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Abstract 

An increasing number of biological macromolecules have been solved with cryo-electron 

microscopy (cryo-EM). Over the past few years, the resolutions of density maps determined 

by cryo-EM have largely improved in general. However, there are still many cases where the 

resolution is not high enough to model molecular structures with standard computational tools. 

If the resolution obtained is near the empirical border line (3-4 Å), a small improvement of 

resolution will significantly facilitate structure modeling.  Here, we report SuperEM, a novel 

deep learning-based method that uses a three-dimensional generative adversarial network for 

generating an improved-resolution EM map from an experimental EM map. SuperEM is 

designed to work with EM maps in the resolution range of 3 Å to 6 Å and has shown an average 

resolution improvement of 1.0 Å on a test dataset of 36 experimental maps. The generated 

super-resolution maps are shown to result in better structure modelling of proteins. 

 

 

Introduction 

Technological advances in cryo-EM have led to its rapid adoption in solving structures of 

biological macromolecules, including structures that were challenging to determine by other 

experimental methods1. Particularly, owing to recent software and hardware breakthroughs in 

this field, an increasing number of structures have been solved at atomic or near-atomic 

resolutions2. However, there are still many cases where maps are determined at a lower 

resolution where structure modeling3,4-7 is not straightforward. Since structure modeling of 

macromolecules becomes increasingly difficult as map resolution worsens, particularly across 

the critical resolution range of 3 to 4 Å, an improvement of a resolution even by 0.5 Å to 1 Å 
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is valuable. The improvement of map resolution is commonly attempted experimentally by 

altering map building steps and data collecting steps, including accumulating more two-

dimensional particle images, but this task is time- and labor-intensive.  

There are some computational methods developed for post-processing cryo-EM maps 

through local sharpening approaches. LocScale8 makes use of solved atomic models to upscale 

the map densities. LocalDeblur9, is a local sharpening method that models the relation between 

experimental map and sharpened map. Terwilliger et al. developed a maximum-likelihood 

approach for density modification approach from half maps10. DeepEMhancer used deep 

learning for sharpening maps11. 

Here, we propose a novel 3D deep learning based super-resolution method, SuperEM, 

which uses generative adversarial networks (GAN)12 to improve the resolution of experimental 

EM maps in the resolution range of 3 Å to 6 Å. Super-resolution imaging is a task of estimating 

high-resolution images from their low-resolution counterparts13. This task is traditionally 

addressed with image interpolation techniques14 or by considering image statistics15,16 and local 

image patches17. With the advancements in deep learning, the recent introduction of GAN has 

achieved state-of-the art performance in improving the resolution of images18. The same 

framework has been successfully applied to various interesting tasks, such as  improving 

medical imaging19,20, image restoration21, image compression22, and image-to-image 

translation23. Super-resolution imaging applications of GANs were also extended to 

other microscopy image data, such as from fluorescence microscopy24, single-molecule 

localization microscopy (SMLM)25, and CT imagery20. 

Our method, SuperEM, uses a 3D GAN to produce super-resolution 3D EM maps from 

an input low-resolution map. SuperEM GAN consists of two neural networks, generator and 
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discriminator, which are trained simultaneously. SuperEM was trained with a dataset of pairs 

of an experimental EM map coupled with a corresponding high-resolution 3D simulated EM 

map that was generated from the associated protein atomic structures. The goal of training was 

to make the generator of SuperEM be able to output high-resolution EM maps that are not 

distinguishable from actual high-resolution maps by the discriminator network. At the same 

time, the discriminator was trained to distinguish between the generated and real high-

resolution maps. 

SuperEM is shown to produce EM maps with substantially higher quality than the input 

low-resolution experimental maps. An average resolution improvement of 1.0 Å was observed 

when tested on a test dataset of 36 experimental EM maps. Furthermore, maps produced by 

SuperEM also led to better protein structure models when modelled with MAINMAST3 and 

Phenix5. 

