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Abstract 1 

Protein-peptide interactions play a fundamental role in facilitating many cellular processes, but 2 

remain underexplored experimentally and difficult to model computationally. Here, we introduce 3 

PepNN-Struct and PepNN-Seq, structure and sequence-based approaches for the prediction of 4 

peptide binding sites on a protein given the sequence of a peptide ligand. The models make use 5 

of a novel reciprocal attention module that is able to better reflect biochemical realities of 6 

peptides undergoing conformational changes upon binding. To compensate for the scarcity of 7 

peptide-protein complex structural information, we make use of available protein-protein 8 

complex and protein sequence information through a series of transfer learning steps. PepNN-9 

Struct achieves state-of-the-art performance on the task of identifying peptide binding sites, with 10 

a ROC AUC of 0.893 and an MCC of 0.483 on an independent test set. Beyond prediction of 11 

binding sites on proteins with a known peptide ligand, we also show that the developed models 12 

make reasonable agnostic predictions, allowing for the identification of novel peptide binding 13 

proteins.   14 
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Introduction 15 

Interactions between proteins and peptides are critical for a variety of biological 16 

processes. A large fraction of protein-protein interactions are mediated by the binding of 17 

intracellular peptide recognition modules (PRMs) to linear segments in other proteins (Tompa et 18 

al, 2014). Moreover, peptide ligands binding to extracellular receptors have important functions 19 

(Krumm & Grisshammer, 2015). In total, it is estimated that there are roughly 104 human 20 

proteins that contain at least one PRM (Cunningham et al, 2020) and that there are over 106 21 

peptide motifs encoded in the human proteome (Tompa et al, 2014). Disruption of these 22 

interactions and their regulation can consequently result in disease; for instance, many proteins 23 

with PRMs harbor oncogenic mutations (Yang et al, 2015). It has also been shown that viral 24 

proteins encode peptidic motifs that can potentially be used to hijack host machinery during 25 

infection (Hagai et al, 2014). 26 

In the absence of ample experimental data including solved structures, gaining molecular 27 

insight into these interactions and their associated disease states is contingent on the ability to 28 

model peptide binding computationally. This has been a difficult problem that has traditionally 29 

been approached with peptide-protein docking (Ciemny et al, 2018). One widely used peptide 30 

docking tool is FlexPepDock, a Rosetta protocol that refines coarse-grain peptide-protein 31 

conformations by sampling from the degrees of freedom within a peptide (Raveh et al, 2010). In 32 

general, benchmarking studies have shown that peptide docking approaches often fail to 33 

accurately identify the native complex conformation (London et al, 2012; Agrawal et al, 2019; 34 

Weng et al, 2020), indicating that this problem remains unsolves; current approaches are limited 35 

by the high flexibility of peptides as well the inherent error of scoring heuristics (Ciemny et al, 36 

2018). Machine learning approaches provide potential alternatives to docking, as they can 37 
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sidestep the issue of explicit enumeration of conformational space and can learn scoring metrics 38 

directly from the data. 39 

Different machine learning approaches have been applied to the preliminary problem of 40 

predicting the binding sites of peptides with a varying amount of success (Johansson-Åkhe et al, 41 

2019; Zhao et al, 2018; Taherzadeh et al, 2016, 2018; Wardah et al, 2020; Iqbal & Hoque, 42 

2018). Deep learning approaches have resulted in large improvements in many area, including in 43 

the domains of protein and structural biology (Senior et al, 2020). However, no such model has 44 

been developed for the identification of peptide binding sites; one hurdle has been the paucity of 45 

available data, as deep learning models usually require large training data sets. 46 

