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Summary: Inference of mechanistic drivers of therapy-induced evolution of glioblastoma at single 20 

cell resolution using RNA-seq and ATAC-seq from patient samples and model systems 21 

undergoing standard-of-care treatment informs strategy for identification of tumor evolutionary 22 

trajectories and possible cell state-directed therapeutics.  23 

 24 

Abstract: Glioblastoma (GBM) is a heterogeneous tumor made up of cell states that evolve over 25 

time. Here, we modeled tumor evolutionary trajectories during standard-of-care treatment using 26 

multimodal single-cell analysis of a primary tumor sample, corresponding mouse xenografts 27 

subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multimodal 28 

data with single cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 29 

52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also 30 

reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with 31 

transcription factor accessibility deviations derived from single-cell ATAC-seq data, we 32 

developed consensus networks that regulate subpopulations of primary and recurrent tumor cells. 33 

Finally, by matching targeted therapies to active regulatory networks underlying tumor 34 

evolutionary trajectories, we provide a framework for applying single-cell-based precision 35 

medicine approaches in a concurrent, neo-adjuvant, or recurrent setting.  36 
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 2 

Introduction. 37 

 38 
GBM is a highly lethal malignancy of the brain that is refractory to standard-of-care (SOC) 39 

therapy, which consists of surgery, radiation (XRT), and chemotherapy with the DNA-alkylating 40 

agent, temozolomide (TMZ) (1–3). Despite aggressive treatment, median survival is only 14-17 41 

months. Previous studies have shown that GBM tumors are made up of a complex ecosystem of 42 

normal cell types and malignant tumor cell states (4–6). Given this intratumoral heterogeneity, a 43 

multimodal systems biology approach is well-suited to characterize and uncover the mechanistic 44 

drivers of genetic and epigenetic programs that distinguish cell states within the tumor. Moreover, 45 

non-genetic, treatment-induced shifts in cell state occur along trajectories that are as yet unknown. 46 

 47 

Here, we develop a framework to model and characterize non-genetic cell states that comprise a 48 

GBM tumor at the outset of the disease and during treatment-induced evolution (Fig. 1A). This 49 

framework, applied to an individual patient, is based on single-cell multi-omic analysis (scRNA-50 

seq, scATAC-seq) of the initial patient biopsy, a time series of SOC-treated patient-derived 51 

xenografts (scRNA-seq), and of the recurrent tumor treated with XRT at autopsy (scRNA-seq, 52 

scATAC-seq). From our analysis, we identified multiple mechanistic drivers of treatment-induced 53 

transitions in the epigenetic states of tumor cells (6–8). As proof of concept, we then identified 54 

potential therapeutics that could target specific cell states during various stages of tumor evolution. 55 

This work collectively provides a framework to model tumor evolution during treatment and 56 

implement systems biology approach-based single-cell analysis for the rational design of precision 57 

therapeutic regimens. 58 

 59 

Results. 60 

 61 

scRNA-seq and scATAC-seq analysis reveals multiple transcriptional network states in 62 

glioblastoma 63 

 64 

We first aimed to create a reference landscape of cell types and tumor cell states by integrating 65 

both scRNA-seq and scATAC-seq data into the same latent space using previously established 66 

methods (Fig. 1B) (9). We then identified marker genes for each major cluster and manually 67 

curated cell-type annotations (Fig. 1C, 1D). Based on the curated cell-type annotation, we analyzed 68 

a total of 7,723 single cells from the primary tumor, which consisted of 358 (4.6%) 69 

oligodendrocytes, 1,169 (15.1%) microglia, 134 (4.2%) pericytes/endothelial cells, 305 (3.9%) 70 

excitatory neurons, 568 (7.4%) inhibitory neurons, and 103 (1.3%) astrocytes.  Further, we 71 

identified 4,924 tumor cells, which made up 63.7% of single cells collected from the primary 72 

sample, based on a characteristic gain of chromosome 7 and loss of chromosome 10 in GBM (10)  73 

(Fig. 1B, 1C, S1). The identities of subpopulations were confirmed by statistically significant 74 

differential expression of marker genes including SOX2, PTPRC. MBP, RBFOX3, VWF, and 75 

PTPRZ1 for various cell subtypes (Table S1). 76 

 77 
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To identify regulator networks in scRNA-seq data, we adapted the Systems Genetics Network 78 

AnaLysis (SYGNAL) platform (11) to analyze the scRNA-seq profiles (scSYGNAL) and identify 79 

distinct epigenetic programs that were differentially active and distinguished subpopulations of 80 

tumor cells in the primary tumor. Briefly, using biclustering of scRNA-seq data, we inferred 81 

regulons (i.e., sets of genes sharing similar expression patterns and putatively co-regulated by the 82 

same transcription factor (TF) or miRNA across a sub-population of single cells). Our analysis 83 

revealed the mechanistic co-regulation of 809 genes across 160 regulons by at least 65 TFs and 84 

141 miRNAs. We then used the Mining for Node Edge Relationships (MINER) algorithm (12) to 85 

identify a subset of 93 significant regulons that included 52 unique TFs regulating 454 target genes 86 

(Methods, Tables S2 and S3). These 93 regulons were further clustered into 5 metaregulon groups 87 

(i.e., transcriptional programs) with distinct regulon activity profiles across the 3,130 tumor cells 88 

analyzed with scRNA-seq (Fig. 1D, E). Moreover, functional enrichment analysis (13), revealed 89 

distinct biological processes and molecular functions associated with these programs (Fig. 1D, 90 

Tables S4-S8), the amalgamation of which we defined as a transcriptional network state. 91 

 92 

scSYGNAL identifies a network of regulators mediating treatment-induced shifts in xenograft 93 

tumor-cell states also reflected in recurrent disease 94 

 95 

Based on these transcriptional network states, we clustered the tumor cells into 5 groups of cells 96 

sharing similar network states, with each group exhibiting upregulated activity of specific 97 

programs. For example, the SG-4 subpopulation expressed increased activity in program 1, 98 

enriched for hypoxia-associated genes like VEGFA, PLOD2, and PDK1. In addition, the SG-4 99 

subpopulation exhibited decreased activity in cell-cycle-related regulons (transcriptional program 100 

4), suggesting that this group is comprised mainly of non-proliferative cells. Further, statistical 101 

analysis revealed an over-enrichment of non-proliferating cells in SG-4 (Methods, Table S9) (14). 102 