Results 

GAN architecture of SuperEM  

SuperEM receives a low-resolution 3D cryo-EM map as input and produces a super-resolution 

(SR) map as output. SuperEM adopts a network architecture similar to SRGAN18. It was trained 

using a low-resolution (LR), experimental EM map and a corresponding high-resolution (HR) 

EM map simulated from the associated atomic-detail structure of proteins. The inputs to GAN 

are a pair of cubes of a volume size of 253 Å3 each, which are extracted by scanning the EM 

maps. The generator module of the GAN outputs an SR cube of the same size. Individual SR 

cubes output from the network are combined to generate a complete super-resolution EM map. 
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Fig. 1 illustrates the GAN architecture of SuperEM. The generator network is a fully 

convolutional network consisting of a 3D convolution layer with 32 channels and a kernel size 

of 3 followed by 15 residual network (ResNet) block layers26, a 3D convolution layer ending 

with a tanh activation layer. Each ResNet block contains two 3D convolutional layers with 32 

channels and skip connections, dropout (with a dropout probability 0.25), PReLU activations27, 

and Instance Normalization28, which was shown to work better than other normalization 

methods for generative tasks. The final 3D convolutional layer also uses a kernel size of 3 with 

32 output channels. The last tanh layer outputs a probability distribution for each voxel in the 

cube, which is interpreted as the density distribution in the cube. The output of tanh function 

is normalized to produce values in the range of 0 to 1. A stride of 1 was used in all the filters 

in all the layers. 

The discriminator network is a fully convolutional binary classifier. It takes a generated 

map output from the generator and the corresponding HR density map and classifies the two 

maps into classes, real or generated (fake). The discriminator network consists of 10 3D CNNs 

followed by a softmax layer. The first convolutional layer in the discriminator contains 32 

channels and the count is multiplied by a factor of 2 for every two subsequent layers. We use 

PReLU, dropout with a probability of 0.25 and group normalization with a group size of 16 in 

all the convolutional layers. 
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Figure 1. The 3D GAN architecture of SuperEM. The detailed architecture of the generator and 

discriminator networks are shown. LR, low-resolution; SR, super-resolution; HR, high-resolution; 

PReLU, the parametric rectified linear unit activation function; InstanceNorm3D, 3D instance 

normalization layer; GroupNorm, group normalization layer. The blue arrows that connect the input of 

a ResNet block and a plus sign, which is the operator that simply add two matrices, is a skip connection. 

See text for more details. 

 

We evaluated the quality of EM maps generated by SuperEM on a dataset of 36 EM 

maps from multiple angles. The resolution of the test maps ranged from 3 Å to 6 Å with 17 

maps between 3 Å-4 Å and 14 maps between 4-5.5 Å. In terms of protein secondary structure 

contents, nine maps were helix-rich (over 40% of the total residues are from helices), nine 

maps are sheet-rich ( strand residue counts > 40%), and 18 maps with about equal distribution 

of helix and strand residues (both helix and  strand residue counts > 25%). See Methods 

for detailed descriptions of train/test datasets, training procedure, and the evaluation criteria. 
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Figure 2. Local and global map resolution improvement by SuperEM. a, local resolution 

improvement. Cross-correlation of low-resolution & high-resolution (LR/HR) vs super-resolution & 

high-resolution (SR/HR) of  local 91,197 cubes (36 test maps) shown. Gray scale bar indicates the 

number of points in each of the 50x50 bins in the plot. b, global resolution improvement. the estimated 

resolution using the “d_model” metric in the phenix.mtriage tool for each LR map and SR map. 

 

Improvement of local map regions by SuperEM 

We first evaluate the improvement of density maps by SuperEM at the local cube level. Our 

data generation procedure, as described in Methods, generated 91,197 cubes of size 253 Å from 

test maps. These low-resolution (LR) cubes are fed to SuperEM GAN, which generated the 

same number of corresponding super-resolution cubes (SR). As references, we generated high-

resolution (HR) cubes taken from the simulated maps that were computed from atomic 

structures from PDB29 . For experimental maps of a resolution between 3 Å and 3.5 Å, HR 

maps were simulated at a 1.8 Å resolution while those between 3.5 Å and 6 Å, a HR map was 

simulated at 3 Å. We then calculated cross-correlation between LR/HR cubes and SR/HR cubes 

using the Chimera’s “measure correlation” tool30 (Figure 2a).  

 Figure 2a shows that overall SuperEM improved the cross-correlation of cubes for 

most of the cases. An improvement in cross-correlation was observed for 84.3% (76895/91197) 
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of the test cubes with an average improvement from 0.600 to 0.658 (9.67%). Supplementary 

Figure 1 provides the same type of plots for the two map groups, maps that have an 

experimental resolution of 3.5 Å or better and simulated at 1.8 Å (Supplementary Fig. 1a) 

and those which have a resolution worse than 3.5 Å and simulated at 3 Å (Supplementary Fig. 

1b). For both groups, almost the same fraction of the map cubes, 84.4% and 84.3% for the 

former and the latter groups, respectively, have improved cross-correlation to HR map cubes. 

