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Abstract 

We develop an accurate and efficient method to detect marker genes among many subtypes 

using subtype-enriched expression profiles. We implement a Cosine based One-sample Test 

(COT) Python software that is easy to use and applicable to multi-omics data. We demonstrate 

the performance and utility of COT on gene expression and proteomics data acquired from 

tissue or cell subtypes. Formulated as a one-sample test with Cosine similarity test statistic in 

scatter space, the detected de novo marker genes will allow biologists to perform a more 

comprehensive and unbiased molecular characterization, deconvolution and classification of 

complex tissue or cell subtypes. 
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Introduction 

Ideally, a molecularly distinct subtype would be composed of molecular features that are 

uniquely expressed in the cell or tissue subtype of interest while in no others – so called 

subtype-specific marker genes (SMG) (Wang, Hoffman et al. 2016, Hunt, Freytag et al. 2019). 

SMG plays a critical role in the characterization, deconvolution, or classification of complex 

tissue or cell subtypes (Yu, Feng et al. 2010, Parker, Chen et al. 2020). With the increasing 

availability of subtype-enriched molecular expression profiles acquired by single cell 

sequencing, cell sorting, microdissection, or mathematical deconvolution, having data-driven 

software tools to detect SMG, applicable to high throughput multi-omics data, will be essential 

for facilitating next steps in systems biology research.  

We have developed an accurate and efficient method - Cosine based One-sample Test 

(COT) - to detect SMG among many subtypes using subtype-enriched expression profiles (Fig. 

1A). Importantly, COT uses the cosine similarity between a molecule’s cross-subtype 

expression pattern and the exact mathematical definition of SMG as the test statistic, and 

formulates the detection problem as a one-sample test. Under the assumption that a significant 

majority of genes are associated with the null hypothesis, COT approximates the empirical null 

distribution for calculating p values (Efron 2004). We implement and test the latest 

functionalities of COT workflow in Python through a three-step assessment. We have 

previously demonstrated the successful applications of COT prototype on gene expression and 

proteomics data (Yu, Feng et al. 2010, Chen, Lu et al. 2020). 

Results 

Mathematically, a SMG of subtype k is defined as a gene expressed only in subtype k, 

approximately (Wang, Hoffman et al. 2016, Hunt, Freytag et al. 2019) 

𝑠𝑘(𝑖SMG, l) = {
𝑠𝑘(𝑖SMG, l) ≫ 0, 𝑙 = 𝑘,

0, 𝑙 ≠ 𝑘.
                                         (1) 

where 𝑠𝑘(𝑖SMG, l) is the expression of gene i in subtype k in reference to subtype l, and is 

assumed to be nonnegative. Accordingly, the cross-subtype expression patterns of ideal SMG 

can be concisely represented by the Cartesian unit vectors �̂�𝑘. Fundamental to the success of 

the COT method is the newly-proposed test statistic cos(𝒔(𝑖), �̂�𝑘) that measures directly the 

distance between the cross-subtype expression patterns of gene i and the ideal SMG of subtype 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.10.426146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.10.426146


4 

k in scatter space. The known cross-subtype expression patterns of ideal SMG associated with 

the alternative hypothesis permit the use of a one-sample test to detect significant SMG, with 

0 < cos(𝒔(𝑖), �̂�𝑘) < 1. 

In relation to previous work, the effort to detect SMG can be traced back to One-Versus-

Rest (OVR) test (Yu, Feng et al. 2010),  One-Versus-One (OVO) test (Hunt, Freytag et al. 

2019), and most recently One-Versus-Everyone (OVE) test (Wang, Hoffman et al. 2016). We 

and others have recognized that the test statistics used by most existing methods do not exactly 

satisfy SMG definition (1) and often require ad hoc OVE set intersection (Yu, Feng et al. 2010, 

Hunt, Freytag et al. 2019, Chen, Lu et al. 2020). 

Following normalization and antilogarithm the COT software tool performs the 

following major analytics steps (Fig. 1A), (i) Data Preprocessing. Molecule features whose 

norms of cross-subtype expression levels are lower or higher than pre-fixed thresholds are 

removed as noise or outliers. (ii) Test Statistic Calculation. For each of remaining genes, cosine 

similarity cos(𝒔(𝑖), �̂�𝑘)  between averaged cross-subtype expression patterns and SMG 

reference is calculated. (iii) Null Distribution Estimation. The empirical null distribution is 

summarized over all genes and approximated by a mixture of normal distributions. (iv) SMG 

Figure 1. COT workflow and case studies. A. Main functional modules in COT Python 

software. B.  The receiver operating characteristic curves of four existing methods in overall 

comparison. C. Simplex plots and heatmaps of SMG (color-coded) detected by COT, OVO 

test, and a priori in benchmark assessment (column – protein, row – sample). D. Top protein 

SMG detected by COT on vascular specimens, and top enriched pathways including a detailed 

cholesterol metabolism circuitry (column – sample, row – protein). 
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Detection. Based on the observed test statistic and null distribution, SMG is accepted subject 

to a proper one-sided significance threshold. 

