant and on the skills of a given bioinformatician/geneticist (17). Without improvements to 

the bioinformatics underlying blood group genotyping, the costs associated with data 

processing, storage, and analysis will exceed the costs of the sequencing itself, thereby 
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reducing the economic viability of such a strategy. As personal genome sequencing is forecast 

to become increasingly prevalent in the near future, there is a clear need for the optimization 

of the bioinformatics algorithms underlying sequencing and blood group characterization 

approaches.  

Despite the clear value of applying NGS-based blood group characterization data to blood 

bank services, at present there is no single tool capable of facilitating complete and 

comprehensive automation of blood group characterization without any substantial 

computational and storage user requirements. Only two relevant tools are available at 

present: BOOGIE (18) and BloodTyper (19). The blood group prediction accuracy of the 

BOOGIE software is reported to be 94% for 34 blood groups in high-quality single nucleotide 

variants. Following analysis, this tool outputs the two most likely phenotypes for each blood 

group system in an individual along with a score, leaving the user to select the correct blood 

group phenotype. BloodTyper had a 99.2% accuracy for the prediction of blood group 

phenotypes but for only 12 blood group systems. Most importantly, both methods are 

command-line applications and requires the accessory of software with expertise in 

bioinformatics to install and run.  One of the major theoretical advantages to NGS-based 

blood typing is the potential to discover novel antigens. The clinical utility of integrating NGS 

based blood typing in the Red Cell Reference Laboratory has been demonstrated to be 

beneficial at resolving complex serology problems arising from the novel or rare alleles 

altering or silencing blood group expression (17).  Yet, neither of these extant software tools 

has such functionality nor leverages published population genomics information to annotate 

the frequency of detected antigen.  

To efficiently analyze NGS data in the context of transfusion medicine applications, we have 

developed a novel algorithm and created a secure, comprehensive web server designated 

‘RBCeq’.  It can characterize not only known blood group alleles but also possible novel alleles 

capable of reducing and silencing antigen expression, functioning as web server-based blood 

group genotyping software that thus addresses both computational and storage challenges 

associated with the processing of large raw NGS datasets. Analyzing NGS data to predict blood 

groups is a complex and time-consuming task, and RBCeq addresses the unmet needs in this 

field and will facilitate the use and translation of this technology to improve blood donor and 

patient safety 
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Materials and Methods 

Construction of a database of known blood group antigen alleles 

A comprehensive blood group allele database was created using multiple manually curated 

data sources (International Society of Blood Transfusion (ISBT), Blood Group Antigen 

FactsBook(20), Human Blood Groups (21), Erythrogene (22), and RhesusBase 

(http://www.rhesusbase.info/). At the time of the design, 36 blood group system and 2 

transcription factors (TF) were known, and the database is representative of the knowledge. 

The coordinates of known blood group antigen variants recorded in these databases were 

provided in the conventional cDNA reference sequence form. Corresponding blood group 

genotype coordinates for the hg19/GRCh37 genome were identified and validated using the 

Transvar (23), NCBI Clinical Remap (https://www.ncbi.nlm.nih.gov/genome/tools/remap), 

Ensembl Variant Effect Predictor (VEP) (24), and UCSC (25) resources. During the curation 

process, inaccuracies and omissions in the published antigen alleles (such as inconsistencies 

between reference nucleotide change and positions and amino acid identities and positions) 

were detected (Supplementary Table 1). These alleles were manually curated and validated 

using NCBI (https://www.ncbi.nlm.nih.gov/) and UCSC in order to ensure that the data were 

non-redundant and that allele names and corresponding phenotypes were uniform. The 

database was further improved using the previous publications (26,27) and extensive 

literature mining. In total, the resultant backend database is representative of approximately 

1463 alleles from 44 genes, and two transcription factors (GATA binding protein 1: GATA1 and 

Kruppel like factor 1: KLF1) with 58 alleles, encoding blood groups arising from 36 blood group 

systems recognized by the ISBT.  

Variant calling 

For variant calling, BAM files are processed in accordance with GATK4 best practices (28) 

which includes first pre-processing with BaseRecalibrator, ApplyBQSR, and then variant 

calling using HaplotypeCaller. Variant calling and haplotype phasing are conducted for a 

restricted set of 44 blood group genes and  2 transcription factors (GATA1 and 

KLF1)(Supplementary Table 2).   

Characterization of clinically relevant and novel blood group alleles 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426510doi: bioRxiv preprint 

http://www.rhesusbase.info/
https://doi.org/10.1101/2021.01.13.426510


The filtered high-quality variants that are not mapped to known blood group alleles are 

queried against the ClinVar database (29). The mapped variants are reported as clinically 

significant variants, while the remaining variants are processed for rare variant analysis. 