The SG-1 subpopulation exhibited high activity for program 2, which includes an enrichment of 103 

angiogenesis-related genes, suggesting that this subpopulation may be involved in tumor 104 

neovascularization. The SG-3 group consists of tumor cells that expressed increased activity in 105 

regulons associated with the G2M checkpoint and E2F targets, mirroring gene expression behavior 106 

of proliferative GBM cells (15, 16). Similarly, proliferating cells were over-enriched in the SG-3 107 

population (Table S9). Conversely, the SG-5 subpopulation did not exhibit distinct upregulation 108 

of any one distinct program. Rather, these cells expressed faint signatures of multiple regulons 109 

across multiple programs. It is possible that this subpopulation represents tumor cells transitioning 110 

between states or cells that are primed for expression of a variety of programs.  111 

 112 

To place these results into a broader context, we compared the 52 unique TFs for the 93 significant 113 

regulons to those TFs deemed to be essential for GBM-specific proliferation via a genome-wide 114 

CRISPR-Cas9 screen (17). Of the 52 unique TFs identified in the MINER analysis of the scRNA-115 

seq data, 17 (33%, p = 0.072) overlapped with the TFs essential for GBM tumor cell proliferation, 116 
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indicating that our single-cell based network analysis identified relevant GBM-specific regulatory 117 

mechanisms (Table S10).  118 

 119 

In an independent and orthogonal approach, we also analyzed scATAC-seq data to identify TF 120 

motifs that were enriched in differentially accessible regions of the genome across the tumor cell 121 

population. Using the ArchR package and chromVAR method (18, 19), we identified 103 TFs as 122 

positive regulators, i.e., those TFs having significant motif deviation scores that correlate with 123 

their inferred gene expression values (Fig 1F). By comparing the set of TFs identified from ArchR 124 

analysis of scATAC-seq data and the set from the SYGNAL/MINER analysis of scRNA-seq data, 125 

we identified a consensus set of 7 TFs (AR, TEAD1, RUNX1, RORA, EBF1, ZEB1, and TCF4). 126 

Notably, only a subset of these genes showed significant differential expression across the tumor 127 

population when examining their expression levels in transcriptional data, implying that many of 128 

these regulators would not have been identified using standard scRNA-seq data analyses, such as 129 

shared nearest neighbor-based cluster identification (Fig. S2) and subsequent differential 130 

expression (Table S11). Interestingly, this set of TFs has potentially important roles in tumor 131 

biology. Extensive data implicate the role of TEAD1 in YAP/Hippo signaling in gliomagenesis 132 

and other neoplastic processes (20–23). TCF4 is a mediator of Wnt/β-catenin signaling and 133 

correlates with glioma progression via effects on AKT2 (24). Similarly, ZEB1 is a key regulator 134 

in epithelial-to-mesenchymal (proneural-to-mesenchymal) transition and associated 135 

chemoresistance mechanisms (25, 26). AR signaling has been shown to be active in GBM cells in 136 

vitro and may relate to radiation resistance (27, 28). Based on our analysis of integrated 137 

transcriptional and chromatin accessibility data, we conclude that these TFs likely play key roles 138 

in the regulation of tumor cell states in the primary tumor.  139 

 140 

Having assessed the regulatory networks of cell states within the primary tumor, we then sought 141 

to understand how tumor cell states change over time. Tumors evolve due to both intrinsic 142 

pressures (i.e., acquired mutations, tumor-microenvironment interactions) and extrinsic pressures 143 

(therapeutic intervention). In particular, we were interested to see whether treatment-induced 144 

evolution of tumor cell-states resulted in selection of preexisting states, induction of novel states, 145 

or a combination of both. To address these questions, we modeled treatment-induced cell-state 146 

changes by applying SOC therapy (XRT/TMZ) to a cohort of patient-derived xenografts (PDX) 147 

created from the patient’s tumor. Tumor cells isolated directly from the patient were injected 148 

orthotopically into immunocompromised mice without any intervening culture. We obtained 149 

scRNA-seq data on samples collected from SOC-treated xenografts at 24 and 72 hours after 150 

completion of therapy and corresponding untreated controls. We then performed batch integration 151 

and dimensionality reduction of the scRNA-seq data to visualize, identify, and compare cell states 152 

of xenograft samples to those of the corresponding primary tumor (Fig 2A). Interestingly, ~33% 153 

of the primary tumor cells in the UMAP embedding had a nearest neighbor originating from an 154 

untreated PDX mouse (Supplemental Fig. S3). Closer examination of the primary tumor cells 155 

having an untreated-PDX cell as a nearest neighbor revealed that these tumor cells represented all 156 
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SG groups, suggesting that the PDX models were able to reproduce the majority of the cell states 157 

observed in the primary tumor. Similarly, statistical analysis of tumor cell sources (i.e., primary 158 

vs. treated PDX) within clusters identified via shared nearest neighbor (SNN) modularity 159 

optimization (29) revealed that several SNN clusters were enriched for tumor cells from both the 160 

primary tumor and PDX mice (Fig. S2). Taken together, these results support the idea that the 161 

transcriptional network states underlying xenograft tumor cells recapitulate those states present in 162 

the primary tumor.  163 

 164 

In addition, our framework enabled us to identify patterns of regulon/transcriptional program 165 

activities that were reflected in the recurrent tumor. We first compared scRNA-seq profiles of 166 

tumor cells identified from the recurrent tumor specimen collected at autopsy (Fig. S4) to those of 167 

the primary tumor and PDX samples. Specifically, we projected the recurrent tumor cells into a 168 

low dimensional space (Fig. S5) defined by the primary and PDX tumor cells and found that a 169 

majority of the recurrent tumor cells projected onto primary tumor and PDX cells in SNN cluster 170 

1 (Fig. S5). Concomitantly, we used single sample gene set enrichment analysis (ssGSEA) to test 171 

for the enrichment of regulons and transcriptional programs within the autopsy tumor cells. Indeed, 172 

a majority of autopsy tumor cells were significantly enriched for transcriptional programs that 173 

were active in late-stage post-treatment PDX samples (Fig. 2D) and shared similar transcriptomic 174 

states and programmatic activity to those tumor cells as well (Fig. S6), which further support the 175 

utility of PDX models to characterize treatment-induced evolution of tumor cell states. 176 

 177 

We examined the distribution of cells from different timepoints across the co-embedded UMAP 178 

space and identified four broad partitions in the data (Fig. 2B). The “early” (pre-treatment) stage 179 

was heavily enriched for cells from the primary tumor and untreated PDX models (Fig. S7). The 180 

“immediate post-treatment” stage (IPT) was enriched for the 24-hour post-treatment timepoint. 181 

