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Abstract

An increasing number of biological macromolecules have been solved with cryo-electron
microscopy (cryo-EM). Over the past few years, the resolutions of density maps determined
by cryo-EM have largely improved in general. However, there are still many cases where the
resolution is not high enough to model molecular structures with standard computational tools.
If the resolution obtained is near the empirical border line (3-4 A), a small improvement of
resolution will significantly facilitate structure modeling. Here, we report SuperEM, a novel
deep learning-based method that uses a three-dimensional generative adversarial network for
generating an improved-resolution EM map from an experimental EM map. SuperEM is
designed to work with EM maps in the resolution range of 3 A to 6 A and has shown an average
resolution improvement of 1.0 A on a test dataset of 36 experimental maps. The generated

super-resolution maps are shown to result in better structure modelling of proteins.

Introduction

Technological advances in cryo-EM have led to its rapid adoption in solving structures of
biological macromolecules, including structures that were challenging to determine by other
experimental methods'. Particularly, owing to recent software and hardware breakthroughs in
this field, an increasing number of structures have been solved at atomic or near-atomic
resolutions®>. However, there are still many cases where maps are determined at a lower
resolution where structure modeling®*7 is not straightforward. Since structure modeling of
macromolecules becomes increasingly difficult as map resolution worsens, particularly across

the critical resolution range of 3 to 4 A, an improvement of a resolution even by 0.5 A to 1 A
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is valuable. The improvement of map resolution is commonly attempted experimentally by
altering map building steps and data collecting steps, including accumulating more two-
dimensional particle images, but this task is time- and labor-intensive.

There are some computational methods developed for post-processing cryo-EM maps
through local sharpening approaches. LocScale® makes use of solved atomic models to upscale
the map densities. LocalDeblur’, is a local sharpening method that models the relation between
experimental map and sharpened map. Terwilliger et al. developed a maximum-likelihood
approach for density modification approach from half maps'®. DeepEMhancer used deep
learning for sharpening maps'!.

Here, we propose a novel 3D deep learning based super-resolution method, SuperEM,
which uses generative adversarial networks (GAN)!? to improve the resolution of experimental
EM maps in the resolution range of 3 A to 6 A. Super-resolution imaging is a task of estimating
high-resolution images from their low-resolution counterparts!®>. This task is traditionally

15,16 and local

addressed with image interpolation techniques'* or by considering image statistics
image patches!’. With the advancements in deep learning, the recent introduction of GAN has
achieved state-of-the art performance in improving the resolution of images's. The same
framework has been successfully applied to various interesting tasks, such as improving

1920 image restoration’!, image compression’’, and image-to-image

medical imaging
translation?®. Super-resolution imaging applications of GANs were also extended to
other microscopy image data, such as from fluorescence microscopy?*, single-molecule
localization microscopy (SMLM)?, and CT imagery?.

Our method, SuperEM, uses a 3D GAN to produce super-resolution 3D EM maps from

an input low-resolution map. SuperEM GAN consists of two neural networks, generator and
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discriminator, which are trained simultaneously. SuperEM was trained with a dataset of pairs
of an experimental EM map coupled with a corresponding high-resolution 3D simulated EM
map that was generated from the associated protein atomic structures. The goal of training was
to make the generator of SuperEM be able to output high-resolution EM maps that are not
distinguishable from actual high-resolution maps by the discriminator network. At the same
time, the discriminator was trained to distinguish between the generated and real high-
resolution maps.

SuperEM is shown to produce EM maps with substantially higher quality than the input
low-resolution experimental maps. An average resolution improvement of 1.0 A was observed
when tested on a test dataset of 36 experimental EM maps. Furthermore, maps produced by
SuperEM also led to better protein structure models when modelled with MAINMAST? and

Phenix’.