We conduct three-step experiments (overall comparison, benchmark assessment, 

biomedical case study), on two types of omics data (gene expression and proteomics), to 

demonstrate the performance of COT Python tool. We first conducted an overall comparison 

among ANOVA, OVR test, OVO test, and OVE test, using a classical differential analysis 

setting and simulations generated from real gene expression data (GSE28490). Evaluated by 

the receiver operating characteristic analyses, this performance survey indicates that 

OVE/OVO test outperforms most other methods, detailed in Fig. 1B.  

We then conducted a benchmark assessment of the COT tool, using a one-sample test 

setting and the same gene expression data, in comparison with the top performer OVE/OVO 

test. The geometric proximity of the 144 SMG detected by COT, OVE/OVO, and a priori, to 

the vertices of scatter simplex and the heatmaps are given in Fig. 1C. The assessment shows 

that COT tool outperforms the top performer by detecting more ideal SMG.  

We further demonstrated the utility of COT tool on experimentally-acquired proteomics 

data from a cohort of “pure” fibrous plaque (FP), fatty streak (FS), and normal (NL) vascular 

specimens (Parker, Chen et al. 2020). COT detected 50 FP, 2 FS, and 8 NL markers, 

respectively. The heatmap and enrichment analysis results are given in Fig. 1D. These proteins 

are highly consistent with the SMG detected by tissue deconvolution on a much larger cohort 

(Herrington, Mao et al. 2018). The KEGG maps of FP markers show that nearly all components 

of the lipoprotein and immunoglobulin pathways have been detected. Intriguingly, two FS 

markers have previously been reported functionally involved in vascular pathology and 

atherosclerosis progresses. 

Discussion and outlook 

The COT software tool provides an accurate data-driven marker detection tool where the test 

statistic matches exactly the definition of SMG and permits the novel formulation of a one-

sample test. Furthermore, the test statistic cos(𝒔(𝑖), �̂�𝑘)  is calculated in reference to the 

alternative hypothesis, making the resulting p-values more meaningful and avoiding the caveat 

in general significant tests with no knowledge on the alternative hypothesis (Efron 2004). 

Moreover, COT is efficient in that neither OVE set intersection nor intractable sample 

permutation is needed (Hunt, Freytag et al. 2019, Chen, Lu et al. 2020). While the case study 
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here involves only transcripts and proteins, COT tool is applicable to other omics types 

(Supplementary Information). The nonnegativity requirement in COT is critical as similarly 

imposed by classical t-ratio test. 

Fundamental to the success of the COT method is the newly-proposed test statistic 

cos(𝒔(𝑖), �̂�𝑘) that measures directly the distance between the cross-subtype expression patterns 

of gene i and the ideal SMG of subtype k in scatter space. The known cross-subtype expression 

patterns of ideal SMG associated with the alternative hypothesis permit the use of a one-sample 

test to detect significant SMG, making the resulting p-values more meaningful in the 

framework of Bayes hypothesis testing and avoiding the caveat in general significant tests with 

no knowledge on the alternative hypothesis (Efron 2004). 

 More importantly, COT framework is efficient in that neither OVE set intersection nor 

intractable sample permutation is needed in estimating the null distribution (Hunt, Freytag et 

al. 2019, Chen, Lu et al. 2020), where a significant majority of genes are assumed to be 

associated with the null hypothesis. The null distribution plays a crucial role in large-scale 

multiple testing. However, because the size of subtype-enriched samples is often relatively 

small and the non-SMG patterns are highly complex, classical methods to estimate the null 

distribution in a two-sample test setting is impractical or intractable (Chen, Lu et al. 2020) and 

in appropriate (Efron 2004). The important assumption is that due to the significant large 

proportion of null features, the data can show the null distribution itself (Efron 2004). The 

theoretical null may fail in some cases, which is not completely wrong but needs adjustment 

accordingly. In our study, we adopted a mixture of five normal distributions (finite normal 

mixture – FNM) to approximate the empirical COT distribution (Equihua 1988, Wang, Adali 

et al. 1997). Moreover, instead of modeling only the null distribution and using FDR-guided 

iterative estimation strategy, one can also simultaneously model and estimate both the null and 

alternative distributions using a proper mixture distribution when the number of features 

associated with the alternative hypothesis is sufficient (Wang, Adaly et al. 1998). 