The “late post-treatment” (LPT) stage was divided into two subpopulations (A and B) that were 182 

enriched for the 72-hour post treatment timepoint. Finally, the “recurrent” timepoint (REC) 183 

included cells from the recurrent, autopsy specimen and 72-hour post treatment PDX samples.  184 

 185 

scSYGNAL/Open Targets platform analysis allows for identification of possible drug targets for 186 

induced, selected, and recurrent cell states 187 

 188 

Understanding tumor evolutionary trajectories could have important implications for therapeutic 189 

strategy. Therefore, we sought to identify potential therapeutics that putatively target TF regulators 190 

and/or their associated regulon gene members exhibiting positive activity across tumor cell states 191 

within specific timeframes (Table S12) using the Open Targets platform (30). Briefly, the Open 192 

Targets platform provides an extensive curated database that enables users to identify drug-target 193 

genes/proteins pairings. Using this platform, we identified a set of drugs that target various 194 

regulators and/or downstream target genes associated with the regulons/programs identified in our 195 

analysis (Table S13).  In addition to this, we curated the literature to identify pathways and drugs 196 
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that were relevant to TFs in each of the trajectories. We then aligned these drug mappings with 197 

specific patterns of regulator activity over the timespan of our disease-modeling framework. 198 

 199 

Using this framework, we characterized dynamics over the time course of treatment and recurrence 200 

with the aim of identifying potential therapeutic vulnerabilities and optimal treatment timeframes 201 

(i.e., regulon and cell state changes). Several dynamic patterns of cell state and specific regulon 202 

activity occur during the process of tumor evolution and offer an additional dimension along which 203 

to define treatment-related state and potentially inform treatment strategies. The first evolutionary 204 

path of a regulon to consider is one that is active early in the disease but decreases in activity over 205 

time. Our modeling system allows us to identify regulators that are represented only the in early 206 

(pre-treatment) tumor specimen. Of the consensus TFs identified from integrated analysis, TEAD1 207 

and TCF4 demonstrated decreased activity after SOC (Fig. 2C), suggesting that SOC effectively 208 

depleted and selected against those regulons.  209 

 210 

Another treatment-related state observed was the “selected” state, characterized by behavior in 211 

which regulons increase activity over the course of treatment. Thus, tumor cells within the primary 212 

tumor expressing these regulons in the primary tumor may have a relative advantage during 213 

treatment, which is supported by the subsequent increased activity and representation in cells over 214 

time. One example of a “selected” regulator is the transcription factor PRRX1, which had relatively 215 

low activity in the early stages but increased activity over the course of the disease (Fig. 2C). 216 

PRRX1 has previously been associated with regulation of mesenchymal gene expression programs 217 

in cancer via activation of TGF-ß signaling (31). This would suggest that small molecule inhibitors 218 

of the TGF-ß signaling pathway such as galunisertib should have effects on this particular regulon. 219 

Because this regulon’s activity increases over the course of treatment, our data and analysis would 220 

suggest that TGF-ß inhibitors (i.e., galunisertib) should be combined with XRT/TMZ concurrently 221 

or could serve as an effective adjuvant therapeutic after SOC treatment.  222 

 223 

In contrast, “induced” states are characterized by regulons having low activity in the early stages 224 

of the disease but become prevalent over time. IKZF2, a chromatin remodeler that has been shown 225 

to regulate chromatin accessibility in leukemia, was less active in the primary tumor cells but 226 

became active during treatment and remained active at recurrence (Fig. 2C). Open Targets analysis 227 

identified CDK4/6 inhibitors as possible therapeutics targeting this regulon through activity of 228 

IKZF2 on CDK4 (Table S12). Once again, given the importance of these states during treatment, 229 

our analysis would suggest that therapies targeting this regulon are more likely to be effective in 230 

the concurrent and adjuvant setting. Induced states could also be identified that were unique to 231 

later stages. A regulatory network driven by NR3C1 was independently identified from 232 

scSYGNAL analysis as a regulator of the recurrent stage and had one of the highest deviation 233 

scores from analysis of the ATAC-seq data (Fig. 2E). This would suggest that a regulatory network 234 

governed by NR3C1 expression was particularly important at the time of tumor recurrence. Open 235 

Targets analysis identified corticosteroids, including dexamethasone, as possible modulators of 236 
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 7 

this regulon. The activity of this regulon at the time of recurrence may be a reflection of 237 

dexamethasone administration at later stages of the disease. Moreover, the post-treatment 238 

upregulation of NR3C2, suggests that agonists such as eplerenone and spironolactone targeting 239 

this mineralcorticoid receptor could potentially be used in an adjuvant setting following SOC. 240 

Interestingly, previous studies have shown spironolactone to have anticancer properties in 241 

prostrate and breast cancer via regulation of DNA damage response (32).  242 

 243 

scSYGNAL allows for identification of transient therapy-induced evolutionary cell states and 244 

associated regulons 245 

 246 

Finally, a key strength of this modeling framework was the ability to identify regulons and cell 247 

states that are only transiently-induced during treatment but do not persist beyond the immediate 248 

treatment or late post-treatment stages. These cell states are presumably missed by most clinical 249 

specimen analysis because they exist transiently during a time-period when sampling rarely occurs. 250 

In our framework, transient states are represented most clearly by the immediate post-treatment 251 

(IPT) and late post-treatment (LPT) timepoints. We identified ZIC1 as being predominantly active 252 

during this part of the overall tumor evolutionary trajectory (Fig. 2C). ZIC1 is a zinc finger TF that 253 

has been shown to regulate forebrain development by maintaining neural precursor cells in an 254 

undifferentiated state (33). The regulon for ZIC1 includes several genes important in glioma 255 

stemness including ADM and VGF. Its activation during treatment suggests that targeting this 256 

regulatory network in the adjuvant setting may effectively block a pathway to resistance.   257 

 258 

Another set of cell states and associated regulons that showed transient induction were regulated 259 

by SOX5 (Fig. 2C), which has been shown to have mixed roles in glioblastoma but is an important 260 

driver of TGF-ß mediated epithelial-to-mesenchymal transition and invasive phenotypes in a 261 

variety of other cancers (34–36). Several regulons driven by SOX5 were activated throughout the 262 

treatment process, including regulons specific to “immediate post-treatment” and “late post-263 

treatment” stages. In addition to the TGF-ß pathway, Open Targets analysis also identified TTK, a 264 

dual specificity protein kinase as a member of the SOX5 regulon. While there are no TTK inhibitors 265 

currently approved, there are several in development for solid cancers (37). Transient states that 266 

are governed by TFs such as ZIC1 and SOX5 represent appealing targets for concurrent therapies 267 

that could be trialed in conjunction with SOC.  268 

 269 

When assessing potential targets, a critical point to consider is that multiple regulons may be 270 

controlled by a single master regulator yet have activities that are contextually disparate. One such 271 

example involves the androgen receptor (AR), which putatively regulates three regulons (Table S2, 272 