Results

GAN architecture of SuperEM

SuperEM receives a low-resolution 3D cryo-EM map as input and produces a super-resolution
(SR) map as output. SuperEM adopts a network architecture similar to SRGAN'®, It was trained
using a low-resolution (LR), experimental EM map and a corresponding high-resolution (HR)
EM map simulated from the associated atomic-detail structure of proteins. The inputs to GAN
are a pair of cubes of a volume size of 253 A3 each, which are extracted by scanning the EM
maps. The generator module of the GAN outputs an SR cube of the same size. Individual SR

cubes output from the network are combined to generate a complete super-resolution EM map.
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Fig. 1 illustrates the GAN architecture of SuperEM. The generator network is a fully
convolutional network consisting of a 3D convolution layer with 32 channels and a kernel size
of 3 followed by 15 residual network (ResNet) block layers®, a 3D convolution layer ending
with a tanh activation layer. Each ResNet block contains two 3D convolutional layers with 32
channels and skip connections, dropout (with a dropout probability 0.25), PReLU activations®’,
and Instance Normalization?®, which was shown to work better than other normalization
methods for generative tasks. The final 3D convolutional layer also uses a kernel size of 3 with
32 output channels. The last tanh layer outputs a probability distribution for each voxel in the
cube, which is interpreted as the density distribution in the cube. The output of tanh function
is normalized to produce values in the range of 0 to 1. A stride of 1 was used in all the filters
in all the layers.

The discriminator network is a fully convolutional binary classifier. It takes a generated
map output from the generator and the corresponding HR density map and classifies the two
maps into classes, real or generated (fake). The discriminator network consists of 10 3D CNNs
followed by a softmax layer. The first convolutional layer in the discriminator contains 32
channels and the count is multiplied by a factor of 2 for every two subsequent layers. We use
PReLU, dropout with a probability of 0.25 and group normalization with a group size of 16 in

all the convolutional layers.
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Figure 1. The 3D GAN architecture of SuperEM. The detailed architecture of the generator and

discriminator networks are shown. LR, low-resolution; SR, super-resolution; HR, high-resolution;
PReLU, the parametric rectified linear unit activation function; InstanceNorm3D, 3D instance
normalization layer; GroupNorm, group normalization layer. The blue arrows that connect the input of
a ResNet block and a plus sign, which is the operator that simply add two matrices, is a skip connection.

See text for more details.

We evaluated the quality of EM maps generated by SuperEM on a dataset of 36 EM
maps from multiple angles. The resolution of the test maps ranged from 3 A to 6 A with 17
maps between 3 A-4 A and 14 maps between 4-5.5 A. In terms of protein secondary structure
contents, nine maps were helix-rich (over 40% of the total residues are from a helices), nine
maps are sheet-rich (3 strand residue counts >40%), and 18 maps with about equal distribution
of helix and [ strand residues (both a helix and 3 strand residue counts > 25%). See Methods

for detailed descriptions of train/test datasets, training procedure, and the evaluation criteria.
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Figure 2. Local and global map resolution improvement by SuperEM. a, local resolution
improvement. Cross-correlation of low-resolution & high-resolution (LR/HR) vs super-resolution &
high-resolution (SR/HR) of local 91,197 cubes (36 test maps) shown. Gray scale bar indicates the
number of points in each of the 50x50 bins in the plot. b, global resolution improvement. the estimated

resolution using the “d_model” metric in the phenix.mtriage tool for each LR map and SR map.

Improvement of local map regions by SuperEM

We first evaluate the improvement of density maps by SuperEM at the local cube level. Our
data generation procedure, as described in Methods, generated 91,197 cubes of size 25° A from
test maps. These low-resolution (LR) cubes are fed to SuperEM GAN, which generated the
same number of corresponding super-resolution cubes (SR). As references, we generated high-
resolution (HR) cubes taken from the simulated maps that were computed from atomic
structures from PDB%. For experimental maps of a resolution between 3 A and 3.5 A, HR
maps were simulated at a 1.8 A resolution while those between 3.5 A and 6 A, a HR map was
simulated at 3 A. We then calculated cross-correlation between LR/HR cubes and SR/HR cubes

1’ (Figure 2a).

using the Chimera’s “measure correlation” too
Figure 2a shows that overall SuperEM improved the cross-correlation of cubes for