RBCeq checks the frequency of the variant in the gnomAD database (~143,000 genomes). If 

the frequency is less than 0.05 (or less than a user-defined threshold) and the respective 

variant is nonsynonymous or a splice-site variant, then that variant will be reported as a rare. 

Remaining variants that are not clinically relevant or rare will be processed for novel variant 

analysis. To filter novel SNVs, RBCeq uses six independent computational tools (SIFT, 

Polyphen2, MutationTaster2, LRT, FATHMM, and PROVEAN) to assess the impact of genetic 

variants on protein structure and function. If any one of these tools determines the variant to 

be deleterious, and it is nonsynonymous or a splice-site variant, then the variant will be 

reported as a novel (Figure 1). 

 

 

Figure 1: Workflow for the annotation of clinically significant, rare, and novel blood group 

variants. 
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Datasets 

To evaluate the performance of RBCeq, we accessed the following datasets. 

Proof of Principle Algorithm Development dataset:  Initial development was undertaken 

using 13 in-house targeted exome sequencing (TES) samples for which serological data for 14 

blood groups (+ 4 samples with SNParray) were available with the remaining 22 blood groups 

were predicted(27), provided in the supplementary table 3. In addition 45 previously 

published complex blood group serology cases with TES, from the Australian Red Cross 

Lifeblood Red Cell Reference Laboratory with manually predicted blood groups 

(Supplementary Table 4) (17,27,30) were analysed. 

South East Queensland Indigenous TES data:  245 targeted blood group exome sequencing 

samples with serological phenotypes for ABO, D, C, c, E, e, K and k blood groups(30). This 

dataset was important to validate the accuracy of the algorithm with established methods 

currently used to determine ABO, D, C, c, E, e, K, k phenotypes. No other data sets provided 

this amount of serological data.  

MedSeq project:  110 whole-genome sequencing samples (30X) from the MedSeq Project 

randomized controlled trial (accession number phs000958) were accessed through dbGaP 

authorized access.  

The 1000 genomes (1000G) project:  The 1000G project includes 2504 whole-genome 

sequencing (WGS) samples from 26 population groups classified into 5 super populations. 

2504 WGS bam files were accessed through the 1000G project FTP server. 

Erythrogene: Erythrogene is a database of the predicted blood group genotype information 

for 2504 WGS samples from the 1000G Project. The blood group genotype information was 

accessed through www.erythrogene.com. 

gnomAD: gnomAD is the aggregation of 125,748 exome sequences and 15,708 whole-

genome sequences from unrelated individuals sequenced as part of various disease-specific 

and population genetic studies. The data is available through the Broad Institute FTP 

(https://gnomad.broadinstitute.org/downloads), and consists of data from the following 

populations - AFR: African/African American, AMR: admixed Americans, ASJ: Ashkenazi 

Jewish, EAS: East Asian, FIN: Finnish, NFE: Non-Finnish Europeans, OTH: Other population, 

and SAS: South Asians. 
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Results 

Creation of blood group genotype and phenotype prediction algorithm 

The genotype/phenotype prediction process is composed of three stages: optimal allele 

selection, dominant/recessive pair selection and allele pairing (AP) score calculation. During 

optimal allele selection, each variant (V) is scanned against all blood group (bg) allele (A) 

variants for an exact match. The blood group alleles (Abg) with at least a single variant match 

are then selected.  

Optimal allele selection 

 

KEY:  V: Variants; bg: blood groups; A: All possible Alleles; bg_DB: blood group allele 

database 

During dominant/recessive pair selection, every selected optimal allele will be paired (a1, a2) 

against each other such allele. Alleles with homozygous identical genotypes or heterozygous 

differing genotypes will be paired (compatible (a1, a2)). An AP score (Sa1,2) is then assigned to 

each allele pair to select a pair with a high propensity to affect the phenotype of the impacted 

gene. The allele pair with the lowest AP score (minAPS(S)) will be used during the final genotype 

and phenotype calling. If the algorithm fails to find an alternate allele for a particular blood 

group, then the reference genotype and phenotype will be reported.  
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Dominant/recessive pair selection 

 

Key: SAS: Single allele score, APS: Allele pair score, S: Allele pair, ref: Reference alleles 

 

Allele pair score (APS) calculation 

AP scoring was devised as a novel approach to prioritizing optimal allele pairs with the 

potential to alter gene phenotypes. These scores were specifically designed to address 

genotype/phenotype predictions in complex blood group systems (e.g., ABO, Rh, MNS, and 

Lewis) where certain haplotypes share some identical variants in between them, making it 

possible to detect more than two allele pairs in a given sample.  These allele pairs may have 

a complete or near-complete correspondence to known allele profiles. In such scenarios, the 

allele pair with the highest number of variants matching the genotype will be prioritized by 

the scoring system even if an allele with fewer variants exhibits complete correspondence 

(Figure 2). 
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APS calculation 

𝑥  min( ((𝑅𝑖  − 𝑀𝑖) + (𝐹𝑖 − 𝑅𝑖))

𝑘

𝑖 1

) 

Key: R:  the total number of variants required to define a blood group allele; M: the 

number of variants matched; F: the total number of variants found in the sample file for 

that blood group; K: the total number of alleles. 