Fig. S8). Regulon 15 demonstrated “selected against” behavior, suggesting that SOC was effective 273 

at suppressing its activity. Regulon 20 demonstrated “transient” behavior, suggesting that it may 274 

have some activity during SOC and may relate to resistance to radiation, which has been suggested 275 

previously (38). Finally, regulon 17 demonstrated “induced” behavior and had high activity at 276 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2021.01.13.426485doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.426485
http://creativecommons.org/licenses/by-nd/4.0/


 8 

recurrence. Activity of the AR regulon raises the possibility of androgen targeting therapies as 277 

possible treatments for GBM in a variety of contexts, including in concurrent with SOC therapy 278 

or in the adjuvant and salvage settings. Determination of whether this is a gender-specific effect 279 

(this patient was male) and whether AR activity is generalizable across patients will require 280 

analysis of additional samples.  281 

 282 

Furthermore, to increase the number of potential regulatory targets, it is also important to consider 283 

regulators that were identified uniquely by either transcriptional or epigenetic analysis. For 284 

example, analysis of scATAC-seq data from the recurrent sample identified several TFs with 285 

highly significant motif deviations, mostly notably RFX3 and RFX7 (Fig. 2E). These two TFs play 286 

roles in ciliogenesis in the central nervous system, which has been identified as an important 287 

pathway in regulating glioblastoma growth and resistance to therapy (39). Importantly, these two 288 

regulators were not identified in transcriptomic network analysis and would have otherwise been 289 

missed had our analysis utilized scRNA-seq alone, highlighting the importance of multi-omic 290 

information to identify both shared and unique regulatory networks in different contexts. While 291 

there are no small molecules that currently target these regulators, they may be appealing 292 

candidates for nonconventional or novel directed therapies including CRISPR-Cas9 or antisense 293 

RNA-based approaches in the recurrent or salvage therapy setting. 294 

 295 

Discussion. 296 

 297 

In summary, tumors are complex ecosystems of cell types and various tumor-cell subpopulations 298 

interacting with one another in a complex microenvironment, mandating the use of single cell 299 

methods to understand tumor biology more precisely. In this study, we characterized a patient’s 300 

tumor, analyzing the transcriptomic and epigenetic state of tumor cells and corresponding 301 

microenvironment. By integrating multimodal single-cell analysis and a priori knowledge of 302 

regulatory relationships, enabled by SYGNAL and MINER analysis, we identified regulon-based 303 

tumor-cell subpopulations and underlying regulatory relationships, inferred from scRNA-seq data 304 

and corroborated by scATAC-seq analysis. Our modeling/monitoring framework demonstrated 305 

the ability to capture spatiotemporal tumor heterogeneity and underlying mechanistic drivers 306 

within regulatory networks based upon both transcriptomic and epigenetic states. Furthermore, 307 

PDX modeling revealed multiple potential trajectories of tumor cell progression in response to 308 

chemoradiotherapy and in the setting of recurrence.  309 

 310 

Our proof-of-concept work herein provides the basis for the development of a modeling and 311 

analytical system that enables single-cell characterization of an individual patient’s tumor and 312 

inferred therapeutic vulnerabilities (Fig 3). Although further validation is required, in the form of 313 

in vivo studies of these putative druggable targets, our preliminary analysis and results suggest that 314 

systems biology techniques can be used to infer and predict therapeutic vulnerabilities that are 315 

either selected or induced during SOC treatment. Ultimately, the information gathered from such 316 
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systematic modeling and analysis of individual tumors may inform clinical treatment in a more 317 

targeted manner and enable a rational, tailored precision medicine that accounts for intratumoral 318 

cell heterogeneity. 319 

 320 
 321 

Materials & Methods. 322 

 323 
Tumor acquisition 324 

Based upon institutional review board (IRB)-approved protocols (protocol #STUDY00002162), 325 

intraoperative tumor specimens from adult patients who voluntarily consented to donation to the 326 

institutional tumor bank were collected in cryogenic vials (Corning; Corning, NY) and 327 

immediately snap frozen in liquid nitrogen. All patient specimens were anonymized prior to 328 

processing. Tumor pathology and diagnosis was confirmed by a neuropathologist as WHO grade 329 

IV glioblastoma, IDH-wild type. Specimen was then subsequently stored in -80 C freezers for 330 

further experimentation. Autopsy tissue was collected after informed consent with a waiver from 331 

the University of Washington IRB with a post-mortem interval of approximately 8.75 hours. 332 

Tissue was snap frozen in liquid-nitrogen cooled isopentane. Tumor regions were sampled based 333 

on gross examination of brain sections and processed as outlined below.  334 

 335 

Tissue processing 336 

Frozen tissue was processed to nuclei using the Frankenstein protocol from Protocols.io. Briefly, 337 

snap frozen glioblastoma tissue was thawed on ice and minced sharply into <1 mm portions. 500 338 

l chilled Nuclei EZ Lysis Buffer (Millipore Sigma, NUC-101 #N3408) was added and tissue was 339 

homogenized 10-20 times in a Dounce homogenizer. The homogenate was transferred to a 1.5 ml 340 

Eppendorf tube and 1 mL chilled Nuclei EZ Lysis Buffer was added. The homogenate was mixed 341 

gently with a wide bore pipette and incubated for 5 minutes on ice. The homogenate was then 342 

filtered through a 70-m mesh strainer and centrifuged at 500g for 5 minutes at 4°C. Supernatant 343 

was removed and nuclei were resuspended in 1.5 mL Nuclei EZ lysis buffer and incubated for 5 344 

minutes on ice. Nuclei were centrifuged at 500g for 5 min at 4°C. After carefully removing the 345 

supernatant, nuclei were washed in wash buffer (1x PBS, 1.0% BSA, 0.2 U/μl RNase inhibitor). 346 

Nuclei were then centrifuged and resuspended in 1.4 ml wash buffer for two additional washes. 347 

Nuclei were then filtered through a 40 m mesh strainer. Intact nuclei were counted after 348 

counterstaining with Trypan blue in a standard cell counter.  349 

 350 

Animal models 351 

All animal procedures were performed in accordance with protocols approved by the Institutional 352 

Animal Care and Use Committee (IACUC) at Fred Hutchinson Cancer Center and the University 353 

of Washington. Animals were housed at a maximum of five per cage with 14-hour light/10-hour 354 

dark cycle with food and water ad libitum. Female 4-8 week-old NOD-SCID mice (NOD.Cg-355 