Here, we sought to develop a novel deep learning architecture to improve upon existing 47 

approaches. In particular, we sought to exploit available protein-protein complex information, 48 

thereby adding an order of magnitude more training data. The "hot segment" paradigm of 49 

protein-protein interaction suggests that the interaction between two proteins can be mediated by 50 

a linear segment in one protein that contributes to the majority of the interface energy (London et 51 

al, 2010). Complexes of protein fragments with receptors thus represent a natural source of data 52 

for model pre-training. In addition, the idea of pre-training contextualized language models has 53 

recently been adapted to protein biology for the purpose of generating meaningful 54 

representations of protein sequences (Elnaggar et al, 2020; Rao et al, 2019). The success of these 55 

approaches provides an opportunity to develop a strictly sequence based peptide binding site 56 

predictor. 57 

 In this study, we integrate the use of contextualized-language models, available protein-58 

protein complex data, and a task-specific attention-based architecture, to develop parallel models 59 

for both structure and sequence-based peptide binding site prediction: PepNN-Struct and 60 
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PepNN-Seq. Comparison to existing approaches reveals that our models perform better in most 61 

cases. We also show that the developed models can make reasonable peptide agnostic 62 

predictions, allowing for their use for the identification of novel peptide binding sites.  63 

Results 64 

Parallel models for structure and sequence-based peptide binding site prediction 65 

We sought to develop a network that takes as input a representation of a protein as well 66 

as a peptide sequence, and outputs residue-wise scores representing the confidence that a 67 

particular residue is part of a peptide binding site (Fig 1A-B). The PepNN architecture is based 68 

in part on the Transformer, a model that makes use of repeated multi-head attention modules to 69 

efficiently learn long-range dependencies in sequence inputs (Vaswani et al, 2017). The 70 

Transformer architecture has also been adapted to graph inputs (Ingraham et al, 2019); graph 71 

convolutions have been shown to be effective for protein design (Strokach et al, 2020). PepNN-72 

Struct makes use of these graph attention layers to learn from context within an input protein 73 

(Fig 1A). PepNN-Seq, on the other hand, generates predictions based solely on the input protein 74 

and peptide sequences (Fig 1B).  75 

 PepNN differs from conventional Transformers in that it does not follow an encoder-76 

decoder architecture. This is based on the fact encoding the peptide sequence independently 77 

would implicitly assume that all information about the peptide is contained within its sequence. 78 

This assumption is not concordant with the fact that many disordered regions undergo 79 

conformational changes upon protein binding (Mohan et al, 2006). A peptide’s sequence is thus 80 

insufficient by itself to determine its conformation in a particular system. As an alternative, we 81 

introduced multi-head reciprocal attention layers, a novel attention-based module that 82 

simultaneously updates the peptide and protein embeddings while ensuring that the 83 
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unnormalized attention values from protein to peptide residues are equal to the unnormalized 84 

attention values in the other direction. This ensures that the protein residues involved in binding 85 

have influence on the peptide residues and vice versa, better reflecting the physical reality of the 86 

peptide-protein binding process. The exact model hyperparameters were determined using 87 

random search (see Methods) and we compared the performance of the model to a graph 88 

Transformer with the same hyperparameters on the preliminary task of identifying the binding 89 

sites of protein fragments. We found that the reciprocal attention variant outperforms the graph 90 

Transformer in its capacity to accurately identify fragment binding sites (Fig S1). 91 

Transfer learning results in large improvements in model performance 92 

We used transfer learning in two ways to improve model performance. The first was to 93 

pretrain the model on a large protein fragment-protein complex dataset before fine-tuning with a 94 

smaller dataset of peptide-protein complexes (Fig 1C). To generate the fragment dataset, we 95 

scanned all protein-protein complex interfaces in the PDB with the PeptiDerive Rosetta protocol 96 

(Sedan et al, 2016) to identify protein fragments of length 5-25 amino acids that contribute to a 97 

large portion of the complex interface energy (Fig S2). These fragment-protein complexes were 98 

filtered based on their estimated interface energy as well as the buried surface area to ensure that 99 

they had binding properties that were reasonably close to that of peptide-protein complexes. The 100 

second application of transfer learning was the use a pre-trained contextualized language model, 101 

ProtBert (Elnaggar et al, 2020), to embed protein sequences. These high dimensional, 102 

information-rich, embeddings were used as input to PepNN-Seq (Fig 1B).  103 

To evaluate the impact of transfer learning on model performance, we trained PepNN-104 