 

First the number of variants (R) required to define an allele pair is calculated 

(ABO*A1.01/ABO*O.01.75: 11; ABO*A1.01/ABO*O.01.02: 10) then how many are 

concordant (M) with input sample genotype (ABO*A1.01/ABO*O.01.75: 11; 

ABO*A1.01/ABO*O.01.02: 10), and finally the total (F: 11) ISBT or RBCeq database known 

variants for that particular blood group system is calculated.  The subtraction R-M, are the 

variants which are missing in the input sample genotype but required in the definition of the 

associated allele. In this case, both allele pair have complete correspondence, so R-M is zero 

for both.  The subtraction of F-R, are the variants present in the sample genotype but not 

required in the definition of associated allele pair. The allele pair ABO*A1.01/ABO*O.01.75 

(F-R: 0) is defined by 11 variants and all of them are present in sample genotype whereas in 

the definition of ABO*A1.01/ABO*O.01.02 allele pair c. 542G>A is not required (F-R: 1). The 

addition of R-M and F-R values for each allele pair indicates the number of variants present 

in the sample genotype not associated with the allele pair call (ABO*A1.01/ABO*O.01.75:0  

ABO*A1.01/ABO*O.01.02: 1). Therefore the allele pair call with the lesser number means the 

allele pair chosen makes the most out  of the observed genotype (ABO*A1.01/ABO*O.01.75: 

0) and vice versa (Figure 2).  
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Figure 2:  The breakdown of APS calculation and selection of best allele pair to predict ABO 

genotype for NA21112 sample from 1000G dataset.  The c. 542G>A variant associated with 

ABO blood group present in sample genotype but not needed for the definition of the allele 

ABO*0.01.02. 

Algorithm Validation 

The RBCeq algorithm was validated on 403 samples which include 58 complex serology cases 

from Australian Red Cross LifeBlood, 100 samples from The MedSeq Project (phs000958) and 

a further 245 from Indigenous Australian participants. The algorithm was initially iteratively 

developed and validated on 13 samples for which serological data were available for 14 blood 

groups (+ 4 samples with SNParray) and remaining 22 blood groups with manual prediction 

provided (Supplementary Table 3). Cis-trans haplotype ambiguities were solved in most cases 

using the allele pair scoring system. We observed that certain haplotypes as defined in the 

ISBT database, did not require all variants as part of the allele definition to be present for a 

particular phenotype (e.g. ABO*O.01.02: c.829G>A). In this case, if partial allele matches are 

found, only nonsynonymous variants and their zygosity alone was used to determine the most 

likely genotype and phenotype. Previously published CNV based genotyping approach for the 

RH blood group system were adopted in RBCeq (19,31,32), enabling the correct definition of 

the RHD, C and c antigens on 13 training samples (Supplementary Table 3). We further 

validated the algorithm on 45 complex blood group serology cases from the Australian Red 

Cross Lifeblood Red Cell Reference Laboratory (Supplementary Table 4) with predicted 

phenotype. The initial iteration of the algorithm predicted two discordant results, where it 

missed calling ABO*O.02.01 allele which is associated with c.802G>A instead of c.261delG. 
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Next, the low frequency alleles (e.g., GYPB*06.01, LU*02.19, KEL*02.10) of MNS, LU and KEL 

blood groups were detected at the heterozygous level, but the algorithm missed predicting 

the low-frequency antigen. The algorithm was further improved to identify the heterozygous 

low frequency antigens phenotype change and the O antigen genotyping with respect to both 

O alleles (ABO*O.02.01 and ABO*O.01.01).   

Additionally, our algorithm was validated on The MedSeq Project (phs000958) comprising of 

100 whole-genome sequencing and respective serology samples, and it achieved 100% 

accuracy across all the blood groups (Supplementary Table 5). To further develop and qualify 

the accuracy of RBCeq as a means of reporting blood groups through comparisons with 

serology results, we analyzed serological blood group data (ABO, Rh) for 245 Indigenous 

Australian individuals to those predicted using RBCeq, again achieving 100% accuracy for ABO 

blood group profiles. In two samples, RBCeq predicted discordant calls for C antigen, which 

was due to inaccurate read mapping in the homologous region of exon2 RHCE. 

