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Abstract 

The aim of this study is to uncover the network dynamics of the human visual cortex by 

driving it with a broadband random visual flicker. We here applied a broadband flicker (1–

720 Hz) while measuring the MEG and then estimated the temporal response function (TRF) 

between the visual input and the MEG response. This TRF revealed an early response in the 

40–60 Hz gamma range as well as in the 8–12 Hz alpha band. While the gamma band 

response is novel, the latter has been termed the alpha band perceptual echo. The gamma 

echo preceded the alpha perceptual echo. The dominant frequency of the gamma echo was 

subject-specific thereby reflecting the individual dynamical properties of the early visual 

cortex. To understand the neuronal mechanisms generating the gamma echo, we 

implemented a pyramidal-interneuron gamma (PING) model that produces gamma 

oscillations in the presence of constant input currents. Applying a broadband input current 

mimicking the visual stimulation allowed us to estimate TRF between the input current and 

the population response (akin to the local field potentials). The TRF revealed a gamma echo 

that was similar to the one we observed in the MEG data. Our results suggest that the visual 

gamma echo can be explained by the dynamics of the PING model even in the absence of 

sustained gamma oscillations.  

 

Introduction 

The properties of the neuronal dynamics governing the visual system are highly debated. 

Some emphasize the neuronal firing rate [1–3] and evoked activity [4] in response to visual 

stimuli. Others emphasize the oscillatory neuronal dynamics. In particular, neuronal 

oscillations in the gamma band have been proposed to bind visual features by means of 

synchronized spiking [5,6] as well as supporting communication between different brain 

regions [7,8]. 

In this paper we are applying a new tool for investigating the dynamical properties of the 

visual cortex in humans. We are making use of a new type of LED/DLP projector (Propixx, 

VPixx Technologies Inc., Canada) that has a refresh-rate of up to 1440 Hz. The projector 

makes it possible to stimulate the visual system with broadband flickering stimuli while 

measuring the brain response using magnetoencephalography (MEG). This approach allows 

for estimating the temporal response function (TRF). The TRF is the kernel that best 

explains the brain response when convolved to the broadband input signal. In other words, 

the TRF can be considered a simple model capturing the filter properties of the visual cortex. 

In previous studies, such an approach has been used to investigate the dynamical properties 

of the visual system at lower frequencies. Using a broadband flicker (1–80 Hz), the TRF was 

approximated from the cross-correlation between the EEG and the input signal [9]. This 

approach revealed a robust response in the alpha range termed “the perceptual echo”. Yet, 

the authors did not report dynamical properties in the gamma range most likely due to the 

limited refresh rate of the monitor [9]. The aim of this study was to ask if the TRF also has a 
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band-limited response at higher frequencies, to uncover the faster dynamical properties of 

the visual system. As we will show, the TRF function has a clear response at higher 

frequencies which is limited to the gamma band.   

The oscillatory dynamical properties of the cortical tissue have also been investigated by 

means of computational modelling. This has resulted in the notion that neuronal gamma 

oscillations are generated by the so-called pyramidal interneuron gamma (PING) mechanism 

[10–12]. According to this mechanism, GABAergic interneurons play an essential role in 

determining the frequency and synchronization properties for the generation of gamma 

oscillations. Basically, the decay of the GABAergic feedback is a key variable determining 

the period of each gamma cycle as the GABAergic hyperpolarization prevents neuronal firing 

of both pyramidal and interneurons of about 10-20 ms [13]. Furthermore, the GABAergic 

feedback also serves to synchronize the population activity [14,15] The pyramidal neurons 

also play an important role in the mechanism. In each cycle, the firing of the pyramidal cells 

serve to excite the interneurons thus initiating the next oscillatory cycle. This mechanism 

was first uncovered in hippocampal rat slices [16] and supported by computational modelling 

[10–12]. Later, the GABAergic based mechanism was also investigated using optogenetic 

studies in the somatosensory cortex [17,18] and the visual system [19] in mice. A human 

MEG study demonstrated that gamma oscillations are strongly modulated after the 

GABAergic feedback was manipulated by the GABAergic agonist lorazepam in a double-

blind study. As predicted by the PING model, the visual gamma oscillations decreased in 

frequency while they increased in power as the GABAergic feedback increased with the 

administration of lorazepam [20]. Other studies have reported a link between gamma 

frequency and the GABA concentration as measured by magnetic resonance spectroscopy 

(MRS) in both visual and somatosensory regions [21–23] (but see [24]). Finally a PET study 

measuring GABA(A) receptor density found a link to gamma frequency [25].  