 In relation to our own recent work (Chen, Lu et al. 2020), the so-called subtype-specific 

differentially-expressed genes (SDEG) are defined as being most-upregulated in only one 

subtype but not in any other. In other words, we considered any case with at least 'two-equal 

winners’ as non-SDEG. Clearly, SMG is different from and much more stringent than SDEG.  

 In large-scale multiple testing, standardization of test statistic to summarize a unified 

null distribution is widely adopted for two reasons, i.e., information cross-fertilization and 
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comparable z-value conversion among all genes. In classical methods, the test statistics are 

often scaled by estimated sampling standard deviation using either parametric formula or 

bootstrapping. In our work, importantly, COT uses a cosine score function that is 

norm/magnitude invariant so that the variance stabilization is automatically achieved. 

Methods  

An important but frequently underappreciated issue is how best to define and detect a cell or 

tissue subtype-specific marker genes (SMG) among many subtypes. Ideally, a molecularly 

distinct subtype would be composed of molecular features that are uniquely expressed in the 

cell or tissue subtype of interest while in no others – so called subtype-specific marker genes 

(SMG) (Kuhn, Thu et al. 2011, Hart, Sheftel et al. 2015, Newman, Liu et al. 2015, Chen, Wu 

et al. 2020, Patrick, Taga et al. 2020). 

The most frequently used methods rely on an ANOVA model where the null hypothesis 

states that samples in all subtypes are drawn from the same population. Another population 

method is the One-Versus-Rest Fold Change test or One-Versus-Rest t-test (OVR-FC/t-test) 

that is based on the ratio of the average expression in a particular subtype to the averaged 

expression in all other (rest) samples (Shoemaker, Lopes et al. 2012, Zhang, Chen et al. 2014, 

Chikina, Zaslavsky et al. 2015). Alternative strategies include One-Versus-One (OVO) t-test 

and Multiple Comparisons with the Best (MCB) (Hsu 1996, Wang, Master et al. 2006, 

Newman, Liu et al. 2015). Importantly, we and others have recognized that the test statistics 

used by most existing methods do not exactly satisfy SMG definition and often ad hoc OVE 

set intersections have been used to finalize SMG (Wang, Hoffman et al. 2016, Chen, Lu et al. 

2020, Patrick, Taga et al. 2020).  

To address the critical problem of the absence of accurate SMG detection methods, we 

have previously proposed, tested and applied One-Versus-Everyone Fold Change (OVE-FC) 

test (Yu, Feng et al. 2010, Yu, Li et al. 2011) and more recently blended OVE/OVO 

permutation/t-test (Chen, Lu et al. 2020). We have demonstrated real biomedical utilities of 

these COT prototypes on gene expression and proteomics data for the purpose of characterizing 

or classifying complex subtypes. These applications have led to novel findings and hypotheses 

(Herrington, Mao et al. 2018, Parker, Chen et al. 2020). The COT software tool reported here 

evolves from our previous work, while uses the cosine similarity between a molecule’s cross-

subtype expression pattern and the exact mathematical definition of SMG as the test statistic, 
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and formulates the detection problem as a one-sample test (Efron 2004). The COT Python 

package implemented and tested the latest functionalities of the COT workflow. 

Based on the SMG definition, COT uses the cosine similarity between a molecule’s 

cross-subtype expression pattern and the exact mathematical definition of SMG as the test 

statistic, and formulates the detection problem as a one-sample test. Specifically, for gene i and 

subtype k, the COT test statistic is given by  

COT(𝑖, 𝑘) = max
𝑘

cos(𝒔(𝑖), �̂�𝑘) = max
𝑘

𝑠𝑘(𝑖)

√∑ [𝑠𝑗(𝑖)]
2𝐾

𝑗=1

, (2)
 

where 𝒔(𝑖) = [𝑠1(𝑖), 𝑠2(𝑖),… , 𝑠𝐾(𝑖)] is the averaged cross-subtype expression pattern of gene 

I over samples, �̂�𝑘 is the Cartesian unit vector representing SMG definition of subtype k, and 

K is the number of subtypes. Because 𝒔(𝑖) is confined within the first quadrant whose central 

vector is the all-ones vector �⃗⃗� , we have 1 √𝐾⁄ < COT(𝑖, 𝑘) < 1 . Note that the ‘argmax’ 

operation in (2) is specifically applied to satisfy the dichotomized setting of the null and 

alternative hypotheses, considering that the alternative hypothesis is intrinsically associated 

with multiple subtypes. 