In summary, our validation approach successfully detected 85 antigens in 21 blood group 

systems (Supplementary Table 6). However, the NGS based blood group phenotyping is highly 

dependent on data coverage and quality of input sequence data, and our algorithm allows 

user-supplied coverage and quality cut-off as input. As such, users must exercise caution 

when defining run parameters and interpreting reported blood group profiles. The collective 

accuracy for 21 blood group systems in 405 samples was 99.83%, with discordant results only 

for RHCE 

 

Webserver 

Implementation 

We developed a webserver to enable the seamless analysis of blood group profiles from NGS 

data. The web server was developed using Apache and PHP and is hosted on Amazon Web 

Services (AWS), thus making it scalable. The interactive visualizations are implemented 

through d3.js and c3.js libraries. RBCeq uses EC2 container service-Docker management on 

AWS to serve several different concurrent users/jobs. The primary advantage of RBCeq is that 

it is personalized for every user such that each user must first create a login in order to use it. 

The user-based login allows users to obtain blood group profiles independently and 

seamlessly in parallel with many simultaneous sessions using an organized queue-based 
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system. It also enables users to save their outputs and to access their project at a later date 

or from a different place, enabling user mobility and collaboration. User data uploaded into 

the server is only utilized for RBCeq analyses, and will be stored for six months, after which it 

will be erased. Users can also delete their data sooner or export the data from RBCeq in a 

user-friendly Excel spreadsheet containing run parameters, dates, times, input file names, 

uploaded data types, and complete blood group profiles for archiving purposes. Thorough 

website penetration testing and social engineering of the RBCeq webserver has been 

undertaken to assess for vulnerabilities and potential security risks associated with 

environment and the technology used in building server and deemed secure according to 

OWASP (Open Web Application Security Project) guideline (https://owasp.org/www-project-

top-ten/). 

 

Web Interface -Input Files and Analysis Component  

Once the user has logged in, interactions associated with job submission are facilitated by the 

"create job" tab which follows a relatively straightforward stepwise process based on the 

format of the input files for processing. The user has the option to upload a BAM file, or VCF 

and BAM files and define the run parameters for RBCeq file processing to support consistent 

and reproducible variant calling outputs (Allele Depth, Genotype Quality, MAF) (Figure 3). To 

overcome large BAM file size and associated uploading issues, we have developed a stand-

alone GUI tool named BAMTrimmer that can be downloaded directly from RBCeq and can run 

in Windows operating systems. The BAMTrimmer removes all unmapped and duplicate reads 

and trims the files with respect to blood group-associated genes. It thereby reduces BAM file 

size significantly, allowing users to upload these files to RBCeq within a few minutes. Once 

the trimmed BAM and compressed VCF (vcf.gz) are uploaded, the user can define run 

parameters and submit the job for processing. The uploaded file will be validated to ensure 

they adhere to their respective format guidelines.  

 The RBCeq analysis component is compartmentalized into three sequential parts: 1. Variant 

calling, 2. Known blood group profiling, and 3. Annotation of non-ISBT variants with respect 

to clinical significance, population frequency distributions, and variant novelty. BAM files will 

be processed in accordance with GATK4 (28)  best practices as previously described. [32] The 
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RBCeq server determines the blood group profiles according to novel decision algorithms 

developed in-house (Figure 3). 

 

Figure 3: A. A screenshot illustrating the web interface used to upload different Input file 

formats and the parameters required to run RBCeq. B: The workflow of analysis component 

of RBCeq 

Result Visualization  

RBCeq was developed with a specific emphasis on multiple approaches to visualize data by 

representing data using both interactive graphics and dynamic tables. Once jobs are   

completed the output can be visualized by the user by the "View Output" tab, which will direct 

the user to the result page. Details pertaining to each results section are given below: 

GATK Pre- Processing 
And 

Variant Calling

Rbceq
Novel Algorithm Base 
Blood Groups Profiling

ClinVar
Annotation

GNOMAD 
Frequency

Novel 
Variants

A B
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Job Summary: This section describes information pertaining to user-specified input file 

format and run parameters used, including input file job name, and RBCeq unique job ID 

number, run time and date, and provides an option to download completed results as an Excel 

file (Figure 4).  

 

Figure 4: Screenshots illustrates the overview of the job summary.  

 Overall Summary:  This section includes a summary of variant annotation and average 

sequence read mapped coverage in blood group associated genes. The interactive pie chart 

serves as a visual reference for variant annotation distributions. The overall summary 

provides a quantitative overview of user-provided files, enabling a rapid bioinformatics 

quality check of inputted samples (Figure 5A). 