In this study, we asked if the dynamical properties of the PING model can account for the 

gamma response in the TRF we observed in the MEG data. The basic idea was to simulate 

a network model for gamma oscillations with a broadband signal. This allowed us to estimate 

the TRF of the network model and relate it to the TRF from MEG study. If the network model 

can procure a TRF similar to the one observed in the MEG data, then we have provided 

novel insight on the neuronal dynamics governing the early visual system.  

In short, to investigate the dynamical properties of the visual system, we recorded the MEG 

while stimulation the visual system using a broadband (1–720 Hz) visual flicker. This allowed 

us to estimate the TRF of the visual system. As we will demonstrate, this resulted in a clear 

band-limited response in the gamma band. We then constructed a physiologically realistic 

network model that could generate gamma-band oscillations by a PING-type mechanism. 

This model allowed us to account for empirically observed TRF in the gamma band. 

 

Methods 

Participants 

Five participants (mean age: 33; age range: 28-38; 1 female) with no history of neurological 

disorders partook in the study. The study was approved by the local ethics committee 

(University of Birmingham, UK) and written informed consent was acquired before enrolment 

in the study. All participants conformed to standard inclusion criteria for MEG experiments. 

Participants had normal or corrected-to-normal vision. 

Experimental paradigm  
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Two moving grating stimuli were presented bilaterally (Fig. 1A). The participants were 

instructed to focus on the fixation point and press the button when a cue indicating the 

direction of motion (i.e. coherent or incoherent) occurred at the fixation point. The grating 

stimuli moved at a constant speed of 0.5 degree/s, and the stimuli were on for 3 s. The 

luminance of the stimuli was modulated using a broadband (i.e. noise with uniform 

distribution) flickering signal (Fig. 1B). The broadband signals for the left and right stimuli 

were uncorrelated (the correlation was below 0.01). We used the PROPixx DLP LED 

projector (VPixx Technologies Inc., Canada) to present the visual stimuli at a high refresh 

rate of 1440 Hz with a resolution of 960 x 600 pixels (see, [26]). The experimental paradigm 

was implemented in MATLAB 2017a (Mathworks Inc., Natick, USA) using Psychophysics 

Toolbox 3.0.11 [27]. 

 

Fig. 1. Experimental paradigm. A) Two grating stimuli with either coherent or incoherent 

motion were presented bilaterally. Motion started 0.5 s after the onset of the flickering stimuli 

and lasted for 3 s. (B) Luminance of the left and right grating stimuli was modulated by two 

independent broadband signals. 

 

Magnetoencephalography data processing 

The MEG data were acquired using a 306-sensor TRIUX Elekta Neuromag system (Elekta, 

Finland). The magnetic signals were bandpass filtered from 0.1 and 330 Hz using embedded 

anti-aliasing filters and then sampled at 1000 Hz. The acquired time series were segmented 

into 4 s epochs; −1 to 3 s relative to the onset of the stimuli motion. Simultaneously with the 

MEG, we also acquired the eye-movements and blinks using an EyeLink eye-tracker (SR 

Research, Canada). Eye blinks were detected in the X‐axis and Y‐axis channels of the eye 

tracker by applying a threshold of 5 SD. The saccades were detected using a scatter diagram 

of X‐axis and Y‐axis time series of the eye-tracker for each trial. An event was classified as a 

saccade if the focus away from the fixation point by 2° and lasted longer than 500 ms. Trials 

contaminated by blinks and saccades were removed from further analysis. We also rejected 

trials containing large-amplitude events (above 5 SD) in MEG which are mainly associated 

with motion and muscle artefacts. As a result, the number of trials that remained after 

exclusion was 142 ± 10 (mean ± SD) per participant. For each participant, the number of trials 

per condition was equalized by randomly selecting the same number of trials. 
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Power spectral density  

The power spectral density was estimated using Welch’s method as implemented in the 

SciPy toolbox [28]. To this end, the 5 s epoch of data was divided in 1 s segments with 50% 

overlap and weighted by a Hanning window. The same approach was applied to estimate 

the power spectral density of the modelled data. 