Next, we examine the resolution improvement on a global map level. In Figure 2b, we 

generated full size SR maps by combining SR cubes. Average density values were assigned for 

overlapping regions of cubes. The map resolution of the experimental (LR) maps and SR maps 

where computed by the phenix.mtriage tool31 in the Phenix package32. It is apparent from 

Figure 2b that the resolution estimate of SR maps is clearly better over LR maps in 91.7% (33 

out of 36) of the maps. The largest improvement was observed for map EMD-3672, which has 

an estimated resolution of 5.7 Å, which was improved by 2.8 Å to 2.9 Å. The exact resolution 

estimate values for all the test maps are provided in Supplementary Table S1. 

 

Examples of improvement by SuperEM 

Figure 3 shows six examples of EM maps before and after application of SuperEM. In each 

panel, three figures are shown: the native protein structure on the left, the initial LR EM map 

in the middle, and the SR EM map generated by SuperEM on the right. For all cases, the 

contour levels of LR and SR maps are visualized at the contour levels that give the similar 

density volumes in the two maps. 

Figure 3a shows an -class structure of horse spleen apoferretin33 (EMD-2788; PDB 

ID: 4v1w). The LR (middle) and SR (right) maps were shown at contour levels of 0.27 and 
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0.32, respectively, which give similar volumes of around 51,000 Å3. -helices in the SR map 

have more distinct pitch than those in the LR map. Also, fragmented density regions originally 

in the LR map were connected following protein chains in the SR map. The next panel (Figure 

3b) is another  helix-rich structure of Tra1 subunit of SAGA complex34 (EMD-3790, PDB 

ID: 5oej). In this example, SR map captures individual helices more distinctively than the LR 

map. 
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Figure 3. Examples of EM maps before and after applying SuperEM. In each panel, figure on the left 

are the native structure; middle, the experimental EM maps which here denoted as Low Resolution (LR) 

map; right, the map output from SuperEM denoted as Super-Resolution (SR) map. a, horse spleen 

apoferritin. EMD-2788, PDB ID: 4v1w. The resolution of the LR map was reported as 4.7 Å and 

measured by Phenix mtriage as 4.7 Å. The resolution of SR map measured by Phenix mtriage was 4.4 

Å. The LR map visualized at a contour level of 0.270 and the SR map shown at a contour level of 0.320. 

These contour levels gave similar density volumes of the two maps, 50,839 Å3 for the LR map and 

51,089 Å3 for the SR map. b, Tra1 subunit of SAGA complex. EMD-3790, PDB ID: 5oej. The resolution 

of the LR map: 5.7 Å/7.86 Å in EMDB/mtriage. The SR map: 6.99 Å. The contour levels used for 

visualization were 0.043 for the LR map, which gave a volume of 173,470 Å3 and 0.200 for the SR map, 

which gave a volume of 172,440 Å3. c, aerolysin, EMD-8188, PDB ID: 5jzw. The resolution of the LR 

map: 4.46 Å/4.5 Å in EMDB/mtriage. The SR map: 4.1 Å. The contour levels used for the LR map: 

0.125 (16,271 Å3); the SR map: 0.220 (16,476 Å3). The density volume by using the contour level is 

shown in the parentheses. d, BG505 SOSIP.664 trimer in complex with HIV antibody 3BNC117. EMD-

8644, PDB ID: 5v8m. The resolution of the LR map: 4.4 Å/4.4 Å in EMDB/mtriage. The SR map: 3.7 

Å. The contour levels used for the LR map: 0.045 (108,480 Å3); the SR map: 0.244 (109,180 Å3). e, 

yeast Pol II transcription initiation complex. EMD-3378, PDB ID: 5fyw. The resolution of the LR map: 

4.35 Å/4.55 Å in EMDB/mtriage. The SR map: 4.25 Å. The contour levels used for the LR map: 0.033 

(235,110 Å3); the SR map: 0.180 (235,470 Å3). f, human TRPM4 channel in complex with calcium and 

decavanadate. EMD-8771, PDB ID: 5w5y. The resolution of the LR map: 3.8 Å/3.8 Å in 

EMDB/mtriage. The SR map: 2.2 Å. The contour levels used for the LR map: 0.040 (359,990 Å3); the 

SR map: 0.152 (359,830 Å3). 