Blood Group Change Summary 

This section summarizes the detected known blood groups alleles that are different from the 

reference together with information regarding the associated phenotype. Colours in the inner 

circle represent the blood group alleles that are changed relative to the reference, while the 

colours of the outer circle represent respective phenotypes. Users can interactively explore 

genotype and phenotype information pertaining to detected blood groups by moving their 

cursor on the plot (Figure 5B). 

Per Blood Group Variants and Coverage Statistics 

This section provides an interactive graph that enables the quantitative analysis of gene 

coverage and detected variants for each blood group. The plots will help the user visualize 

correlations between read mapped coverage and detected variants for all blood group genes.  

Users can also zoom in or out on a particular gene by scrolling their mouse wheel over the 

plot (Figure 6A). Figure 6B highlights the table of variants detected for each blood group gene. 

Job name

Job ID

Provided input parameters

Link to download results
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RH Blood Group System Coverage Statistics 

This section describes the CNV calculator and predicted results for phenotyping/genotyping 

based on analysis coverage statistics extracted from the uploaded trimmed BAM file for the 

RH (RHD and RHCE genes) blood group system known for structural variation between the 

homologous genes. The CNV ratios and interpretation for exonic rearrangements or 

deletion/duplication/triplication are given (Figure 7). 
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Figure 5A: The summary of distribution and annotation of detected variants in the blood group antigen defining genes; includes average coverage 

of blood group defining genes; the number of blood groups alleles for which the reference is changed, and the distribution of total variants 

detected in blood group associated genes with blood group known, ClinVar and rare annotation. B: The interactive blood group change allele pie 

chart.  

e+

The inner circle 

represents the blood 

groups with change in 

reference while the 

outer circle represents 

their respective 

phenotype

c+

E-

C+

A B

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426510doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426510


 

Figure 6: The "Per Blood Group Variants and Coverage Statistics" graph is an interactive graph which gives the quantitative analysis with 

respect to blood group genes coverage and detected variants. A: Line/bar combo plot, the x-axis is the blood group antigen defining genes, left 

y-axis represents the coverage of the genes, and the right y-axis represents the number of variants for each blood group antigen determining 

genes. Each line colour represents different coverage value. B: The table gives the number of variants detected in the input sample for each 

blood group antigen defining genes.
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Figure 7: The CNV ratio formula (RHD=2* (RHD gene average Coverage/RHCE gene average 

Coverage and RHCE = 2* (RHCE gene exon2 average coverage/RHCE gene average coverage) and 

interpretation for exonic rearrangements or deletions/duplications/triplications. 

The Known Blood Group Allele table 

Reference and blood group alleles that are different from the reference source will be 

reported along with supporting information including variants, zygosity, allele depth, and 

allele frequency (Figure 8). 

Clinically Significant, Rare, and Potentially Novel Allele Annotations 

This section partitions and lists the variants into 3 categories (Figure 9); according to the 

algorithm/workflow described in Figure 1: ClinVar, Rare, and Novel variants.   

 

 

  
                             

                      

  
                     

                      

Interpretation chart for calculated coverage ratio
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Figure 8: An excerpt of the Known Blood Group Allele table; The first column provides details 

pertaining to the blood group phenotype, while the second column includes allele 

information, the third column contains information regarding the variants responsible for 

defining the allele, the fourth column includes the zygosity of the allele (if one variant is 

heterozygous then the whole allele will be referred to as a heterozygous allele), the fifth 

column includes the average allele depth for that allele, and the sixth column includes the 

average allele frequency. For the complete table of 36 blood group profile with 2 TF, please 

follow the tutorial page at https://www.rbceq.org/tutorial.php.     

 

Figure 9: The first option includes ClinVar Variants, which are variants that have ClinVar 

annotations. The second option includes Rare Variants that have a MAF less than the user-

selected threshold value in the gnomAD database. The third option includes novel variants, 

that are predicted to be deleterious using in silico tools and with exonic function that is 

predicted to be "nonsynonymous / frameshift /stop-gain/stop-loss/splicing". All lists are 

provided with known details pertaining to each variant, including dbsnpid, exonic function, 

refGene and gnomAD genome and exome frequencies in 9 different populations. 

 

Case Study 1:  Extensive blood group characterization in diverse populations 

In order to evaluate the capability of RBCeq to comprehensively characterize the blood group 

genotypic landscape of diverse populations, we obtained blood group genotypes from the 

gnomAD dataset (33) which lacks associated sample-level information or phased genotypes. 

Despite this limitation, it remains a valuable resource when assessing variant data and the 

Interactive button to select  

GnomAD genome and 

exome data frequency

Interactive button to 

select Clinvar, rare 

and novel variants

Move cursor bar to your 

right to explore about other 

population Gnomad data 

frequency

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426510doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426510


prevalence of particular variants in different population. A minimum allele frequency 

approach was used to call multi-variant blood group alleles, such that all variants defining a 

given blood group allele needed to be present within a particular population at a frequency 

greater than zero.  