Temporal response functions 

Temporal response functions (TRF) were estimated using ridge regression as implemented 

in mTRF toolbox [29]: 

𝑇𝑅𝐹 = (𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇𝑥 

where S is the lagged time series of the stimulus, x denotes neuronal response, I is the 

identity matrix, and λ is the smoothing constant or “ridge parameter”. In this study, the 

smoothing constant λ was set to 1. 

The TRF were computed between the broadband flickering signal and the MEG gradiometer 

with the strongest visual flicker response. In order to assess contribution of 50 Hz line noise 

to the TRF, we also computed the TRF for MEG magnetometer with strongest response to 

the visual flicker before and after applying source space separation (SSS) method [30] for 

noise reduction. For the modelled data we calculated the TRF between the broadband input 

current and the mean membrane potential for the E-cells.  

Time-frequency analysis 

The time-frequency representations of power of the TRF were computed using Hanning 

tapper approach as implemented in Fieldtrip toolbox [31]. We used time-windows of different 

length spanning 5 cycles at the specific frequency. The analysed frequency range was 5–

100 Hz with steps of 1 Hz and the time ranged from -0.1 to 0.2 (or 0.7 as in Figure 1) 

seconds with steps of 5 ms. 

Model  

We modelled the neuronal populations of cortical areas as a network of interconnected 

excitatory and inhibitory neurons (Fig. 2A). The network model was composed of 160 regular 

spiking excitatory pyramidal neurons (E-cells), and 40 fast-spiking inhibitory interneurons 

neurons (I-cells).   

Neuronal model 

We used the neuronal model proposed by Izhikevich [32] to simulate the membrane 

potentials of the excitatory and inhibitory neurons.   

𝑣′ = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 + 𝐼𝑠𝑦𝑛                                          (1) 

𝑢′ = 𝑎(𝑏𝑣 − 𝑢)                                                            (2) 

𝑠𝐴𝑀𝑃𝐴
′ = 𝛼𝐴𝑀𝑃𝐴𝐹(𝑣)(1 − 𝑠𝐴𝑀𝑃𝐴) − 𝛽𝐴𝑀𝑃𝐴𝑠𝐴𝑀𝑃𝐴                                     (3) 

𝑠𝐺𝐴𝐵𝐴
′ = 𝛼𝐺𝐴𝐵𝐴𝐹(𝑣)(1 − 𝑠𝐺𝐴𝐵𝐴) − 𝛽𝐺𝐴𝐵𝐴𝑠𝐺𝐴𝐵𝐴                                      (4) 

 

where v represents the membrane potential of the simulated neuron, I determines the input 

current, u is a slow recovery variable. The model also includes a reset: when v exceeds 30 

mV, an action potential is assumed, and the variables are reset: v = c and u = u + d. The 
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coefficients a = 0.02 and b = 0.2, c = -65 and d = 8 define the regular spiking E-cells, while a 

= 0.1 and b = 0.2 c = -65 and d = 2 define the fast spiking I-cells. The variable s represents 

the gating for synaptic input and includes both sAMPA and sGABA defined for each sending E-

cell and I-cell, respectively. 

To model the kinetics of the AMPA and GABA neurons, we followed the formalism from 

Wang and Buszaki [11]. 

The term 𝐼𝑠𝑦𝑛 reflects the synaptic current in the receiving neurons whereas s reflects the 

gating variable in the sending neuron,  

𝐼𝑠𝑦𝑛 = ∑ 𝐶(:,𝑖) ⋅ 𝑠𝐴𝑀𝑃𝐴 ⋅ (𝑣𝐴𝑀𝑃𝐴 − 𝑣)𝑁
𝑖=1 + ∑ 𝐶(:,𝑗) ⋅ 𝑠𝐺𝐴𝐵𝐴 ⋅ (𝑣𝐺𝐴𝐵𝐴 − 𝑣)𝑀

𝑗=1                         (5) 