Prkdcscid Il2rgtm1Wjl/SzJ, Jackson Labs; Bar Harbor, ME) were used for all experiments with 356 
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random assignment into treatment groups where applicable. Mice were monitored at least three 357 

times weekly for weight loss and other signs of neurologic or physical distress. 358 

 359 

Patient-derived xenograft modeling 360 

Fresh surgically resected tumor sample was placed in sterile phosphate buffered saline and 361 

transported to Fred Hutchinson Cancer Center for further processing. Tumor specimen was 362 

dissociated with the use of a papain-based tumor dissociation kit (Miltenyi Biotec, 130-095-942) 363 

as per manufacturer’s instructions. Intracranial orthotopic transplantation of single-cell suspension 364 

human glioblastoma tumor cells into murine mouse models were performed in standard, IACUC-365 

approved fashion. Briefly, mice were induced with 5% isoflurane and maintained at 2% isoflurane 366 

in oxygen thereafter. After appropriate placement on a stereotactic frame (Stoelting Co.), the skull 367 

of the mouse was exposed through a small skin incision, and a small 1 mm2 burrhole was placed 368 

shortly behind and lateral to bregma using a 25-gauge needle. Freshly-dissociated cells were 369 

suspended in 5 mL of PBS and loaded into a 33-gauge Hamilton needle syringe. The cells were 370 

then subsequently injected 2.0 mm lateral and posterior to bregma and 2 mm deep to the cortical 371 

surface. After completion of injection, the syringe was left in situ for another minute before 372 

removal in attempt to minimize risk of cell reflux. After scalp closure with suture, the mice were 373 

removed from anesthesia and allowed to recover on warming pads and returned to their cages 374 

following full recovery. Mice were then checked daily for five consecutive days for signs of 375 

distress or neurologic disability. Mice were also monitored using a small animal 1.5T MRI to track 376 

the degree of intracranial tumor, initially four weeks following injection and then again upon signs 377 

of neurologic symptoms, including ataxia, head tilt, seizures, or cachexia. Mice were sacrificed as 378 

soon as they demonstrated symptoms, and their brains were collected directly following 379 

euthanasia. 380 

 381 

Radiation and TMZ treatment 382 

Tumor-bearing mice, as confirmed by small animal MRI, were given 50 mg/kg of temozolomide 383 

dissolved in 5% DMSO/saline or vehicle intraperitoneally for five consecutive days. On the same 384 

days, tumor-bearing mice were sedated with ketamine and xylazine and irradiated using a X-RAD 385 

320 from Precision X-Ray at 115 cGy/min as has been performed previously (40). 386 

 387 

10x Chromium scRNA-seq & scATAC-seq 388 

Single-cell RNA sequencing was performed using the 10X Chromium v2 system. Library 389 

preparation was performed using 10x manufacturer instructions on an Illumina NovaSeq 6000. 390 

scATAC-seq was performed as per manufacturer instructions 391 

(SingleCell_ATAC_ReagentKits_v1.1_UserGuide_RevD) and sequenced on an Illumina 392 

NovaSeq 6000.  393 

 394 

 395 

 396 
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Cell hashing and demultiplexing 397 

Single nuclei from each PDX condition were labeled with 1 l condition-specific hashtag 398 

oligonucleotide-labeled antibodies (BioLegend, TotalSeq A0541-A0545) according to 399 

manufacturer’s protocol prior to pooling and loading on a single lane of the 10X Chromium v2 400 

system. The HTO library was processed separately and spiked in at 10% of the mRNA library 401 

prior to sequencing. Demultiplexing of pooled single-cell samples relies on subsequent HTO raw 402 

counts generated from scRNA-seq to classify computationally single-cells in their appropriate 403 

experimental condition. Demultiplexing was performed using the HTODemux function in the 404 

Seurat v3 platform (9). The result is single-cell annotation indicating the experimental condition 405 

in addition to the potential doublet or untagged state to which each tagged (or untagged) cell 406 

belongs. 407 

 408 

Doublet prediction 409 

For those cells not processed using cell hashing (i.e., UW7 parental and UW7 recurrent autopsy 410 

cells), an alternative, computationally-based approach known as DoubletDecon was used to 411 

identify likely doublet samples (41). Briefly, DoubletDecon generates synthetic doublets by 412 

merging transcriptional profiles from randomly-selected pairs of cells belonging to distinct clusters 413 

identified in the dataset. These synthetic doublets are used, in conjunction with the previously 414 

identified clusters to create a deconvolution cell profile for the entire cell population. Pearson 415 

correlations are then calculated between each DCP and the centroid of each cluster. Those cells 416 

having the highest correlation to clusters comprised of synthetic doublets are labeled as doublets. 417 

Prior to final labeling of cells, a rescue step is performed in which certain cells may be rescued 418 

from the doublet labeling if the cell contains statistically significant upregulated expression, 419 

relative to a synthetic doublet cluster, for a minimum number of genes, that those cells are 420 

reincorporated into the non-doublet population. Finally, due to the random nature of synthetic 421 

doublet, it is likely that doublet predictions will vary run-to-run. Therefore, we conducted 50 runs 422 

to identify a consensus set of predicted doublets, which were subsequently excluded from 423 

downstream analysis. 424 

 425 

Quality control and scRNA-seq data pre-processing 426 

We initially processed the 10X Genomics raw data using Cell Ranger Single-Cell Software Suite 427 

(release 3.1.0) to perform alignment, filtering, barcode counting, and UMI counting. Reads were 428 

aligned to the GRCh38 reference genome using the pre-built annotation package download from 429 

the 10X Genomics website. We then aggregated the outputs from different lanes using ‘cellrange 430 

aggr’ function with default parameter settings.  431 

 432 

Each sample set analyzed via scRNA-seq (UW7 parental tumor, UW7 PDX samples, and UW7 433 

recurrent tumor collected at autopsy) was QC-filtered separately prior to data integration, as in the 434 

case of UW7 parental tumor and UW7 PDX samples, and/or subsequent downstream analysis. 435 

Each sample set consisted of the following: 5,082 cells with 27,763 mapped genes (UW7 parental 436 
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tumor), 11,648 cells with 26,231 mapped genes (UW7 PDX samples), and 690 cells with 19,917 437 

mapped genes (UW7 recurrent autopsy tumor). To minimize inclusion of poor-quality genes and 438 

single-cell samples per sample set, we applied the following QC filters: 1) mapped genes must be 439 

expressed at minimum count of 2 in at least 20 cells, 2) mitochondrial genes must comprise ≤ 20% 440 

of the number of uniquely mapped genes/cell, 3) total counts/cell should be ≥ 500 and ≤ 50,000 441 