 We used a mixture of K normal distributions (finite normal mixture – FNM model) to 

approximate the empirical COT distribution (Equihua 1988, Efron 2004). The FNM 

distribution is initialized by agglomerative clustering and then estimated by the expectation-

maximization (EM) algorithm (Wang, Adali et al. 1997, Wang, Adaly et al. 1998). We then 

improved the approximation by an FDR-guided iterative estimation strategy, where the same 

number of ‘falsely accepted’ SMG, as predicted by the q-value, are randomly/uniformly 

removed from the next iteration of the approximation (Storey and Tibshirani 2003, Efron 2004). 

This procedure converges to a stationary point usually within 5~20 iterations with adjusted 

collective cut-off p-values of 0.001, 0.005, 0.01, and 0.05. 

Alternatively, a molecularly distinct subtype may be characterized by molecular 

features that are uniquely silent in the cell or tissue subtype of interest while in no others – so 

called subtype-specific downregulated genes (SDG) (Yu, Feng et al. 2010). Mathematically, a 

SDG of subtype k is defined as a gene expressed only in subtype k, approximately  

𝑠𝑘(𝑖SMG, l) = {
𝑠𝑘(𝑖SMG, l) = 0, 𝑙 = 𝑘,

≫ 0, 𝑙 ≠ 𝑘.
(3) 
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where 𝑠𝑘(𝑖SMG, l) is the expression of gene i in subtype k in reference to subtype l, and is 

assumed to be nonnegative. A modified COT test statistic can be used to detect SDG given by 

COT(𝑖, 𝑘) = max
𝑘

cos(𝒔(𝑖), �̂�𝑘 ⊕ �⃗⃗� ) = max
𝑘

∑ 𝑠𝑗(𝑖)𝑗≠𝑘

√∑ [𝑠𝑗(𝑖)]
2𝐾

𝑗=1

, (4)
 

where ⊕ is the exclusive disjunction XOR operation (Yu, Feng et al. 2010). 

We implement and test the latest functionalities of COT workflow in Python. The 

Python module is free online at GitHub (https://github.com/MintaYLu/COT), which was built 

on top of NumPy and Pandas, and distributed under the MIT license. 

The rows of input data matrix should correspond to genes, and the columns correspond 

to samples. Note that the subtype label is needed for each sample for COT test statistics. 

Data preprocessing. Normalization and batch effect removal are conventional 

procedures to reduce technical or experimental variations in molecular expression profiles prior 

to any further analysis. Many normalization pipelines or packages have been developed to 

reduce technical variations in a specific molecular measurement platform, e.g., RMA and 

PLIER for Affymetrix Microarray, SWAN and BMIQ for Infinium HumanMethylation450 

array. Most of the public dataset repositories provide normalized data and the description of 

normalization workflow. Batch effect is the systematic error introduced by the time- and site-

dependent experimental variations. ComBat (Li, Johnson et al. 2006) is a popular and effective 

method to remove batch effects.  

Supplementary results  

Overall comparison studies 

In the overall comparative studies among ANOVA, OVR test, OVO test, and OVE test (Chen, 

Lu et al. 2020), we used a classical differential analysis setting and simulations generated from 

real gene expression data (GSE28490). Specifically, simulation datasets are generated by 

assigning a portion of the genes as being most-upregulated in only one subtype but not in any 

other, with fold change drawn in certain ranges. To recapitulate the characteristics of real 

expression data, we used the parameter values estimated from real data. We used both ROC 

curves and partial area under ROC curve (pAUC) to evaluate the performances of the selected 

existing methods. Evaluated by the receiver operating characteristic analyses, this performance 
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survey indicates that OVE/OVO test outperforms most other methods, see more details in 

Figure 1B and also in our recently published report (Chen, Lu et al. 2020). 