A total of approximately 180,000 variants were detected across blood group encoding genes, 

of which only 1,107 have previously been reported to define blood group alleles. RBCeq 

predicted 805 (51%) non-reference blood group alleles out of 1521 known such alleles using 

a minimum allele frequency approach. Of the 805 identified ISBT alleles in gnomAD, 30% (474) 

were considered rare (<=0.05 MAF) in gnomAD genome, and another 41% (652) were rare in 

the gnomAD exome dataset. The further distribution of the total number of non-reference 

blood group alleles (805) was assessed to identify polymorphisms, with the ABO (17%), RHD 

(24%), RHCE (9%), KEL (5%), LE (5%), and H (6%) blood groups being among the most 

polymorphic in this analysis (Supplementary Table 7). Most of these alleles and their variants 

have a frequency of less than 0.3 across all eight populations. However, we also detected 

population-specific alleles that were clinically significant, such as FUT2*01W.02.01, which was 

present in ~40% of EAS samples and considered rare in all other populations. Conversely, 

ABO*AW.25 is rare in EAS samples but common in other populations. Overall, 60 alleles were 

found to be completely absent in EAS populations that were relatively common in other 

populations. The RHD*01W.33 allele is common in NFE (non‐Finnish European) populations 

but not in other populations, while the ABO*O.01.09, ABO*AW.09, RHD*38, RHD*03.08, 

RHCE*02.30, RHCE*01.20.01, RHCE*01.20.02, JK*01W.03, JK*01W.04, KN*01.07, KN*01.06, 

and ABCB6*01W.02 alleles are common in African populations but rare in all other 

populations.  Interestingly, the FY*01N.01 allele which is protective against P. vivax infections 

in regions where malaria is endemic, was found to be common in the African population with 

a MAF 0.8 and rare in all other populations (Figure 10) (34). An additional 144 alleles that 

exhibited uneven frequency distributions across these populations were also identified 

(Supplementary Table 8). This analysis has revealed the breadth of blood group diversity over 

several world populations that can be extracted efficiently by RBCeq from WGS and whole 

exome sequencing (WES) data. This information is key to understanding population-level 

diversity, and would offer considerable benefits in supporting the integration of NGS in blood 

donor testing in the population.  
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Figure 10:  The population-specific alleles which are also clinically significant with MAF from 

gnomAD data.  The frequencies in blue colour are from 15,708 WGS and green colour from 

125,748 exome samples. 

In a secondary analysis, RBCeq was used to characterize variants that had not previously been 

reported to be associated with blood group alleles but that had the potential to affect the 

antigen structure formation. We detected 52 (Supplementary table 9) such variants that also 

had clinical associations, ~16,160 rare variants with frequencies of ≤ 0.0005 in any of the eight 

populations, and, most importantly, we identified 159 (Supplementary table 10) variants that 

were computationally predicted to be novel and deleterious (Figure 11). Interestingly, no 

novel variants associated with the genetically complex ABO blood group system were 

identified, and as little as six novel alleles associated with the RH blood group system. This 

observation is expected from these two most commonly studied systems. These numbers 

prompt further scientific enquiry to better understand the clinical significance of these 
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variants arising from other blood group systems. As such, rapid and comprehensive 

characterization of blood group genetics is possible when analyzing NGS data using RBCeq or 

similar tools, thereby providing more information on blood groups profiles which can be used 

clinically to minimize the risk of transfusion-related complications. 

 

 

Figure 11: The distribution of  gnomAD (genome and exome) datasets genetic variants and 

their frequency in RBC antigen encoding genes.  The outer ring (red) represents the RBC 

antigen encoding genes;  box length represents the number of variants observed; G is denotes 

gnomAD genome frequency and E is denotes gnomAD exome frequency.  The outer green 

(light/dark) circle indicates the distribution of variants frequency across different blood group 

genes from the gnomAD data. The red (light/dark) circle indicates the number of variants with 
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ISBT associations relative to all gnomAD variants. The blue (light/dark) circle indicates the 

distribution of rare non-ISBT variants in all six populations. The dark grey circle indicates the 

number of non-ISBT variants annotated to the ClinVar database.  The yellow circle shows the 

distribution of number of novel variants.  

Case Study 2: 1000G-based blood group profiling 

To further demonstrate the processing power and utility of RBCeq as a means of analyzing 

diverse WGS data pertaining to 5 super population groups (AFR, AMR, EAS, EUR, SAS), we 

predicted the blood group profiles associated with the 1000G dataset (2504 samples) (35). 