(UW7 primary tumor cells), ≥ 500 and ≤ 24,000 (UW7 PDX samples), or  ≥ 500 and ≤ 4,000 (UW7 442 

recurrent autopsy tumor), and 4) the total number of mapped genes should be ≥ 500 genes and ≤ 443 

10,000 (UW7 primary tumor cells), ≥ 500 genes and ≤ 7,000 (UW7 PDX tumor cells), or ≥ 500 444 

genes and ≤ 30,000 (UW7 recurrent autopsy tumor). Post QC-filtering, each sample set consisted 445 

of the following: 4,456 primary tumor cells expressing up to 19,228 genes, 4,388  PDX tumor cells 446 

expressing up to 26,231 genes, and 350 recurrent tumor cells expressing up to 12,463 genes. 447 

 448 

Data normalization of scRNA-seq data 449 

We applied the SCTransform function, provided in the Seurat v3.2.2 platform, to normalize and 450 

variance-stabilize UMI counts in the single-cell data. This function develops a regularized negative 451 

binomial regression model to characterize the UMI count distribution on a gene-by-gene basis. 452 

This model is then used to determine Pearson residuals (i.e., the square-root of the variance-453 

normalized difference between the actual gene count and model-predicted counts). These residuals 454 

represent the standardized expression values not affected by technical artifacts and are used for 455 

downstream analysis. Concomitantly, mitochondrial gene expression influence was regressed out 456 

of expression for each gene in each cell, as part of the SC-normalization procedure. 457 

 458 

Batch integration of scRNA-seq data 459 

To integrate the two different scRNA-seq datasets, we utilized the suite of integration functions 460 

provided by Seurat v3 platform – FindTransferAnchors and IntegrateData. These functions apply 461 

canonical correlation analysis (CCA) to identify shared patterns in gene expression profiles 462 

between datasets, (i.e., “integration anchors” that are pairs of cells that share maximal correlation 463 

with one another). These anchors are then used as references with which the remaining datasets 464 

are harmonized with one another. This technique enables information to be transferred across 465 

datasets including both continuous and categorical data, Consequently, categorical data like cell-466 

type annotation or cluster membership can be transferred to multiple datasets that will be integrated 467 

together. We apply this method to transfer cell-type annotation from scRNA-seq data to 468 

corresponding scATAC-seq data (Fig. 1C). 469 

 470 

scRNA-seq cell-type and tumor cell annotation 471 

Established CNS cell-type-specific genes were used to determine gene set module scores for each 472 

cell. Gene module scores were determined using the AddModuleScore function provided in Seurat. 473 

In brief, the module score represents the difference between the mean expression of the gene set 474 

of interest and the average expression of a randomly selected set of control genes. To create a set 475 

of control genes, all genes are first grouped into 25 bins according to their respective average 476 
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expression. Next, for each gene in the gene set of interest, a corresponding set of 100 randomly 477 

selected genes is selected from the same expression bin. This results in a control set that is 100-478 

fold larger in size, which is analogous to averaging over 100 randomly-selected gene-sets identical 479 

in size to the gene set of interest. Positive module scores indicate that the gene set of interest has 480 

higher expression than what is expected by random chance and vice versa. Final cell-type 481 

assignment was based on which corresponding gene set resulted in the highest positive module 482 

score above a threshold value of 0.1. To annotate tumor cells, inferCNV was used to infer the copy 483 

number variation state of each cell (Supplemental Text). Both cell-type and tumor cell state, 484 

defined by Chr7 gain and Chr10 loss, were used to determine final cell-type annotation for the 485 

primary and recurrent tumor biopsy samples (Figs. S1, S4). 486 

 487 

scRNA-seq multivariate analysis 488 

Downstream analysis of scRNA-seq data was performed using Seurat v3.2.2. Following QC 489 

filtering, SC-normalization and integration, we performed principal component analysis (PCA) on 490 

the integrated gene expression matrix using the first 30 principal components for clustering and 491 

visualization. Next, we used the transformed gene expression data along the top 30 principal 492 

components (PC scores) to identify shared nearest neighbors (SNN).  We then identified clusters 493 

in an unsupervised clustering using Leidan clustering using a resolution of 0.8. Visualization was 494 

performed using uniform manifold and projection (UMAP) using the scores values from the top 495 

30 principal components using a minimum distance of 0.2 and a spread value of 1.2. 496 

 497 

Quality control and scATAC-seq data preprocessing 498 

Similar to scRNA-seq data, we initially processed 10X Genomics raw data using the Cell Ranger 499 

Software Suite (release 3.1.0). We performed additional data preprocessing and analysis using the 500 

software package ArchR (version 0.9.5). As part of the QC-filtering process, we used 2 metrics 501 

including: 1) number of unique nuclear fragments (>1000), and 2) signal-to-background ratio (i.e., 502 

transcription start site (TSS) enrichment score > 4). This score represents a ratio of per-basepair 503 

accessibility centered around the TSS relative to flanking regions (2000 bp distal in either 504 

direction). Here, we used a TSS enrichment score value of 4 as a lower limit threshold. We also 505 

inspected fragment size distribution to verify whether a periodicity in fragment size, reflected as a 506 

multimodal distribution, existed. These peaks and valleys in the distribution occur because 507 

fragments span 0, 1, 2, etc. nucleosomes and the Tn5 enzyme cannot cut DNA that is tightly 508 

wrapped around a nucleosome. Moreover, we inferred and removed likely doublets from the 509 

datasets. Doublet inference in ArchR involves a method similar to the DoubletDecon in that 510 

heterotypic doublets are synthesized from the original population. These synthetic doublets are 511 

then added to the original population, which is projected into a 2D space via UMAP (42). Single-512 

cells are then labeled as putative doublets if they repeatedly project as nearest neighbors during 513 

this iterative procedure. 514 

  515 
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We calculated QC statistics separately for each scATAC-seq data set (UW7 parental tumor and 516 