most of the cases. An improvement in cross-correlation was observed for 84.3% (76895/91197)
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of the test cubes with an average improvement from 0.600 to 0.658 (9.67%). Supplementary
Figure 1 provides the same type of plots for the two map groups, maps that have an
experimental resolution of 3.5 A or better and simulated at 1.8 A (Supplementary Fig. 1a)
and those which have a resolution worse than 3.5 A and simulated at 3 A (Supplementary Fig.
1b). For both groups, almost the same fraction of the map cubes, 84.4% and 84.3% for the
former and the latter groups, respectively, have improved cross-correlation to HR map cubes.
Next, we examine the resolution improvement on a global map level. In Figure 2b, we
generated full size SR maps by combining SR cubes. Average density values were assigned for
overlapping regions of cubes. The map resolution of the experimental (LR) maps and SR maps
where computed by the phenix.mtriage tool’! in the Phenix package®’. It is apparent from
Figure 2b that the resolution estimate of SR maps is clearly better over LR maps in 91.7% (33
out of 36) of the maps. The largest improvement was observed for map EMD-3672, which has
an estimated resolution of 5.7 A, which was improved by 2.8 A to 2.9 A. The exact resolution

estimate values for all the test maps are provided in Supplementary Table S1.

Examples of improvement by SuperEM
Figure 3 shows six examples of EM maps before and after application of SuperEM. In each
panel, three figures are shown: the native protein structure on the left, the initial LR EM map
in the middle, and the SR EM map generated by SuperEM on the right. For all cases, the
contour levels of LR and SR maps are visualized at the contour levels that give the similar
density volumes in the two maps.

Figure 3a shows an a-class structure of horse spleen apoferretin®> (EMD-2788; PDB

ID: 4viw). The LR (middle) and SR (right) maps were shown at contour levels of 0.27 and
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0.32, respectively, which give similar volumes of around 51,000 A*. o-helices in the SR map
have more distinct pitch than those in the LR map. Also, fragmented density regions originally
in the LR map were connected following protein chains in the SR map. The next panel (Figure
3b) is another o helix-rich structure of Tral subunit of SAGA complex** (EMD-3790, PDB
ID: 50¢€j). In this example, SR map captures individual helices more distinctively than the LR

map.
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Figure 3. Examples of EM maps before and after applying SuperEM. In each panel, figure on the left
are the native structure; middle, the experimental EM maps which here denoted as Low Resolution (LR)
map; right, the map output from SuperEM denoted as Super-Resolution (SR) map. a, horse spleen
apoferritin. EMD-2788, PDB ID: 4vlw. The resolution of the LR map was reported as 4.7 A and
measured by Phenix mtriage as 4.7 A. The resolution of SR map measured by Phenix mtriage was 4.4
A. The LR map visualized at a contour level of 0.270 and the SR map shown at a contour level of 0.320.
These contour levels gave similar density volumes of the two maps, 50,839 A* for the LR map and
51,089 A for the SR map. b, Tral subunit of SAGA complex. EMD-3790, PDB ID: 5oej. The resolution
of the LR map: 5.7 A/7.86 A in EMDB/mtriage. The SR map: 6.99 A. The contour levels used for
visualization were 0.043 for the LR map, which gave a volume of 173,470 A* and 0.200 for the SR map,
which gave a volume of 172,440 A*. ¢, aerolysin, EMD-8188, PDB ID: 5jzw. The resolution of the LR
map: 4.46 A/4.5 A in EMDB/mtriage. The SR map: 4.1 A. The contour levels used for the LR map:
0.125 (16,271 A¥; the SR map: 0.220 (16,476 A*). The density volume by using the contour level is
shown in the parentheses. d, BG505 SOSIP.664 trimer in complex with HIV antibody 3BNC117. EMD-
8644, PDB ID: 5v8m. The resolution of the LR map: 4.4 A/4.4 A in EMDB/mtriage. The SR map: 3.7
A. The contour levels used for the LR map: 0.045 (108,480 A¥; the SR map: 0.244 (109,180 A%). e,
yeast Pol I transcription initiation complex. EMD-3378, PDB ID: 5fyw. The resolution of the LR map:
4.35 A/4.55 A in EMDB/mtriage. The SR map: 4.25 A. The contour levels used for the LR map: 0.033
(235,110 A?; the SR map: 0.180 (235,470 A®). f, human TRPM4 channel in complex with calcium and
decavanadate. EMD-8771, PDB ID: 5w5y. The resolution of the LR map: 3.8 A/3.8 A in
EMDB/mtriage. The SR map: 2.2 A. The contour levels used for the LR map: 0.040 (359,990 A?; the
SR map: 0.152 (359,830 A%).