 

 

The next two panels illustrate the performance of SuperEM for maps of -class proteins 

(Figure 3c, 3d). In both cases, -strands are separated clearer in SR maps. Besides, in Figure 

3d, a large gap in the density that correspond to a -strand at the top of the map existed in the 

LR map but is connected in the SR map. The last two panels are from -class proteins (Figure 

3e, 3f). Compared to the LR maps, it is clear that large sidechains of amino acids are more 

visible in the SR maps. 
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Structure modelling improvement by SuperEM 

In the previous sections, we discussed differences made by SuperEM in density distributions 

of EM maps. Next, we examine how the map improvement translates practically to actual 

protein structure modeling. We used software for protein structure modeling, MAINMAST3 

and Phenix5. To perform modeling, we first segmented a local density region that corresponds 

to the single subunit to model using the UCSF Chimera’s “zone” tool. The modeling software 

was then run on LR and SR maps independently. For MAINMAST, we ran the protocol up to 

the main-chain generation step. MAINMAST generates 15,000 models with different 

parameter combinations, from which one model was selected for evaluation based on the 

weighted edge distance along the trace3. Regarding Phenix, we used the map_to_model 

program, which takes an EM map, the target protein sequence, and a map resolution 

information to build a full atomic model. For the map resolution information to run 

map_to_model, we used the value reported in EMDB. 
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Figure 4. Change of the model coverage by two de novo modelling methods, MAINMAST and Phenix. 

Coverage within 3.0 Å are compared for models generated from LR and SR maps. a, models by 

MAINMAST. The number of cases that improved/tied/worsened by using SR maps were 24/1/11, 

respectively. b, models by Phenix. The number of cases that improved/tied/worsened by using SR maps 

were 22/1/11, respectively. There were two maps, EDM-2484 and EMD-8581, for which Phenix did 

not run because the protein sequence of the maps includes unknown amino acids (denoted as X).  

 

 In Figure 4, we show the coverage of main-chain trace models generated by 

MAINMAST and models by Phenix in the two panels. Following previous works3,5,35, the 

coverage is defined as the fraction of C atoms in the native structure that are modelled within 

3.0 Å in the model. Each panel compares the coverage of models generated from LR maps and 

SR maps of the 36 maps. For both methods, coverage improved for a majority of the cases by 

using SR maps. For MAINMAST, an improvement in coverage was observed for 24, while 22 

cases showed improvement for Phenix and for 1 case the coverage stayed the same for both 

methods. 11 cases where the coverage decreased in MAINMAST models include maps of a 

low resolution, 6.0 Å (EMD-8581) and 5.8 Å (EMD-5779), but in general there is no clear 

correlation with the map resolution. 

 Figure 5 shows several examples of models generated for LR and SR maps by 

MAINMAST and Phenix. In practical scenario, modeling for maps at an intermediate 

resolution as shown here would certainly need many manual interventions such as template-

based fitting, trying different parameters, and structure refinement. But here we show main-

chain trace models from an automated run of the methods for the sake of the comparison of LR 

and SR maps. These models further need sequence mapping, full-atom building, and 

refinement with manual interventions. In each panel in Figure 5, the native structure in the 

original map (green), a model generated from the LR map (cyan), and a model from the SR 
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map (magenta) are shorn from left to right. MAINMAST models are in the upper row and 

corresponding Phenix models are put in the lower row. 

The first example (Figure 5a) is modeling for a 174-residue long  class protein. The 

original resolution was 4.7Å, which was improved to 4.4 Å by SuperEM. Phenix built very 

good models for this case (the lower row in the panel). The SR map made it possible for Phenix 

to build a structure with the correct topology, which has four long helices placed at correct 

positions with minor errors of missing a short helix and an overprediction of another helix. The 

Phenix model from the LR map has a break in the chain and made a helix shorter, but they 

were fixed when the SR map was used. MAINMAST traced the main-chain almost correctly, 

with one wrong loop connection at the bottom of the structures. By using the SR map, the local 

geometry of helices substantially improved in the MAINMAST models. Apparently, the 

quality of helices is low in MAINMAST models but it is to be corrected in the subsequent 

structure refinement step in the MAINMAST protocol3. The second example (Figure 5b) has 

essentially the same observation. This protein has two domains, an -helix bundle (on the right 

side of the figure) and a small  domain with a -sheet and an  helix. By using the SR map, 

MAINMAST improved the helix geometry and improved the coverage in the  domain. The 

two Phenix models from the LR and SR maps have some differences, but the overall quality 

were similar. All the models missed a loop connection indicated by a circle in the figure 

because the local map density of the position is relatively low. 