UW7 autopsy single-cell samples). The UW7 parental tumor set initially included 3,770 cells, 517 

having a median of 31,462 fragments/cell. In this case, applying QC-filtering resulted in 3,407 518 

cells having a median of 29,268 fragments/cell. The UW7 autopsy data set initially included 1,934 519 

single-cells, with a median of 8,801 fragments/cell. Following QC-filtering, 1,425 single-cells with 520 

a median of 8,033 fragments/cell remained (Fig. S9, S10). 521 

 522 

scATAC-seq dimensionality reduction 523 

Due to the sparse nature of scATAC-seq data, popular methods like PCA would result in high 524 

inter-cell similarity due to the predominance of non-values in the scATAC-seq profiles across the 525 

single-cell samples. Towards addressing the sparsity issue, latent semantic indexing (LSI), a 526 

technique applied in natural language processing to assess document similarity based on word 527 

counts, which often involves sparse and noisy datasets (many words, low frequency). Analogously, 528 

scATAC-seq profiles are viewed as a document and different accessible regions/peaks are words. 529 

To reduce the dimensionality of the scATAC-seq dataset, term frequency by depth normalization 530 

per cell is calculated. Next, these values are normalized by the inverse document frequency, which 531 

weights features by how often they occur. The result is a matrix that indicates how important a 532 

region/peak is to a sample. Using this resulting matrix, singular value decomposition (SVD) is 533 

applied to factorize the matrix into constituent matrices from which the most valuable information 534 

can be identified and projected into a lower dimensional space. 535 

 536 

Here, ArchR applies a variation of this LSI methodology, an iterative LSI approach (43, 44). The 537 

default setting of two iterations was performed on both UW7 parental tumor and UW7 PDX 538 

scATAC-seq datasets. 539 

 540 

scATAC-seq cell-type and transcriptional program labeling 541 

Labeling of scATAC-seq datasets was performed using ArchR (package 22, v0.9.4). In brief, 542 

filtered fragments.tsv.gz files after quality control were used to generate an ArchR GeneScore 543 

matrix and a tiled genome feature matrix for each dataset. Cells were grouped by performing 544 

iterative latent semantic indexing (LSI) on the tile matrix, followed by the shared nearest neighbor 545 

clustering approach implemented in Seurat v3.2.2. GeneScore data, a correlate for gene expression, 546 

was then used to compare scATAC-seq clusters to a labeled reference scRNA-seq dataset, the 547 

UW7 parental tumor single-cell samples, using ArchR's implementation of the 548 

FindTransferAnchors method from Seurat. Cell-type and/or sample groups based on 549 

transcriptional network states with the highest score for each scATAC-seq cluster were used to 550 

annotate those cells for downstream analysis and display (Fig. 1C-1H). 551 

 552 

Motif deviation scores 553 

TF motif deviations were predicted on a per cell bases, relative to an aggregate background of a 554 

subpopulation of cells via chromVAR,which was incorporated into the broader ArchR package. 555 
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The enrichment of TF motifs can guide in the prediction of which regulatory factors are most 556 

active in a cell type of particular interest, such as tumor cells. Designed for predicting enrichment 557 

of TF activity on a per-cell basis from sparse chromatin accessibility data, chromVAR produces 2 558 

outputs including 1) deviation: a TN5 insertion sequence bias-corrected measurement of how far 559 

the per-cell accessibility of a given motif deviates from the expected accessibility based on the 560 

average of all cells or samples, and 2) z-score: referred to as a “deviation score” for each bias-561 

corrected deviation across all cells. The absolute value of the deviation score is correlated with the 562 

per-cell read depth. With more reads, there is higher confidence that the difference in per-cell 563 

accessibility of the given motif from the expectation is greater than would occur by chance. 564 

 565 

Regulatory network analysis 566 

To infer regulons within single cells, we applied the SYGNAL (11) and  MINER (12) workflow 567 

to the scRNA-seq data set resulting from the Batch Integration procedure described above. The 568 

MINER algorithm involves a suite of functions that enables the inference of causal mechanistic 569 

relationships linking genetic mutations to transcriptional regulation. Because our datasets did not 570 

include any extensive mutational profiling, we primarily focused on identifying regulons, based 571 

on co-expression clustering and enrichment of transcription factor binding motifs present in those 572 

co-expression clusters identified, and calculated the activity of these regulons in the single-cell 573 

samples.  Regulon activity represents the eigengene value in each individual cell. Briefly, regulons 574 

identified in part by performing PCA on the normalized scRNA-seq data profiles in a gene-centric 575 

manner, i.e., PCA is used to identify principal components in which decreasing amounts of 576 

variation across genes is captured along each principal component – defined as a linear 577 

combination of samples in this approach. Here the coefficients, i.e., loadings, associated with each 578 

sample making up a principal component represent the eigengene value (45). Alternatively, one 579 

can view eigengene values as a scalar representation of expression of gene members for a regulon.  580 

 581 

To determine the significance of each inferred regulon, we performed a permutation test to 582 

determine the possibility of obtaining an eigenvalue corresponding to the 1st principal component 583 

of a regulon (across all single-cells) of equal or greater value. The eigenvalue represents a 584 

summarizing value of all the genes in the regulon, i.e., eigengene and thus if these genes are indeed 585 

share coregulation or are correlated, the eigengene value would be higher than that of randomly 586 

selected set of genes. Next, we randomly select a set of genes having the same number of members 587 

as the original regulon and calculate the corresponding eigengene value for the permuted regulon. 588 

This procedure is repeated 1000 times to create a null distribution of eigengene values. We 589 

repeated this procedure for each inferred regulon. Those regulons whose eigengene values were 590 

greater than the 95th percentile of their respective null distribution were considered significant. 591 

Furthermore, we used eigenvalues to represent regulon “activity” within each cell. 592 

 593 

Using the calculated activities of regulons, we identified groups of regulons sharing similar activity 594 

profiles across the cell population, i.e., transcriptional programs. Specifically, those regulons that 595 
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correlated across the cell population (k-means clustering of sample pairwise Pearson correlations) 596 

defined distinct transcriptional programs. We further defined subpopulations of single-cells based 597 

on their shared regulon/transcriptional program activity. Sample pair-wise Pearson correlations 598 

were calculated based on their regulon activity profiles. 599 

 600 

Regulon enrichment analysis 601 

We used the geneset variance analysis GSVA (version 1.34.0, R package) (46) to determine 602 

enrichment scores of genesets. To confirm the significance of these enrichment scores, we 603 

performed permutation tests in which gene rankings were randomized in each single-cell sample 604 

and calculated the corresponding enrichment scores. In total, 1000 permutations were performed, 605 

from which the resulting scores were used to define empirically a null distribution of enrichment 606 

scores. We considered regulons having enrichment scores greater than the 95th percentile of the 607 

null distribution to be enriched in a particular cell. 608 

 609 

Projection of UW7 recurrent tumor cells onto UW7 primary and PDX tumor cell UMAP 610 

embeddings 611 

Before projecting any new data onto pre-existing data, we first determined a common set of gene 612 

features across the datasets, from which dimensionality reduction and data projection could be 613 