The next two panels illustrate the performance of SuperEM for maps of 3-class proteins
(Figure 3¢, 3d). In both cases, [-strands are separated clearer in SR maps. Besides, in Figure
3d, a large gap in the density that correspond to a -strand at the top of the map existed in the
LR map but is connected in the SR map. The last two panels are from a3-class proteins (Figure
3e, 3f). Compared to the LR maps, it is clear that large sidechains of amino acids are more

visible in the SR maps.

10
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Structure modelling improvement by SuperEM

In the previous sections, we discussed differences made by SuperEM in density distributions
of EM maps. Next, we examine how the map improvement translates practically to actual
protein structure modeling. We used software for protein structure modeling, MAINMAST?
and Phenix’. To perform modeling, we first segmented a local density region that corresponds
to the single subunit to model using the UCSF Chimera’s “zone” tool. The modeling software
was then run on LR and SR maps independently. For MAINMAST, we ran the protocol up to
the main-chain generation step. MAINMAST generates 15,000 models with different
parameter combinations, from which one model was selected for evaluation based on the
weighted edge distance along the trace®. Regarding Phenix, we used the map to model
program, which takes an EM map, the target protein sequence, and a map resolution
information to build a full atomic model. For the map resolution information to run

map_to_model, we used the value reported in EMDB.
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Figure 4. Change of the model coverage by two de novo modelling methods, MAINMAST and Phenix.
Coverage within 3.0 A are compared for models generated from LR and SR maps. a, models by
MAINMAST. The number of cases that improved/tied/worsened by using SR maps were 24/1/11,
respectively. b, models by Phenix. The number of cases that improved/tied/worsened by using SR maps
were 22/1/11, respectively. There were two maps, EDM-2484 and EMD-8581, for which Phenix did

not run because the protein sequence of the maps includes unknown amino acids (denoted as X).

In Figure 4, we show the coverage of main-chain trace models generated by
MAINMAST and models by Phenix in the two panels. Following previous works>>*, the
coverage is defined as the fraction of Ca atoms in the native structure that are modelled within
3.0 A in the model. Each panel compares the coverage of models generated from LR maps and
SR maps of the 36 maps. For both methods, coverage improved for a majority of the cases by
using SR maps. For MAINMAST, an improvement in coverage was observed for 24, while 22
cases showed improvement for Phenix and for 1 case the coverage stayed the same for both
methods. 11 cases where the coverage decreased in MAINMAST models include maps of a
low resolution, 6.0 A (EMD-8581) and 5.8 A (EMD-5779), but in general there is no clear
correlation with the map resolution.

Figure 5 shows several examples of models generated for LR and SR maps by
MAINMAST and Phenix. In practical scenario, modeling for maps at an intermediate
resolution as shown here would certainly need many manual interventions such as template-
based fitting, trying different parameters, and structure refinement. But here we show main-
chain trace models from an automated run of the methods for the sake of the comparison of LR
and SR maps. These models further need sequence mapping, full-atom building, and
refinement with manual interventions. In each panel in Figure 5, the native structure in the

original map (green), a model generated from the LR map (cyan), and a model from the SR
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map (magenta) are shorn from left to right. MAINMAST models are in the upper row and
corresponding Phenix models are put in the lower row.

The first example (Figure 5a) is modeling for a 174-residue long o class protein. The
original resolution was 4.7A, which was improved to 4.4 A by SuperEM. Phenix built very
good models for this case (the lower row in the panel). The SR map made it possible for Phenix
to build a structure with the correct topology, which has four long a helices placed at correct
positions with minor errors of missing a short helix and an overprediction of another helix. The
Phenix model from the LR map has a break in the chain and made a helix shorter, but they
were fixed when the SR map was used. MAINMAST traced the main-chain almost correctly,
with one wrong loop connection at the bottom of the structures. By using the SR map, the local
geometry of helices substantially improved in the MAINMAST models. Apparently, the
quality of helices is low in MAINMAST models but it is to be corrected in the subsequent
structure refinement step in the MAINMAST protocol®. The second example (Figure 5b) has
essentially the same observation. This protein has two domains, an a-helix bundle (on the right
side of the figure) and a small o/} domain with a 3-sheet and an a helix. By using the SR map,
MAINMAST improved the helix geometry and improved the coverage in the o/ domain. The
two Phenix models from the LR and SR maps have some differences, but the overall quality
were similar. All the models missed a loop connection indicated by a circle in the figure
because the local map density of the position is relatively low.