The blood group genotype profiles corresponding to the 1000G data have previously been 

published by Moller et al. (22). A comparison at the allele frequency level was not possible 

because allele frequency assignments in Erythrogene are made with respect to extra novel 

alleles that are not reported in the ISBT blood group allele database, and the sample-level 

blood group profile is not given by the Erythrogene database. RBCeq predicted 74 more alleles 

than reported by the Erythrogene database and has assigned revised comprehensive 

genotypes to the 1000 genome dataset (Supplementary Table 11). Overall, the Erythrogene 

database contains ~3340 alleles, of which 255 are known to the ISBT with a frequency greater 

than zero in the 1000G samples. Of these 255 alleles, seven were missed by RBCeq calling - 

the variants that define the KEL*02M.04, JK*01N.09, RHD*01EL.36, RHD*01W.28, and 

RHD*59 alleles were not present in any of the VCF files for the 1000G dataset. The ISBT allele 

designation for the AUG*02 allele is NM_001304463: c.1171G>A, whereas in the Erythrogene 

database it is associated with NM_001304463: c.1297G>A. With respect to ABO allele 

predictions, ABO*O.01.58 allele variants were present in a large number of samples and were 

checked in a reduced sample set where we found that our scoring system outperformed the 

Erythrogene genotype predictions. For example, in sample NA21137, a total of 20 (c.106G>T, 

c.188G>A, c.189C>T, c.220C>T, c.261delG, c.297A>G, c.488C>T, c.526C>G, c.53G>T, c.595C>T, 

c.646T>A, c.657C>T, c.681G>A, c.703G>A, c.771C>T, c.796C>A, c.802G>A, c.803G>C, 

c.829G>A, c.930G>A) known variants were present that were associated with the ABO blood 

group (NM_020469.2), and all are covered in the ABO*O.01.68 allele, whereas ABO*O.01.58 

is defined by just seven of these variants (c.261delG, c.297A>G, c.646T>A, c.681G>A, 

c.687C>T, c.771C>T, c.829G>A). As such, the ABO*O.01.58 allele did not maximally utilize the 

available variant data, whereas RBCeq selected the ABO*O.01.68 allele that utilized 9 present 
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variants from the VCF file. RBCeq detected 74 different alleles that were not reported in 

Erythrogene. The 74 alleles are associated with the ABO, MNS, RH, LU, KEL, FY, JK, YT, H, and 

KN blood group systems. The details of each allele identified are provided in Supplementary 

Table 11. We were unable to ascertain why these alleles were not reported in Erythrogene, 

but it may have been affected by their algorithm having also defined new alleles based on 

genotype. The Erythrogene study was published in 2016, after which many new alleles have 

been reported in the ISBT database.  

We also detected 11 ClinVar (Supplementary table 12), and 1093 rare (Supplementary table 

13) non-ISBT SNVs in 1000G datasets.   RBCeq used an average of 1.20 minutes and 15 Mb of 

memory to predict a blood group profile on each sample of 1000G from a VCF file. This case 

study demonstrates the processing power and capability of RBCeq to manage analyzing large 

WGS datasets and providing additional insights into the blood group profiling of the 

extensively researched 1000 genome dataset. All 2504 sample blood group profile results for 

this case study are available on the RBCeq website (https://www.rbceq.org/). 

Comparison with Existing Tools 

In contrast to other tools, RBCeq is user-friendly, fast, accurate, and provides extended 

profiles of variants with no current known blood group phenotype association (Table 1). 

BOOGIE (18) and bloodTyper (19) do not have the capability of data pre-processing for variant 

calling, despite being the necessary first step prior to variant calling. One of the significant 

theoretical advantages to NGS-based blood typing is the potential to discover rare and novel 

antigens, yet neither of the extant software tools has such functionality. RBCeq annotates 

blood group gene variants with clinical significance (ClinVar), rare and novel variant with 

gnomAD frequency. The BOOGIE tool reports an accuracy of 94% for 34 blood groups. 

BloodTyper reports the accuracy of 99.2% but has been evaluated for only 21 antigens from 

12 blood group systems (14 blood group genes).  In contrast, the RBCeq evaluation included 

85 different blood group antigens from 21 blood group systems (21 genes). In comparison to 

other tools, RBCeq is readily accessible and available online to all users for research and 

academic purposes. RBCeq is also efficient with processing time and memory, permitting 

streamlined analysis, blood group profile report and interactive visualisation of sample data 

with an average of 5 million reads (BAM) in 7 minutes. The detailed feature base comparisons 
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of RBCeq with published tools are given in Table 1. The RBCeq integration provides user-

friendly open-source software that will boost the adoption of blood group detection and 

prediction using NGS data. 