The next three panels, c, d, e are examples of modeling of -sheets. Figure 6c is models 

for an antibody heavy chain. In this case, the MAINMAST results substantially improved by 

using the SR map, where the main-chain was almost perfectly traced except for a missing 

connection on the right side of the structure (circled).  On the other hand, the two Phenix models 
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were fragmented and moreover, the SR model has two helices that were misassigned.  The next 

example is (Figure 6d), a structure of a complexed topology relative to the other structures 

shown in Figure 6. MAINMAST showed an excellent performance for this example, where 

the main-chain was perfectly traced in the SR map with small non-critical deviations, achieving 

a high coverage of 0.961. In both MAINMAST and Phenix, models from the SR maps showed 

clear improved over those from LR maps. Figure 6e is a subunit from Type II secretion system, 

which has a characteristic large -sheet associated with another smaller -sheet behind the 

large one. Modeling by MAINMAST largely improved with the SR map, which built the 

correct topology for the domain with the two -sheets and a long helix in the middle of the 

structure. Phenix also corrected the topology of the small -sheet with the SR map and has a 

larger coverage in the two domains on the right. A small helix was wrongly assigned at the left 

bottom of the structure (red circle) by Phenix, which still existed in the SR model. 

Figure 6f is an example of  proteins, which have a two-layer  sheets in the middle 

and five surrounding  helices. With MAINMAST, the entire topology is almost perfectly 

traced with the SR map whereas a -sheet on the left is non-existent in the LR model. These 

structural enhancements resulted in a coverage increase of from 0.851 (the LR model) to 0.981 

(the SR model). The models by Phenix are fragmented but the SR model captures the core part 

of the topology correctly. 

The last panel (Figure 6g) is an example where the modeling did not improve with the 

SR map. This protein has a two-stranded -sheet on the left connected with two helices on the 

right. For this map, SuperEM made the map resolution worse, from 5.5 Å originally to 5.6 Å. 

Partly for this reason, modeling results by both MAINMAST and Phenix saw essentially no 

improvement. Neither method could trace the -sheet correctly, placing an  helix in the 
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middle of the two strands (Phenix) or intersected two strands (MAINMAST). MAINMAST 

dropped the coverage from 0.761 to 0.681 by missing a longer loop region on the left top of 

the figure. 
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Figure 5. Examples of main-chain models by MAINMAST Phenix models from EM maps before and 

after SuperEM application. Each panel has five figures: Left most column, the experimental LR map 

superimposed with the corresponding protein structure in green. On the right, the upper row shows 

MAINMAST models the lower row shows Phenix models. Cyan, models from original LR maps; 

magenta, models from the SR maps. Local structures mentioned in the text are highlighted with red 

circles. a, A 174-residue chain B of horse spleen apoferritin (EMD-2788; PDB ID:4V1W). The map 

resolution of the LR map was 4.7/4.7 Å in EMDB/by Phenix mtriage. The resolution of the SR map: 

4.4 Å by Phenix mtriage. The MAINMAST main-chain-tracemodel/the Phenix model generated from 

the LR map had a coverage within 3 Å of 0.841/0.806, respectively. From the SR map, the coverage of 

MAINMAST/Phenix models were 0.976/0.947, respectively. b, The zinc transporter Yipp (EMD-8728, 

PDB ID: 5VRF-B), 282 residue-long. The resolution of the LR map: 4.1 Å/4.1 Å. The SR map: 2.2 Å. 

Coverage of the MAINMAST/Phenix LR models: 0.894/0.823. The SR models: 0.865/0.812. c, heavy 

chain of NIH antibody 3BNC117 (EMD-8644, PDB ID: 5V8M-H), 111 residue-long. The resolution 

of the LR map: 4.4 Å/4.4 Å. The SR map: 3.7 Å. Coverage of the MAINMAST/Phenix LR models: 

0.865/0.721. The SR models: 0.937/0.910. d, DNA-directed RNA polymerases I and III subunit RPAC1 

(EMD-8771, PDB ID: 5W5Y-C), 306 residue-long. The resolution of the LR map: 3.8 Å/3.8 Å. The 

SR map: 2.2 Å. Coverage of MAINMAST/Phenix LR models: 0.712/0.899. The SR models: 

0.961/0.905. e, the type II secretion system, chain D (EMD-6677, PDB ID: 5WQ9-D), 493 residue-

long. The resolution of the LR map: 4.22 Å/4.2 Å. The SR map: 2.7 Å. Coverage of the 

MAINMAST/Phenix LR models: 0.568/0.734. The SR models: 0.787/0.773. f, bacterial proteasome 

subunit  (EMD-4128, PDB ID: 5LZP-Y), 213 residue-long. The resolution of the LR map: 3.5 Å/3.5 

Å. The SR map: 1.5 Å. Coverage of the MAINMAST/Phenix LR models: 0.851/0.930. The SR models: 

0.981/0.953. g, Ebola surface glycoprotein, GP2 (EMD-8242, PDB ID: 5KEN-M), 113 residue-long. 