The next three panels, ¢, d, e are examples of modeling of B-sheets. Figure 6¢ is models
for an antibody heavy chain. In this case, the MAINMAST results substantially improved by
using the SR map, where the main-chain was almost perfectly traced except for a missing

connection on the right side of the structure (circled). On the other hand, the two Phenix models
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were fragmented and moreover, the SR model has two helices that were misassigned. The next
example is (Figure 6d), a structure of a complexed topology relative to the other structures
shown in Figure 6. MAINMAST showed an excellent performance for this example, where
the main-chain was perfectly traced in the SR map with small non-critical deviations, achieving
a high coverage 0f 0.961. In both MAINMAST and Phenix, models from the SR maps showed
clear improved over those from LR maps. Figure 6e is a subunit from Type II secretion system,
which has a characteristic large -sheet associated with another smaller 3-sheet behind the
large one. Modeling by MAINMAST largely improved with the SR map, which built the
correct topology for the domain with the two [-sheets and a long helix in the middle of the
structure. Phenix also corrected the topology of the small B-sheet with the SR map and has a
larger coverage in the two domains on the right. A small helix was wrongly assigned at the left
bottom of the structure (red circle) by Phenix, which still existed in the SR model.

Figure 6f is an example of o/} proteins, which have a two-layer B sheets in the middle
and five surrounding o helices. With MAINMAST, the entire topology is almost perfectly
traced with the SR map whereas a [-sheet on the left is non-existent in the LR model. These
structural enhancements resulted in a coverage increase of from 0.851 (the LR model) to 0.981
(the SR model). The models by Phenix are fragmented but the SR model captures the core part
of the topology correctly.

The last panel (Figure 6g) is an example where the modeling did not improve with the
SR map. This protein has a two-stranded 3-sheet on the left connected with two helices on the
right. For this map, SuperEM made the map resolution worse, from 5.5 A originally to 5.6 A.
Partly for this reason, modeling results by both MAINMAST and Phenix saw essentially no

improvement. Neither method could trace the B-sheet correctly, placing an o helix in the
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middle of the two strands (Phenix) or intersected two strands (MAINMAST). MAINMAST
dropped the coverage from 0.761 to 0.681 by missing a longer loop region on the left top of

the figure.
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Figure 5. Examples of main-chain models by MAINMAST Phenix models from EM maps before and
after SuperEM application. Each panel has five figures: Left most column, the experimental LR map
superimposed with the corresponding protein structure in green. On the right, the upper row shows
MAINMAST models the lower row shows Phenix models. Cyan, models from original LR maps;
magenta, models from the SR maps. Local structures mentioned in the text are highlighted with red
circles. a, A 174-residue chain B of horse spleen apoferritin (EMD-2788; PDB ID:4V1W). The map
resolution of the LR map was 4.7/4.7 A in EMDB/by Phenix mtriage. The resolution of the SR map:
4.4 A by Phenix mtriage. The MAINMAST main-chain-trace model/the Phenix model generated from
the LR map had a coverage within 3 A of 0.841/0.806, respectively. From the SR map, the coverage of
MAINMAST/Phenix models were 0.976/0.947, respectively. b, The zinc transporter Yipp (EMD-8728,
PDB ID: 5VRF-B), 282 residue-long. The resolution of the LR map: 4.1 A/4.1 A. The SR map: 2.2 A.
Coverage of the MAINMAST/Phenix LR models: 0.894/0.823. The SR models: 0.865/0.812. ¢, heavy
chain of NIH antibody 3BNC117 (EMD-8644, PDB ID: 5V8M-H), 111 residue-long. The resolution
of the LR map: 4.4 A/4.4 A. The SR map: 3.7 A. Coverage of the MAINMAST/Phenix LR models:
0.865/0.721. The SR models: 0.937/0.910. d, DNA-directed RNA polymerases I and IIT subunit RPAC1
(EMD-8771, PDB ID: 5W5Y-C), 306 residue-long. The resolution of the LR map: 3.8 A/3.8 A. The
SR map: 2.2 A. Coverage of MAINMAST/Phenix LR models: 0.712/0.899. The SR models:
0.961/0.905. e, the type II secretion system, chain D (EMD-6677, PDB ID: 5WQ9-D), 493 residue-
long. The resolution of the LR map: 4.22 A/4.2 A. The SR map: 2.7 A. Coverage of the
MAINMAST/Phenix LR models: 0.568/0.734. The SR models: 0.787/0.773. f, bacterial proteasome
subunit oo (EMD-4128, PDB ID: 5LZP-Y), 213 residue-long. The resolution of the LR map: 3.5 A/3.5
A. The SR map: 1.5 A. Coverage of the MAINMAST/Phenix LR models: 0.851/0.930. The SR models:
0.981/0.953. g, Ebola surface glycoprotein, GP2 (EMD-8242, PDB ID: SKEN-M), 113 residue-long.
The resolution of the LR map: 4.3 A/5.5 A. The SR map: 5.6 A. Coverage of MAINMAST/Phenix LR
models: 0.761/0.726. The SR models: 0.681/0.726.