where N is the number of excitatory neurons, M is the number of inhibitory neurons, C is the 

connectivity matrix, vAMPA and vGABA are reversal potentials of AMPA (vAMPA = 0 mV) and GABA 

receptors (vGABA = -70 mV on E-cells and vGABA = -75 mV on I-cells), respectively. The 

differential equation (3 and 4) includes parameters channel opening rate αAMPA = 12 (ms–1) 

and the channel closing rate βAMPA = 0.5 (ms–1) for AMPA receptors, and αGABA = 12 (ms–1) 

and βGABA = 0.1 (ms–1) for GABA receptors; F denotes a sigmoid function: 𝐹(𝑣) =

1 (1 + 𝑒𝑥𝑝(−𝑣/2))⁄ . 

Connectivity between E-cells and I-cells was bidirectional, and the connection weights (or 

connection strength) between E-cells (cee), between I-cells (cii) as well as from E-cells to I-

cells (cei), and from I-cells to E-cells (cie) were specified in the connectivity matrix C = [cii, cie; 

cei, cee] (see, Fig. 3A). The specific connectivity weights between excitatory and inhibitory 

neurons were adjusted to maximize the robustness of the oscillations, and the following 

values were used cee = 0.001, cii = 0.200, cei = 0.050, cie = 0.010. Additionally, each element 

in the connectivity matrix was multiplied with random values drawn from a uniform 

distribution to ensure heterogeneous connectivity (range [0, 1]) (see, Fig. 3A).   

Population activity and local field potential produced by the model 

The population activity of the model reflecting the local field potentials was computed by 

summing the membrane potentials of the E-cells. This somehow approximates the fields 

measured by MEG which are generated by the sum of dendritic currents in pyramidal cells 

[33].  

To solve the differential equations (1-4) numerically, we used the Euler method with the 

time-step t = 1 ms. 

 

Results  

We used a moving grating paradigm in which the left and right visual stimuli were generated 

using orthogonal broadband random signals while we recorded the ongoing MEG (Fig. 1). 

Broadband visual stimulation reveals alpha and gamma echoes in the visual system 

The temporal response function (TRF) of a system can be estimated by deconvolving its 

input and output [29]. We used ridge regression (see, Methods) to compute the TRF for the 

MEG signals from sensors over visual cortex while stimulating with a broadband random 

visual input. Figure 2 shows the TRF for an occipital sensor for a representative participant. 

The TFR has a rich temporal structure (Fig. 2A, black line). Applying a bandpass filter in the 

gamma band (40–100 Hz) to the TRF revealed an early response (Fig. 2A, blue line) at 
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about 40 ms. A bandpass filter in the alpha band (8–13 Hz) revealed a later response 

comprising several cycles. A time-frequency analysis of power further demonstrated the 

presence of band-limited responses in the alpha and gamma band in the TRF (Fig. 2B). 

While the late response – the ”alpha perceptual echo” – was reported in the previous studies 

(e.g. [9], the early response – the ”gamma echo” – is so far unobserved property of the 

visual system.   

 

Fig. 2. TRF of the human visual cortex derived from a random broadband visual input train. 

(A) The TFR filtered in the broad band (1–100 Hz; black line), the gamma band (40–100 Hz; 

blue line) and the alpha band (8–13 Hz; gray line). (B) Time-frequency representation of 

power of the TRF.  

 

TRF show individual resonance frequency of gamma echo 

To further evaluate the characteristics of the gamma echo, we computed TRF for five 

individual participants using the MEG gradiometers with strongest response to the 

broadband input signal. The frequencies of the individual gamma echoes ranged from 46 to 

56 Hz and were close to 48 Hz on average (Fig. 3). As we will discuss later these differences 

exclude that the response in the gamma band is a consequence of 50 Hz line noise. The 

response in the gamma band were strongest at 50 – 100 ms with a duration of 2 –3 cycles.  
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Fig. 3. TRF and the associated time-frequency representation of power for individual 

participants. Note the robust response in 40–60 Hz gamma range. Gray lines depict the TFR 

at 1–100 Hz while the black lines show the response filtered at 40–100 Hz.  