The resolution of the LR map: 4.3 Å/5.5 Å. The SR map: 5.6 Å. Coverage of MAINMAST/Phenix LR 

models: 0.761/0.726. The SR models: 0.681/0.726. 

 

 

Comparison with a related method 

Lastly, we compared SuperEM with DeepEMhancer11, another similar deep-learning-based 

method for sharpening of EM maps. DeepEMhancer is different from SuperEM in that it aims 

to produce local sharpening effects of the LocScale8 algorithm using a 3D U- Net36, a different 
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neural network architecture. Since the goals of the two methods are similar but not identical, 

this comparison is solely to characterize the performance of SuperEM. 

The performance comparison is provided in Supplementary Table S2. We tested the 

two methods on 17 EM maps, which have half-maps provided at EMDB, because the preferred 

input for DeepEMhancer is half-maps as their deep-learned model was trained with half maps. 

There are six maps with half-map data in the 36 maps in the dataset we used. To increase the 

dataset size, we added 11 maps that were deposited recently to EMDB (after May 2020) with 

half-maps made available. SuperEM showed better resolution than DeepEMhancer for 14 out 

of 17 cases. The average resolution improvement by SuperEM was 1.35 Å while that for 

DeepEMhancer was 0.57 Å. 

 

Discussion 

In this work, we developed SuperEM, a novel 3D deep learning-based framework to produce 

super-resolution cryo-EM maps. The improvement of resolution was possible for almost all the 

maps examined, and the resolution improvements were translated into more accurate protein 

structure modeling by two modeling methods. The current framework can be easily extended 

to maps at higher or lower resolutions by training the network with an appropriate dataset. Thus, 

together with other experimental and map building techniques for enhancing the density map 
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quality, SuperEM will be a valuable asset for achieving better quality structures. 
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Code availability 

The SuperEM program is freely available for academic use through 

https://github.com/kiharalab/SuperEM and https://kiharalab.org/emsuites/superem.php. 
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Data availability 

The data that support the findings of this study are available from the corresponding author 

upon request. 

 

Methods 

Dataset Generation 

SuperEM requires a dataset of pairs of cubes of EM density maps, low-resolution and high-

resolution, for training. We used cubes extracted from experimental EM maps as low-

resolution data and their corresponding simulated EM maps from associated atomic-detailed 

structures from PDB as high-resolution data. 

 The data generation is similar to the procedure of the experimental map data generation 

performed for Emap2sec37, another deep-learning method for cryo-EM map data processing. 

For the low-resolution dataset, we obtained experimental EM maps from EMDB as follows: 

788 EM maps with resolution between 3 Å–6 Å dated up to December 2018 were first selected. 

These EM maps also had an associated atomic structure available in PDB so that we can 

generate the corresponding simulated EM map. We further short-listed 377 maps, which have 

the cross-correlation between the experimental map and the map simulated from the 

corresponding PDB structure over 0.65. We then computed the sequence identity between 

underlined protein chains in every pairs of EM maps, and a map was removed from the dataset 

if its underlined protein had over 25% identity to a protein of another map in the dataset. If a 

map has multiple protein chains, the map was removed if at least one of the chains have over 

25% identity to any chains in another map. This procedure finally remained 122 experimental 

EM maps. We unified the grid sizes of the experimental maps to 1.0 Å by trilinear interpolation 
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of the electron density in the maps. High-resolution simulated EM maps were generated from 

the PDB structures of the above 122 experimental maps using pdb2vol program from SITUS 

package38. For experimental maps with resolution ranging between 3.5 Å and 6.0 Å, the 

corresponding high-resolution simulated map was generated at 3.0 Å.  For experimental maps 

between 3 Å and 3.5 Å, a high-resolution was simulated at 1.8 Å. 

In both simulated and experimental maps, electron density values were normalized 

from 0.0 to 1.0 by subtracting the minimum density value in the map and then divide by the 

density difference between the maximum and the minimum density values. If there are negative 

density values, they were set to 0.0 before the normalization. Each of the EM maps were then 

converted to voxels by a sliding cube of size 25 Å *25 Å *25 Å moved through the maps with 

a stride size of 4 Å. This procedure generated a total of 292,749 valid low-resolution and high-

resolution pair of cubes. A cube pair is considered valid if neither of the cube contains all-zero 

density values. Out of 122 EM map pairs generated, 86 pairs amounting to 201,552 cube pairs 

were used for training and 36 pairs amounting to 91,197 cube pairs were used for testing. 