Comparison with a related method
Lastly, we compared SuperEM with DeepEMhancer!!, another similar deep-learning-based
method for sharpening of EM maps. DeepEMhancer is different from SuperEM in that it aims

to produce local sharpening effects of the LocScale® algorithm using a 3D U- Net®®, a different
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neural network architecture. Since the goals of the two methods are similar but not identical,
this comparison is solely to characterize the performance of SuperEM.

The performance comparison is provided in Supplementary Table S2. We tested the
two methods on 17 EM maps, which have half-maps provided at EMDB, because the preferred
input for DeepEMhancer is half-maps as their deep-learned model was trained with half maps.
There are six maps with half-map data in the 36 maps in the dataset we used. To increase the
dataset size, we added 11 maps that were deposited recently to EMDB (after May 2020) with
half-maps made available. SuperEM showed better resolution than DeepEMhancer for 14 out
of 17 cases. The average resolution improvement by SuperEM was 1.35 A while that for

DeepEMhancer was 0.57 A.

Discussion

In this work, we developed SuperEM, a novel 3D deep learning-based framework to produce
super-resolution cryo-EM maps. The improvement of resolution was possible for almost all the
maps examined, and the resolution improvements were translated into more accurate protein
structure modeling by two modeling methods. The current framework can be easily extended
to maps at higher or lower resolutions by training the network with an appropriate dataset. Thus,

together with other experimental and map building techniques for enhancing the density map
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quality, SuperEM will be a valuable asset for achieving better quality structures.
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Data availability
The data that support the findings of this study are available from the corresponding author

upon request.

Methods

Dataset Generation

SuperEM requires a dataset of pairs of cubes of EM density maps, low-resolution and high-
resolution, for training. We used cubes extracted from experimental EM maps as low-
resolution data and their corresponding simulated EM maps from associated atomic-detailed
structures from PDB as high-resolution data.

The data generation is similar to the procedure of the experimental map data generation
performed for Emap2sec’’, another deep-learning method for cryo-EM map data processing.
For the low-resolution dataset, we obtained experimental EM maps from EMDB as follows:
788 EM maps with resolution between 3 A—6 A dated up to December 2018 were first selected.
These EM maps also had an associated atomic structure available in PDB so that we can
generate the corresponding simulated EM map. We further short-listed 377 maps, which have
the cross-correlation between the experimental map and the map simulated from the
corresponding PDB structure over 0.65. We then computed the sequence identity between
underlined protein chains in every pairs of EM maps, and a map was removed from the dataset
if its underlined protein had over 25% identity to a protein of another map in the dataset. If a
map has multiple protein chains, the map was removed if at least one of the chains have over
25% identity to any chains in another map. This procedure finally remained 122 experimental

EM maps. We unified the grid sizes of the experimental maps to 1.0 A by trilinear interpolation
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of the electron density in the maps. High-resolution simulated EM maps were generated from
the PDB structures of the above 122 experimental maps using pdb2vol program from SITUS
package®®. For experimental maps with resolution ranging between 3.5 A and 6.0 A, the
corresponding high-resolution simulated map was generated at 3.0 A. For experimental maps
between 3 A and 3.5 A, a high-resolution was simulated at 1.8 A.