 

The gamma echo is close to 50 Hz but not due to line noise 

To ensure that the 50 Hz line noise does not contribute to the gamma echo, we assessed 

the power spectral density and TRF for magnetometers before and after applying the source 

space separation (SSS) method [30] as implemented in MNE Python toolbox [34]. SSS 

removes artifacts caused by external disturbances such as line noise, and hence, provides 

possibility to evaluate contribution of 50 Hz noise to the gamma echo. We performed the 

analysis on the magnetometers as they are particularly sensitive to 50 Hz line noise and 

hence, they provide a worst case setting. The results clearly showed that suppression of 50 

Hz noise in data did not change the characteristics of gamma echo (Fig. S1) in any of the 

participants. This demonstrates that the gamma echo is not biased by line noise. 

PING based model of gamma oscillations  

We implemented a pyramidal-interneuron gamma (PING) [10,12,16] network model with 

biologically plausible synaptic currents [11] attempting to account for the TRF in the gamma 

band. The model consisted of interconnected excitatory (E) and inhibitory (I) cells (Fig. 4A). 
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The connectivity matrix in Fig. 4B describes the connection strengths between all the cells. 

In this model, we used a relatively low connection strength between E-cells (cee = 0.001) and 

high connection strength between I-cells (cii = 0.200), while keeping connectivity between E-

to-I-cells (cei = 0.050) and I-to-E-cells (cie = 0.010) at a moderate level. These values were in 

line with previous studies e.g. [35]. For the connectivity matrix in Fig. 4B and constant input 

currents (25 pA) to the E-cells and I-cells (Fig. 4C), the model produced oscillatory neuronal 

activity in the gamma band (Fig. 4D). The membrane potentials of the excitatory neurons 

were summed to approximate the local field potentials, i.e. the population activity (Fig. 4E). 

The model generated robust oscillations at 48 Hz as shown in the power spectrum (Fig. 4F). 

 

Fig. 4. The PING model with constant input current produces robust neuronal oscillations at 

around 48 Hz. (A) Neuronal architecture; the simulated network consisted of interconnected 

E-cells (N=160) and I-cells (N=40). (B) Connectivity matrix between E-cells and I-cells. (C) 

The inputs current to E-cells (black) and I-cells (orange) were constant. (D) Spike rastergram 

for E-cells (blue) and I-cells (orange) shows temporal synchronization among the cells. (E) 

The mean membrane potential of the E-cells exhibited prominent oscillations. (D) Power 

spectral density of the mean membrane potential for the E-cells shows a clear peak at 48 

Hz. 

 

Broadband input to the model produces a gamma echo at the resonance frequency  

In order to estimate the TRF of the network dynamics of the model, we applied broadband 

input current modelled as a sum of constant current of 16 pA and random (uniform) noise 

with amplitude of 16 pA to the E-cells and a constant current of 25 pA to I-cells (Fig. 5A). 

This simulates the LGN input to the area V1 in the visual cortex. For the broadband input 

current, the model produced neuronal activity (Fig. 5A-D) similar to those of the constant 

input currents (see, Fig. 4). In the presence of broadband input, spiking activity of E-cells 

remained highly synchronised (Fig. 5B), so that mean membrane potentials showed 

oscillations that can be readily observed in population response (Fig. 5C) and as well as in 

the power-spectral density (Fig. 5D). By computing the TRF between the input broadband 
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current and output voltage, we observed a gamma echo (Fig. 5E) similar to what we 

observed in the MEG data. Importantly, the frequency of the echo matched the resonance 

frequency of the model (Fig. 5F).   

 

Fig. 5. Broadband input current to E-cells produces damped oscillations in the TRF – the 

gamma echo. (A) Broadband input current to E-cells (black line) and constant input current 

to I-cells (orange line). (B) Spike rastergram for E-cells and I-cells for broadband input 

currrent. (C) The mean membrane potential of the E-cells in response to fluctuating input 

currents. (D) Power spectral density of mean membrane potentials of the E-cells. (E) TRF 

with respect to the mean membrane potentials of the E-cells in relation to fluctuating input 

current. Note the clear “gamma echo”. Gray and black lines depict respectively raw and the 

filtered TRF (30-60 Hz). (H) Time-frequency representation of power of the TRF.  