Among the 36 maps in the testing set, 12 of them have a resolution better than 3.5 Å and 24 

maps had a resolution worse than 3.5 Å. 

 

Training procedure of SuperEM 

The training cube pairs described above were used to train the GAN network of SuperEM. 

Among the cube pairs, the cube from the experimental map, which we here-by refer to as a 

low-resolution (LR) cube, is the input to the Generator network of GAN. The output cube of 

generator network and the corresponding cube from simulated map or the high-resolution (HR) 

cube are then fed to the discriminator network.  
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In GANs, the generator and discriminator are trained together with a minimax game-

style objective function given by Equation 1. 

min 
 

max 𝔼
𝑥 ~ ℙ

log𝐷 𝑥    𝔼
𝑧 ~ ℙ

log  1 𝐷 𝑧               (Eqn. 1) 

where G and D are parameters of generator and discriminator networks of GAN,  ℙ  is HR 

cube distribution, ℙ  is the generated cube distribution. The generator receives an LR cube as 

input and generates a super-resolution (SR) cube. The discriminator then classifies the SR cube 

and HR cube. The minimax objective ensures that the generator generates superior quality SR 

cubes so that the generator can fool the discriminator into classifying them as HR cubes. The 

objective function for GAN is formulated, in Equation 2, as a linear combination of content 

loss and adversarial loss which are given in Equations 3 and 4.  

𝐿 𝐿    10  𝐿        ,       (Eqn. 2) 

     where    𝐿   ∑ ∑ ∑ 𝐻𝑅 , , 𝐺 𝐿𝑅
, ,

     (Eqn. 3) 

𝐿   𝐷 𝐺 𝐿𝑅                          (Eqn. 4)  

where HR corresponds to the high-resolution cube, and LR corresponds to the low-

resolution cube which makes G(LR) the super-resolution cube and D(G(LR)) is the 

discriminator probability output for the SR cube ranging from 0 to 1. Negative of D(G(LR)) is 

optimized to fool the discriminator to think that SR cube is as good as the HR cube. To 

summarize, the content loss is defined by the Mean Squared Error (MSE) between the SR cube 

and the HR cube. The adversarial loss is given as the negative softmax probabilities of the 

discriminator predictions.   
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We used a learning rate of 0.001 for both the generator and the discriminator. We 

used a batch size of 16 and train the GAN network for 100 epochs using the Adam Optimizer 

for updating the weights of both the generator and the discriminator. 
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Supplementary Figure 1. Local resolution improvement of cryo-EM maps by SuperEM at 
two different simulated resolutions. 

Gray scale bar indicates the number of data points in each bin of the histogram consisting of 50x50 
bins. White indicates a bin containing less than 10 data points. a, Cross-correlation of low-
resolution & high-resolution (LR/HR) vs. super-resolution & high-resolution (SR/HR) of 25,565 
map cubes for 12 EM maps with an experimental map resolution better or equal to 3.5 Å. The 
corresponding simulated maps were computed at 1.8 Å. 84.4% (23257/27565) of the cubes had an 
improved cross-correlation with an average improvement from 0.508 to 0.544 (7.09%). b, Cross-
correlation of LR/HR vs SR/HR of 63,632 cubes for 24 EM maps with experimental map 
resolution worse than 3.5 Å. The corresponding simulated maps were computed at 3.0 Å. 84.3% 
(53638/63632) of the test cubes improved with an average improvement from 0.640 to 0.707 
(9.78%). 
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Supplementary Table 1. (provided in a separate Excel file). Detailed results of the 
resolution estimate value for 36 test maps. 

Columns in the table are: Map EMID, corresponding PDB code, map resolution in Å taken from 

EMDB, Phenix mtriage resolution estimates in Å for each of low-resolution (LR) i.e. experimental 

EM map, high-resolution (HR) i.e. simulated EM map and Super-Resolution (SR) EM map are 

provided. Last column shows the improvement in resolution of SR map compared to LR map. 