Table 1: Comparison of the features of RBCeq to those of existing tools  

Discussion: 

RBCeq is the first scalable web-based blood profiling platform to be implemented online, 

enabling users to define analysis parameters, produce iterative interactive visualizations, and 

Tool RBCeq BOOGIE BloodTyper  

User interface Web-based user 
friendly 

Command line Command line 

Input BAM &/or VCF VCF file  BAM file 

BAM pre-processing and 
variant calling 

Yes No Only variant calling 

# Samples tested 403 +  (2504 
WGS sample 
from 1000G) 

2651 (serology  
for only ABO 
and RH) 

310 

Concordance with serological 
data 

99.83% (85 
antigens) 

94% 

 

99.2% (21 RBC antigen) 

Tested on how many blood 
group systems 

21 12 12 

Clinical annotation Yes No No 

Classification of rare blood 
group variants  

Yes No No 

Novel blood group variants Yes No No 

Software installation No installation Installation Installation 

Output HTML report 
Interactive plots, 
detailed QC and 
quantitative 
sequencing data 
statistics with an 
overview of 
results 

Test file HTML report 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426510doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426510


to archive their results. The collective accuracy for 21 blood group systems in 405 samples is 

99.83% with discordant results only for RHCE. The user can effectively analyze blood group 

profiles corresponding to 36 blood groups and two TFs based upon WGS, WES, or TES data, 

extracting non-ISBT variant information to gain a more profound understanding of the 

underlying data.  

Previously published tools such as BOOGIE were developed to analyze just 34 blood group 

systems, and validation was constructed for just the ABO and D blood groups with a 

serological concordance of 94%. The bloodTyper tool achieved a concordance of 99.2% for 21 

antigens in 12 blood group systems (14 blood group genes) when used to analyze 310 

samples. In contrast, our RBCeq algorithm achieved a concordance of 99.83% for 85 antigens 

in 21 blood group systems across 403 samples. The subtypes and co-dominant antigens of the 

ABO blood group were not validated by bloodTyper, whereas we were able to validate ABO 

subtypes (A1, A2, B, and B3) and A1B co-dominant antigens.  RBCeq also managed to 

accurately report complex and rare blood group phenotypes observed in a Red Cell Reference 

setting such as Hy-, which weakens DO blood group expression and is rare in the African 

populations, as well as in Vel-, which is present in 2.56% and 0.6% of Scandinavian and African 

populations, and Jk(a+ᵂb-), which is common in most populations(36). Integrating NGS-based 

blood typing in the Red Cell Reference Laboratory represents a clinically beneficial approach 

to resolving the complex serology problems that arise from novel or rare alleles which alter 

or silence blood group expression, yet neither of the extant software tools has such 

functionality (37,38).  

Previously overlooked non-ISBT variant information has the potential to be integrated into 

clinical decision systems in order to support transfusion efforts in individuals that do not 

harbor common antigens in an effort to reduce the risk of antibody sensitization associated 

with conditions including Hemolytic Disease of the Fetus and Newborn (HDN), severe anemia, 

leukemia, sickle cell disease. For example, one prior complex HDN analysis from a 

collaborative laboratory revealed that secondary analyses of NGS data were able to detect 

novel low-frequency antigens present in < 1% of the global population, including the 

AUG:3/ATML+ and SARA+/MNS:47 antigen. Extensive serological testing for these antigens 

failed to reveal any antibody specificity in these patients, and the reagents necessary to detect 

these rare/novel blood types are available in only a small number of reference laboratories in 
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the world. Cases of this type require rapid antibody identification for optimal management of 

suspected feto-maternal incompatibility and risk of bleeding at delivery (37,38).  

In future releases, we plan to incorporate a platelet antigen prediction funciton. Furthermore, 

in the time since work commenced on the development of the RBCeq playform, five new 

blood group systems have been recognized by the International Society of Blood Transfusion 

Red Cell Immunogenetics and Blood Group Terminology Working Party (ISBT 037 KANNO, 

ISBT 038 SID, ISBT 039 CTL2, ISBT 040 PELm and ISBT 041 MAM). These blood group systems 

will be included in future releases of RBCeq. In the context of the automation of hybrid alleles 

(e.g. RHCE*ce-D(4-7)-ce, GPB(1-46)-A(47-118)) prediction is highly dependent on statistical 

normalization and batch-corrections methodologies.  To automate the hybrid allele detection 

process, far clearer descriptions of the methods are required to facilitate robust predictions. 

Even so, as the number of relevant studies continues to increase, these complex phenotypes 

may be better clarified (39-41).   

 RBCeq holds great promise for use in the automation of blood group trait detection in 

personalized medicine applications, given the constantly rising number of identified 

phenotypes, potentially aiding global blood supply organizations in the computational 

genotyping of all clinically relevant blood groups for their large numbers of their blood donors. 

In so doing, RBCeq will help to ensure transfusion safety for all populations, supporting 

equitable access to quality healthcare. 
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