Experimental assessment of COT method on benchmark datasets  

We then conducted a benchmark assessment on COT tool (Figure 1C), using a one-sample test 

setting and the real gene expression data (GSE28490). Figure S2 shows the empirical 

distribution (histogram) of COT test statistic obtained from the dataset, where the lower bound 

matches well the expected value of 0.447. The initial fitting is given in Figure S3. Figure S4 

shows the converged FNM approximation of COT distribution after about 6 iterations. Figure 

S5 shows the empirical distribution of COT p-value calculated using the converged FNM 

approximation of COT distribution. Table S1 provides the corresponding p-value threshold, q-

value, COT threshold, and number of accepted SMG associated with the converged FNM 

approximation of COT distribution. 

Application of the COT tool on proteomics data of vascular specimens 

We applied the COT software tool to detect SMG on two independently acquired proteomics 

mass spectrometry datasets. The first dataset is acquired from a cohort (n=10) of “pure” fibrous 

plaque (FP), fatty streak (FS), and normal (NL) vascular specimens (Parker, et al., 2020). The 

second dataset is acquired from a cohort (n=78) of heterogeneous vascular specimens 

containing mixed FP, FS and NL subtypes (Herrington, Mao et al. 2018). The experimental 

results show that the detected two sets of SMGs are highly consistent across these two datasets.  

Table S2 provides a list of the top 60 SMG detected by COT on proteomics data of pure 

samples. The analysis on the ‘pure’ specimen dataset detected proteins enriched in most of the 

same pathways we have seen previously (Parker, Chen et al. 2020), including many of the 

immunoglobulins (indicative of immune activation and B cell involvement), complement 

factors (indicative of immune activity and inflammation), as well as protein degradation, and 

many of the apolipoproteins which shuttle cholesterols from the liver to the periphery and back 

to the liver again. Some preliminary evidence at the mRNA level show that at least the 

transcripts of apolipoproteins are present in vasculature of the aorta or LAD, indicating that 

perhaps they are truly being translated from DNA and transcribed locally. The two KEGG 

maps (Figures S6 and S7) show that nearly all components of the lipoprotein molecules have 

been detected. The Complement figure shows that proteins involved in the later phase of 

complement activation seem to dominate the FP markers, which may have some functional 

significance. The Cytoscape map puts them all in perspective (Figure S8). 
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The fatty streaks FS markers are intriguing. GBB2 is a fairly generic signaling 

molecular that acts in concert with G-protein receptors, but Angiotensin II is one of those 

receptors that is known to be pretty involved in vascular pathology, as is beta adrenergic 

receptor which is also quite a potent actor in vascular physiology. Then there is UGDH - which 

is an enzyme involved in the synthesis of glycosaminoglycans (GAGs). It has been reported 

(Stevens, Colombo et al. 1976) that an overall decrease in GAGs as atherosclerosis progresses, 

and early stage lesions (i.e., fatty streaks) have a transient spike in some GAGs that then 

regresses as the lesion gets worse. The UDGH enzyme is kind of a rate limiting, first step 

enzyme in this process and its upregulation can drive probably either selective or generic GAG 

synthesis (Clarkin, Allen et al. 2011). 

The normal marker NL proteins are an interesting selection. K2C8 is a cytoskeletal 

keratin involved in the contractile apparatus of striated muscle and may also play a similar role 

in linking contractile apparatus of SMC to the desmosome (thus, involved in normal SMC 

function). Along those lines MYL9 is also involved in SMC contraction, and LIMS1 is 

important for cell-cell adhesion and cell survival via integrin signaling, so probably also an 

indicator that SMCs are linking up in their normal way to each other. The others are involved 

in general maintenance functions like ER folding and ribosome. More specifically, the normal 

markers of contractile apparatus, adhesion, and ECM include K2C8, MYL9, LIMS1, SPRL1, 

SPON1, and of protein synthesis, folding and quality control include RL11, HSP74, DJC10. 

Figure S9 shows the geometric proximity of top SMG. 

The objective of detecting SMG using the second dataset acquired from ‘heterogeneous’ 

rather than ‘pure’ specimens is to cross-validate the SMG detected from a small ‘pure’ sample 

cohort using an independent and much larger ‘heterogeneous’ sample cohort. We first applied 

state-of-the-art unsupervised deconvolution tool, Convex Analysis of Mixtures (CAM) (Wang, 

Hoffman et al. 2016, Chen, Wu et al. 2020), to identify the ‘transformed’ reference of ideal 

SMG in the scatter space, i.e., the vertices of the scatter simplex. We then conducted COT in 

the scatter simplex of heterogeneous specimen dataset. Table S3 shows the consistency 

between the SMGs detected from the pure and heterogeneous samples. Note that FS is 

considered a ‘transitional’ subtype between NL and FP, therefore the ‘cross-talk’ of FS markers 

with NL and FP is expected (Herrington, Mao et al. 2018, Parker, Chen et al. 2020).  
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Table S1. The corresponding p-value threshold, q-value, COT threshold, and number of 

accepted SMG associated with the converged FNM approximation of COT distribution in 

dataset GSE28490 using an FDR-guided iterative estimation strategy. 