 

Oscillatory inputs produce maximum power at the resonance frequency  

We further explored the model response by applying an oscillatory input modelled as a sum 

of constant current of 23 pA and a sinusoidal function with a given frequency (0 – 100 Hz) 

and an amplitude of 2.5 pA to E-cells while keeping the input current to the I-cells constant at 

25 pA (Fig. 6A). The oscillatory input increased synchronization among the E-cells  in the 

gamma band (Fig. 6B) compared to the absence of an oscillatory input (see, Fig. 4D). Figure 

6C shows the average membrane potential of the E-cells. The oscillatory input current 

(mimicking visual stimulation) at the resonance frequency (48 Hz) produced stronger 

response compared to a response at non-resonance (e.g. 68 Hz) frequency input (Fig. 6D). 

Interestingly, when driving at non-resonance frequency the model still produced a response 

at the resonance frequency. To assess the spectral profile of the model in response to 

different frequencies, we applied a sinusoidal input current ranging from 0 to 100 Hz. The 

results clearly showed an amplified peak in the power spectral density at the resonance 

frequency at ~48 Hz (Fig. 6E). It should be noted that the second peak at ~96 Hz was a 

harmonic of the resonance frequency in the PING model [36].  
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Fig. 6. Oscillatory input current reveals an amplification of oscillatory dynamics at the ~48 Hz 

resonance frequency. (A) Oscillatory input current to E-cells (black line) and constant current 

to I-cells (orange line). (B) Spike rastergram for E-cells and I-cells. (C) The mean membrane 

potential of the E-cells. (D) Example of power spectral density for input current at 48 Hz 

(resonance frequency, black line) and at 68 Hz (non-resonance, orange line). (E) Power 

spectral density of mean membrane potential for oscillatory input over multiple frequencies, 

0–100 Hz.  

 

Discussion 

In this study, we used broadband visual stimulation combined with MEG to assess the 

dynamical properties of the human visual cortex. We did this by estimating the temporal 

response function (TRF), i.e. the kernel best explaining the MEG signal from visual cortex 

when convolved to the broadband visual input. In the TRF we observed an early response 

limited to the gamma band that we term the gamma echo. We also observed the known 

perceptual echo in the alpha band [9]. To explore the neuronal mechanisms producing the 

gamma echo, we implemented a biophysically plausible pyramidal-interneuron-gamma 

(PING) model. When driving the model by a broadband input and estimating the respective 

TRF, we observed a gamma echo similar to the one of the empirical data. Based on these 

simulations, we suggest that the gamma echo is produced by a network in which the 

dynamical properties are largely determined by GABAergic interneurons; i.e. a PING-type 

network adjusted to produce damped oscillations in the gamma band can account for the 

gamma echo.  

Relationship between alpha and gamma echoes 

Our findings reveal that both the alpha and gamma echo reflect the intrinsic properties of the 

visual system but at slightly different times. While the perceptual echo in the alpha band 

occurs at around 150 ms after stimulus onset, the gamma echo emerges as early as 30 ms 

and peaks at about 60 ms. Earlier studies have demonstrated that the alpha echo shows 
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maximum power at the individual alpha frequency [9]. Similarly, we found that the central 

frequencies of the gamma echo were specific to the participants. Our simulation results 

showed that the gamma echo of the model was strongly related to the resonance properties 

of the neuronal network. We suggest that the gamma echo reflects the intrinsic resonance 

properties of the early visual system.  

The gamma echo has not been observed in previous studies applying broadband stimulation 

(e.g. [9,37] since these studies relied on projectors with a relatively low refresh rate of 100 to 

160 Hz. The resulting temporal resolution of 6 – 10 ms corresponds to at least 3 samples for 

a 48 Hz-cycle, and thus, it does not allow to fully capture gamma-band activity. In this study, 

we used a projector with a refresh rate of 1440 Hz which allows presenting stimuli with a 

sub-millisecond temporal resolution allowing for optimally estimating the gamma echo.    

A recent study showed that alpha echoes have the characteristics of travelling waves [38]. 