 

Supplementary Table 2. Comparison of resolution estimates between EM maps generated 
by SuperEM and DeepEMhancer. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Resolution estimate (Å) computed with phenix.mtriage tool (http://www.phenix-
online.org/documentation/reference/mtriage.html) for maps generated by SuperEM and by DeepEMhancer 
are shown.  Original shows the map resolution of the experimental maps. Two values are the one stated in 
EMDB/measured by phenix.mtriage. Comparing the resolutions by SuperEM and DeepEMhancer, the 
smaller value was highlighted in bold. 

The six EMDB-IDs marked with * are included in our benchmark set. The rest of the targets used 
here selected from recent deposits (after May 2020) to EMDB. All these targets have half-map data 
available at EMDB. Input to DeepEMhancer for a target map was half-map because it was trained on half-
map and that is stated as the preferred input, while the input for SuperEM is the original deposited map to 
EMDB, as was used for the rest of the current study. 

Avg. gain shows the average improvement of the resolution relative to the mtriage-measured 
resolution of the original map. 

EMDB-ID Original SuperEM DeepEMhancer 
3663* 5.16/5.90 5.80 5.50 
4078* 5.10/5.10 4.90 4.20 
5623* 3.30/3.30 1.50 2.90 
6479* 3.50/3.50 1.60 3.30 
6714* 3.00/3.10 1.60 2.90 
8624* 3.40/3.50 2.10 3.00 
10649 4.30/4.30 2.60 4.00 
10094 3.34/3.40 1.40 2.10 
0975 3.10/3.50 1.80 3.00 
0882 3.30/3.40 1.40 3.00 
0920 3.40/3.70 1.80 3.10 
0510 3.63/3.50 3.10 3.40 
0981 2.84/3.20 1.40 2.00 
10088 4.20/4.20 2.30 3.90 
10350 3.70/4.00 3.70 3.10 
10704 4.08/4.10 3.30 3.90 
10836 3.30/3.40 1.80 2.10 

Avg. Gain - 1.35 0.57 
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Phenix Resolution Estimate (Å)
LR HR SR

2484 4cc8 6 6.99 1.5 6.8 0.19

2788 4v1w 4.7 4.7 1.7 4.4 0.3

3366 5g06 4.2 4.7 1.5 4.4 0.3

3388 5g05 3.4 3.5 1.5 2.4 1.1

3531 5mmi 3.2 3.2 1.2 1.6 1.6

3663 5no4 5.16 5.9 2.1 5.8 0.1

3672 5np1 5.7 5.7 1.5 2.9 2.8

4061 5ljo 4.9 5.9 1.5 6 ‐0.1

4078 5lms 5.1 5.1 1.5 4.9 0.2

4128 5lzp 3.5 3.5 1.2 1.5 2

5623 3j9i 3.3 3.3 1.2 1.5 1.8

5779 3j5m 5.8 5.2 1.5 5.3 ‐0.1

6344 3jad 3.9 3.5 1.5 3 0.5

6441 3jca 4.8 4.5 1.5 4.4 0.1

6479 3jck 3.5 3.5 1.2 1.6 1.9

6489 3jbw 4.6 4.68 1.5 4.28 0.4

6677 5wq9 4.22 4.2 1.5 2.7 1.5

6711 5x8t 3.3 3.3 1.2 1.6 1.7

6714 5xb1 3 3.1 1.2 1.6 1.5

8001 5gae 3.33 3.4 1.2 1.7 1.7

8004 5gah 3.8 3.9 1.5 3.6 0.3

8015 5gaq 3.1 3.3 1.2 1.3 2

8148 5jb3 5.34 5.4 1.5 5.3 0.1

8188 5jzw 4.46 4.5 1.5 4.1 0.4

8242 5ken 4.3 5.5 1.5 5.6 ‐0.1

8409 5tj5 3.9 4.3 1.5 2.3 2

8511 5u6o 3.5 3.5 1.4 1.6 1.9

8581 5up2 6 8.45 1.5 7.3 1.15

8624 5uz9 3.4 3.5 1.2 2.1 1.4

8641 5v7q 3.7 3.7 1.5 2.1 1.6

8643 5v8l 4.3 4.3 1.6 3.7 0.6

8644 5v8m 4.4 4.4 1.5 3.7 0.7

8728 5vrf 4.1 4.1 1.5 2.2 1.9

EMID PDB ID EMD resolution (Å) LR‐SR (Å)

Table 1. Detailed results of the resolution estimate value for the 36 maps. 
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8750 5w0s 3.5 3.5 1.5 3.14 0.36

8771 5w5y 3.8 3.8 1.5 2.2 1.6

8778 5w68 3.3 4 1.2 3.3 0.7

Average 1.00277778
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