In both simulated and experimental maps, electron density values were normalized
from 0.0 to 1.0 by subtracting the minimum density value in the map and then divide by the
density difference between the maximum and the minimum density values. If there are negative
density values, they were set to 0.0 before the normalization. Each of the EM maps were then
converted to voxels by a sliding cube of size 25 A *25 A *25 A moved through the maps with
a stride size of 4 A. This procedure generated a total of 292,749 valid low-resolution and high-
resolution pair of cubes. A cube pair is considered valid if neither of the cube contains all-zero
density values. Out of 122 EM map pairs generated, 86 pairs amounting to 201,552 cube pairs
were used for training and 36 pairs amounting to 91,197 cube pairs were used for testing.
Among the 36 maps in the testing set, 12 of them have a resolution better than 3.5 A and 24

maps had a resolution worse than 3.5 A.

Training procedure of SuperEM

The training cube pairs described above were used to train the GAN network of SuperEM.
Among the cube pairs, the cube from the experimental map, which we here-by refer to as a
low-resolution (LR) cube, is the input to the Generator network of GAN. The output cube of
generator network and the corresponding cube from simulated map or the high-resolution (HR)

cube are then fed to the discriminator network.
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In GANS, the generator and discriminator are trained together with a minimax game-

style objective function given by Equation 1.

min max E [logD(x)] + E [log (1—D(2))] (Eqn. 1)
“© P ox~p, Z~P

g

where G and D are parameters of generator and discriminator networks of GAN, P, is HR
cube distribution, IP; is the generated cube distribution. The generator receives an LR cube as
input and generates a super-resolution (SR) cube. The discriminator then classifies the SR cube
and HR cube. The minimax objective ensures that the generator generates superior quality SR
cubes so that the generator can fool the discriminator into classifying them as HR cubes. The
objective function for GAN is formulated, in Equation 2, as a linear combination of content

loss and adversarial loss which are given in Equations 3 and 4.
L = Leontent + 107° Loaversaria > (Eqn.2)
where Leonient = L2555 5821 (R — (GUR)), ) (Eqn.3)
Laaversariat = —D(G(LR)) (Eqn. 4)

where HR corresponds to the high-resolution cube, and LR corresponds to the low-
resolution cube which makes G(LR) the super-resolution cube and D(G(LR)) is the
discriminator probability output for the SR cube ranging from 0 to 1. Negative of D(G(LR)) is
optimized to fool the discriminator to think that SR cube is as good as the HR cube. To
summarize, the content loss is defined by the Mean Squared Error (MSE) between the SR cube
and the HR cube. The adversarial loss is given as the negative softmax probabilities of the

discriminator predictions.
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We used a learning rate of 0.001 for both the generator and the discriminator. We

used a batch size of 16 and train the GAN network for 100 epochs using the Adam Optimizer

for updating the weights of both the generator and the discriminator.
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Supplementary Figure 1. Local resolution improvement of cryo-EM maps by SuperEM at
two different simulated resolutions.

Gray scale bar indicates the number of data points in each bin of the histogram consisting of 50x50
bins. White indicates a bin containing less than 10 data points. a, Cross-correlation of low-
resolution & high-resolution (LR/HR) vs. super-resolution & high-resolution (SR/HR) of 25,565
map cubes for 12 EM maps with an experimental map resolution better or equal to 3.5 A. The
corresponding simulated maps were computed at 1.8 A. 84.4% (23257/27565) of the cubes had an
improved cross-correlation with an average improvement from 0.508 to 0.544 (7.09%). b, Cross-
correlation of LR/HR vs SR/HR of 63,632 cubes for 24 EM maps with experimental map
resolution worse than 3.5 A. The corresponding simulated maps were computed at 3.0 A. 84.3%
(53638/63632) of the test cubes improved with an average improvement from 0.640 to 0.707
(9.78%).
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Supplementary Table 1. (provided in a separate Excel file). Detailed results of the
resolution estimate value for 36 test maps.

Columns in the table are: Map EMID, corresponding PDB code, map resolution in A taken from
EMDB, Phenix mtriage resolution estimates in A for each of low-resolution (LR) i.e. experimental
EM map, high-resolution (HR) i.e. simulated EM map and Super-Resolution (SR) EM map are

provided. Last column shows the improvement in resolution of SR map compared to LR map.

Supplementary Table 2. Comparison of resolution estimates between EM maps generated
by SuperEM and DeepEMhancer.