performed. We identified the common 6,541 genes across all the datasets. We then repeated PCA 614 

on the integrated UW7 data set using only the 6,541 common set of genes and used the transformed 615 

gene expression data along the top 30 principal components for visualization via UMAP.  We then 616 

mean-centered and variance-normalized the UW7 autopsy tumor cell expression data using gene-617 

specific means and variances calculated from the integrated dataset. These mean-centered and 618 

variance-normalized values were transformed via matrix multiplication with the eigenvectors from 619 

the top 30 principal components. We used the predict function in R along with the UMAP 620 

embeddings for the integrated data set to develop a linear regression model and the UW7 autopsy 621 

transformed data as predictors. Once the UW7 recurrent tumor sample UMAP embeddings were 622 

determined, we calculated pairwise Euclidean distances in the UMAP space amongst all tumor 623 

cell pairs between the UW7 autopsy and integrated datasets. Those cells having the lowest distance 624 

to the projected UW7 autopsy tumor cells are represented as arrowheads in Fig 2B.  625 

 626 

Drug Matching Identification 627 

To identify drugs targeting elements within the transcriptional programs and states identified from 628 

the network analysis, we applied the Open Targets platform tool 629 

(https://www.targetvalidation.org/). The platform integrates a variety of data and evidence from 630 

genetics, genomics, transcriptomics, drug, animal models, and literature to score and rank target-631 

disease associations for drug target identification. We focused our search on identifying drug-632 

target matches for only those drugs associated with any cancer treatment employed in clinical trials 633 

stages phase I through IV. 634 

  635 
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 904 

Figure 1. Multi-modal single-cell characterization of UW7 primary tumor biopsy. (A) 905 

Schema of overall proof-of-concept modeling and analytical framework used to characterize 906 

intratumoral heterogeneity using multi-omic, single-cell level analysis and drive precision care for 907 

individual GBM patient. (B) UMAP plots of integrated scATAC-seq and scRNA-seq profiles. (C) 908 

Cell-type annotation of integrated single-cell data based on established cell-type-specific gee sets. 909 

(D) Violin plots of cell-type marker gene expression (log2[normalized counts + 1]). (E) 910 

scSYGNAL/MINER analysis of scRNA-seq profile of cells from UW7 primary tumor biopsy. 911 

Heatmap indicates activity (z-scores) of co-regulated gene modules, (i.e., regulons [rows] across 912 

cells [columns]). Groups of regulons sharing similar activity patterns across cells define 913 

transcriptional programs (mg-X), each enriched with specific biological functions. Groups of cells 914 

sharing similar activity profiles across regulons define transcriptional network states (sg-X). (F) 915 

Violin plots showing distribution of standardized deviation accessibility scores (deviation scores) 916 

of top three TF binding motifs per scATAC-seq sample. (G) Scatter plot showing positive TF 917 

regulators (orange dots) per scATAC-seq profiles. Positive TF regulators have deviation scores 918 

that correlate with their corresponding inferred gene expression (gene score) values (correlation ≥ 919 

0.4, FDR-adjusted p-value ≤ 0.1) and have a maximum inter-sample group deviation score 920 

difference in the upper 50% quantile. The top 20 TFs having maximal radial distance from the 921 

origin are labeled for reference. (H) Upset plot delineates the number of TFs identified in single-922 

cell samples via scSYGNAL and ArchR analysis and the number of shared TFs across all 923 

combinations of TF sets associated with transcriptional program-based groups and ArchR TF sets. 924 

SYGNAL/MINER analysis of scRNA-seq profiles and ArchR analysis of scATAC-seq profiles 925 

identified 52 and 103 “active” TFs, respectively, and resulted in seven consensus TFs. Pie charts 926 

indicate the composition of single cells from each transcriptional network state associated with a 927 

positive deviation score for each of the consensus TFs. 928 
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 930 

 931 

Figure 2. Modeling tumor progression and tumor response to standard of care. (A) UMAP 932 

plot of integrated scRNA-seq profiles of tumor cells from UW7 primary tumor and corresponding 933 

PDX mice models. Colors indicate experimental conditions (Primary tumor = tumor biopsy, PDX-934 

1/2 = untreated samples collected at 24 hrs and 72 hrs post completion of corresponding TMZ/XRT 935 
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treatment, PDX-tr1/tr2 = samples collected 24 hrs and 72hrs, respectively, post TMZ/XRT 936 

treatment). (B) Five subpopulations of tumor cells enriched for various experimental conditions 937 

(PT = pretreatment, IPT = immediate post-treatment, LPT-A = late post-treatment A, LPT-B = late 938 

post-treatment B, REC = recurrent). Heatmaps underneath each subpopulation show regulon 939 

activity z-scores across single-cell samples for each subpopulation. Color bars underneath each 940 

heatmap indicate the experimental condition of each cell as in A. Black arrowheads indicate which 941 

tumor cell sample the recurrent tumor cells collected at autopsy mapped closest to in the alternative 942 

UMAP embedding plot (Fig. S5). (C) Violin plots of regulon activity within each subpopulation. 943 

Select examples of regulons exhibiting distinct dynamic behavior, (i.e., “selected-against”, 944 

“selected”, “induced”, and “transient” behavior) are included. Inline points represent regulon 945 

activity levels within cells from each experimental condition within each subpopulation. Asterisks 946 

indicate which subpopulations had significantly higher regulon activity relative to the rest of the 947 

primary/PDX tumor-cell population (FDR-adjusted p value < 0.05). (D) Gene set enrichment 948 

analysis of regulon gene sets in recurrent tumor cell scRNA-seq profiles. Top color bar indicates 949 

transcriptional programs (Fig. 1D). Right adjacent color bars indicate samples statistically enriched 950 

with regulons for a particular transcriptional program (FDR-adjusted p-values ≤ 0.1). (E) Violin 951 

plots showing deviation scores across recurrent tumor scATAC-seq profiles. Green background 952 

highlights the 7 consensus TFs previously identified (Fig. 1H). 953 
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Figure 3. Comprehensive schematic of glioblastoma progression. Distinct populations of 958 

induced, selected, and transient tumor cells states, regulons, and TFs (bold) contribute to 959 

intratumoral heterogeneity that plays a role in treatment resistance. As cell states may be 960 

differentially susceptible to treatment and may be selected for or induced by therapeutic 961 

intervention, use of a more complete view of cell state trajectories with scSYGNAL and MINER 962 

analysis may allow for the prediction of therapies that work in either the concurrent setting against 963 

cell states or an adjuvant/neo-adjuvant setting against induced cell states. 964 
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