They further suggest that the spatio-temporal dynamics of the alpha echo is consistent with 

the timing of the neuronal activity that one might expect for feedforward and feedback 

communication associated with predictive coding. Indeed, both alpha and gamma 

oscillations might play a key role in the predictive coding [39,40], and thus, propagation 

properties associated with the gamma echo may provide crucial insight on the feedforward 

dynamics associated with predictive coding. 

Induced gamma oscillations and gamma echo 

Both stationary as we well as contracting visual grating stimuli have been shown to induce 

robust narrowband endogenous gamma oscillations [41–43]. The characteristics of these 

oscillations such as amplitude and frequency depend on the parameters of the stimuli (e.g. 

orientation, spatial frequency, etc.; [42,44,45]). Importantly, human visual gamma oscillations 

decrease in frequency and increase in power with the application of the GABAergic agonist 

Lorazepam [20]. This suggests that GABAergic interneurons and thus the classic PING 

mechanism is responsible for generating the human visual endogenous gamma oscillations.  

Recently it was shown that a visual flicker could not entrain endogenous gamma oscillations 

[46]. This was demonstrated by displaying moving visual gratings superimposed with a 

constant flicker and flicker frequencies from 50 to 100 Hz were explored. If for instance, the 

endogenous gamma oscillation frequency for a given participant was 64 Hz, there was no 

amplification of the gamma oscillations when flickering at that frequency. Rather, the flicker 

signal and the endogenous gamma oscillations seemed to co-exist. This suggests that 

different neuronal populations generate respectively the flicker response and the 

endogenous gamma oscillations. This does however pose an interesting question: what is 

the relationship between the endogenous gamma oscillations and the gamma echo, given 

that PING-mechanisms seems to be responsible for both types of dynamics? We propose 

that the gamma echo is produced by early visual cortex (most likely V1) whereas the 

endogenous gamma oscillations are produced slightly down-stream (e.g. V2). This scheme 

is indeed supported by source modelling which localized the generators of the flicker 

response and the gamma oscillations in neighbouring but different areas [46]. It should also 

be noted that the frequency of the grating induced endogenous gamma oscillations typically 

are in the range of 45 to 80 Hz [42,43,46]; and the gamma echo is consistently in the very 

lower end (~48 Hz) of this range. Interestingly, Gulbinaite and colleagues [47]  found a 

resonance peak at about 48 Hz when driving the visual system exploring 3 to 80 Hz range. 

In conclusion, we do not believe that the gamma echo we here report is reflecting the 

dynamics of the endogenous gamma oscillations. While the gamma echo can be explained 

by the dynamics of the PING model, it seems to reflect the properties of a damped oscillator 

with resonance properties at ~48 Hz located in early visual cortex. This mechanism coexists 
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with a network slightly downstream in visual cortex which generates endogenous gamma 

oscillations in the range of about 45 to 80 Hz.     

The gamma echo is not related to 50 Hz line noise.  

One might be concerned that the gamma echo is partly a consequence of the 50 Hz line 

noise given the similar frequencies. However, our analysis on magnetometers (see, Fig. S1) 

clearly demonstrates that suppression of the 50 Hz line noise does not change the 

characteristics of the gamma echo in any of the participants. Also note that several other 

studies report on gamma activity in the vicinity of 50 Hz [42,43,48]. Finally, the gamma echo 

did vary from 46 to 56 Hz over participants. We conclude that the gamma echo is not biased 

by the 50 Hz line noise.  

 

Conclusion 

Using broadband visual input stimuli were here provide evidence for a band-limited temporal 

response function in the gamma that we term the gamma echo. A computational model 

showed that a PING-type of mechanism based on a network producing damped oscillations 

in the gamma band could account for the gamma echo. Nevertheless, the gamma echo is 

distinct from the mechanism producing endogenous gamma oscillations. The stage is now 

set for further investigating how the gamma echo is modulated by tasks such as spatial 

attention as well as uncovering how the echo might propagate in the visual hierarchy.  
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Supporting information 

 

 

Fig. S1. Suppression of line noise in data does not change the characteristics of the gamma 

echo in representative magnetometers. Each panel shows the power spectral density (PSD) 

and TRF for individual participants before (blue line) and after (orange line) applying the SSS 

method to suppress 50 Hz line noise. The echos remain strong after the 50 Hz line noise is 

suppressed.    
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