EMDB-ID  Original SuperEM DeepEMhancer

3663* 5.16/5.90 5.80 5.50
4078* 5.10/5.10 4.90 4.20
5623* 3.30/3.30 1.50 2.90
6479%* 3.50/3.50 1.60 3.30
6714%* 3.00/3.10 1.60 2.90
8624* 3.40/3.50 2.10 3.00
10649 4.30/4.30 2.60 4.00
10094 3.34/3.40 1.40 2.10
0975 3.10/3.50 1.80 3.00
0882 3.30/3.40 1.40 3.00
0920 3.40/3.70 1.80 3.10
0510 3.63/3.50 3.10 3.40
0981 2.84/3.20 1.40 2.00
10088 4.20/4.20 2.30 3.90
10350 3.70/4.00 3.70 3.10
10704 4.08/4.10 3.30 3.90
10836 3.30/3.40 1.80 2.10
Avg. Gain - 1.35 0.57

Resolution  estimate  (A)  computed  with  phenix.mtriage  tool  (http://www.phenix-
online.org/documentation/reference/mtriage.html) for maps generated by SuperEM and by DeepEMhancer
are shown. Original shows the map resolution of the experimental maps. Two values are the one stated in
EMDB/measured by phenix.mtriage. Comparing the resolutions by SuperEM and DeepEMhancer, the
smaller value was highlighted in bold.

The six EMDB-IDs marked with * are included in our benchmark set. The rest of the targets used
here selected from recent deposits (after May 2020) to EMDB. All these targets have half-map data
available at EMDB. Input to DeepEMhancer for a target map was half-map because it was trained on half-
map and that is stated as the preferred input, while the input for SuperEM is the original deposited map to
EMDB, as was used for the rest of the current study.

Avg. gain shows the average improvement of the resolution relative to the mtriage-measured
resolution of the original map.
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Table 1. Detailed results of the resolution estimate value for the 36 maps.

Phenix Resolution Estimate (A) =

EMID |PDB ID|EMD resolution ()] LR HR | SR LR-SR (A) ‘gg
2484 4cc8 6 6.99 1.5 6.8 0.19 B2
2788 4viw 4.7 4.7 1.7 4.4 0.3 °%
3366 5g06 4.2 4.7 1.5 4.4 0.3 23
3388 5g05 3.4 3.5 1.5 2.4 1.1 g3
3531 5mmi 3.2 3.2 1.2 1.6 1.6 <%
3663 5nod 5.16 5.9 2.1 5.8 0.1 88
3672 5npl 5.7 5.7 1.5 2.9 2.8 %é
4061 5ljo 4.9 5.9 1.5 6 0.1 z9
4078 5Ims 5.1 5.1 1.5 4.9 0.2 229
4128 5lzp 3.5 3.5 1.2 1.5 2 %‘é%
5623 3jOi 3.3 3.3 1.2 1.5 1.8 28¢5
5779 3j5m 5.8 5.2 1.5 5.3 -0.1 gg;
6344 3jad 3.9 3.5 1.5 3 0.5 RS
6441 3jca 4.8 4.5 1.5 4.4 0.1 RS
6479 3jck 3.5 3.5 1.2 1.6 1.9 DEL
6489 3jbw 4.6 4.68 15 4.28 0.4 Dos
6677 5wq9 4.22 4.2 15 2.7 15 gg 5
6711 5x8t 3.3 3.3 1.2 1.6 1.7 5o
6714 5xbl 3 3.1 1.2 1.6 1.5 % gg
8001 5gae 3.33 3.4 1.2 1.7 1.7 598
8004 5gah 3.8 3.9 1.5 3.6 0.3 ;ﬁ%é
8015 5gaq 3.1 33 1.2 13 2 g8y
8148 5jb3 5.34 5.4 1.5 5.3 0.1 *al
8188 5jzw 4.46 4.5 1.5 4.1 0.4 55
8242 5ken 4.3 5.5 1.5 5.6 0.1 53
8409 5tj5 3.9 43 1.5 2.3 2 §§
8511 5u6o 3.5 3.5 1.4 1.6 1.9 =&
8581 5up2 6 8.45 1.5 7.3 1.15 >3
8624 5uz9 3.4 3.5 1.2 2.1 1.4 ;ﬁg
8641 5v7q 3.7 3.7 1.5 2.1 1.6 g2
8643 5v8l 4.3 4.3 1.6 3.7 0.6 =&
8644 5v8m 4.4 4.4 15 3.7 0.7 =8
8728 Svrf 4.1 4.1 1.5 2.2 1.9 83
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