 

Table S2. List of top 60 SMG detected by COT on proteomics data of pure samples. 

Uniport Gene MaxCos Subtype 

P01023 A2MG 0.984953 FP 

P35858 ALS 0.949705 FP 

P04114 APOB 0.932073 FP 

P05090 APOD 0.916104 FP 

P02649 APOE 0.940183 FP 

P04003 C4BPA 0.941963 FP 

P20851 C4BPB 0.889659 FP 

Q96IY4 CBPB2 0.874947 FP 

P02671 FIBA 0.938695 FP 

P02675 FIBB 0.962863 FP 

P02679 FIBG 0.966014 FP 

P00738 HPT 0.973683 FP 

P01871 IGHM 0.932454 FP 

P01591 IGJ 0.987092 FP 

P19823 ITIH2 0.926847 FP 

Q96PD5 PGRP2 0.886458 FP 

P00747 PLMN 0.863939 FP 

P55058 PLTP 0.977319 FP 

O00391 QSOX1 0.915904 FP 

P35542 SAA4 0.967419 FP 

P04004 VTNC 0.926702 FP 

O60701 UGDH 0.843959 FS 

P00450 CERU 0.855635 FP 

P00734 THRB 0.862961 FP 

P01031 CO5 0.841316 FP 

P01597 KV105 0.879806 FP 

P01617 KV204 0.911765 FP 
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P01621 KV303 0.891841 FP 

P01625 KV402 0.912694 FP 

P01714 LV301 0.916399 FP 

P01764 HV303 0.965693 FP 

P01767 HV306 0.900022 FP 

P01834 IGKC 0.887244 FP 

P01857 IGHG1 0.859667 FP 

P01860 IGHG3 0.888342 FP 

P01861 IGHG4 0.905672 FP 

P01876 IGHA1 0.938344 FP 

P02647 APOA1 0.934599 FP 

P02652 APOA2 0.90552 FP 

P02656 APOC3 0.916256 FP 

P04196 HRG 0.854048 FP 

P04433 KV309 0.956962 FP 

P05546 HEP2 0.840869 FP 

P05787 K2C8 0.888285 NL 

P07360 CO8G 0.874533 FP 

P08185 CBG 0.840799 FP 

P09871 C1S 0.849535 FP 

P10643 CO7 0.890565 FP 

P10909 CLUS 0.84181 FP 

P13671 CO6 0.861453 FP 

P19827 ITIH1 0.861765 FP 

P24844 MYL9 0.848724 NL 

P34932 HSP74 0.843921 NL 

P48059 LIMS1 0.8543 NL 

P62879 GBB2 0.842642 FS 

P62913 RL11 0.846606 NL 

P80748 LV302 0.879469 FP 

Q14515 SPRL1 0.848788 NL 

Q14624 ITIH4 0.863949 FP 

Q9HCB6 SPON1 0.90266 NL 

 

Table S3. Overlap between the top SMGs detected from purified and “bulk” samples. 
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Figure S1. The overall workflow diagram of the COT Python package. 

 

Figure S2. The distribution (histogram) of COT test statistic in dataset GSE28490. 

 

Figure S3. The initial fitting of COT distribution in dataset GSE28490 using a mixture of 

five normal distributions (the black curves are the estimated individual Gaussian kernels and 

the red curve is the overall mixture distribution), without FDR-guided adjustment. 
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Figure S4. The converged FNM approximation of COT distribution in dataset GSE28490 

using an FDR-guided iterative estimation strategy (left: 4 iterations, right: 6 iterations). 

 

Figure S5. The empirical distribution of COT p-value calculated using the converged FNM 

approximation of COT distribution in dataset GSE28490. 

 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.10.426146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.10.426146


16 

 

Figure S6. KEGG map of cholesterol metabolism pathway enriched with COT FP SMG. 

 

Figure S7. KEGG map of Complement and Coagulation pathway enriched with COT FP 

SMG. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.10.426146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.10.426146


17 

 

Figure S8. Cytoscape map of the top pathways enriched with COT FP SMG. 

 

Figure S9. Scatter simplex of color-coded COT top protein SMG detected directly from 

heterogeneous samples. 
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