Struct and PepNN-Seq using different procedures. Pre-training PepNN-Struct resulted in 105 

significant improvement over models trained on only the fragment or peptide complex dataset, 106 
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both in terms of over all binding residue prediction, and in terms of prediction for individual 107 

proteins (Fig 2A, B). Model predictions on the Bro domain of HD-PTP demonstrate this 108 

difference in performance, as only the pre-trained variant of the model correctly predicts the 109 

peptide binding site (Fig 2C). This example furthermore illustrates that the pre-training step 110 

helps bring the parameters closer to an optimum for general peptide binding site prediction, 111 

rather than improving performance solely on examples that match patterns seen in the fragment-112 

complex dataset. 113 

Embedding protein sequences with ProtBert resulted in large performance improvements 114 

over learned embedding parameters for PepNN-Seq (Fig 2D, E). Interestingly, pretraining on the 115 

fragment complexes did not have a large impact on PepNN-Seq performance (Fig 2B, D). This 116 

may suggest that pre-training on the fragment complexes allows PepNN-Struct to learn 117 

reasonable protein embeddings while the use of a pre-trained contextualized language model is 118 

sufficient for the generation of reasonable embeddings in the case of PepNN-Seq. 119 

PepNN achieves state-of-the-art performance on peptide binding site prediction 120 

 We initially evaluated the developed models on an independent test set derived from the 121 

peptide complex dataset. Unsurprisingly, we found that PepNN-Struct outperforms PepNN-Seq 122 

(Table 1). We additionally ran the sequence-based PBRpredict-Suite model on this test dataset 123 

(Iqbal & Hoque, 2018). All three variants of this model performed worse than PepNN on this 124 

dataset (Table 1) and notably, the observed performance was drastically lower than the 125 

performance reported in the original publication. This could potentially be due to the fact a 126 

smoothing approach was used to annotate binding sites in the PBRpredict-Suite study (Iqbal & 127 

Hoque, 2018), while binding site residues annotations were made based only on distance to 128 

peptide residues in this study. 129 
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 Most other existing approaches lack programmatic access and a portion rely on 130 

alignments to reference datasets that overlap with the test set. We hence used values reported in 131 

the literature for comparison. To ensure an unbiased comparison, the model was re-trained on the 132 

training datasets used in different studies prior to comparison on their test sets. In all cases, 133 

PepNN-Struct largely outperforms existing approaches in terms of ROC AUC (Table 1). In most 134 

cases, PepNN-Seq also outperforms existing approaches by this metric. PepNN does, however, 135 

perform worse in terms of MCC in a couple of cases, suggesting that there exist thresholds at 136 

which the models do not perform was well as the PepBind approach, despite having more robust 137 

performance at different prediction thresholds. It is worth noting that the training datasets used in 138 

other studies were substantially smaller and thus training on them resulted in lower performance 139 

of our models overall (Table 1). This was both due to the fact that the datasets used in other 140 

studies are relatively outdated and that a larger portion of the available data was used for testing. 141 

Peptide-agnostic prediction allows the identification of putative novel peptide binding 142 

proteins 143 

To quantify the extent to which the model relies on information from the protein when 144 

making predictions, we tested the ability of PepNN-Struct and PepNN-Seq to predict peptide 145 

binding sites using random length poly-glycine peptides as input sequences. While the models 146 

did perform better when given the native peptide sequence than with a poly-glycine sequence (p-147 

value < 2.2e-16 for both PepNN-Struct and PepNN-Seq, DeLong test), there was only a small 148 

overall decrease in the ROC AUC when a poly-glycine was given (Fig 3A, B). Comparing the 149 

probabilities that the model assigns to different residues shows that in both the case of PepNN-150 

Struct and PepNN-Seq, providing the native peptide increases the model’s confidence when 151 

predicting binding residues (Fig S3). Providing the native peptide sequence is thus more 152 
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important for reducing false negatives. Overall, these results suggest that while providing a 153 

known peptide can increase model accuracy, the model can make reasonable peptide-agnostic 154 

predictions and could potentially be used to identify novel peptide binders. 155 

 To quantify the model’s confidence that a protein is a peptide-binding module, we 156 

generated a score that takes into account the binding probabilities that the model assigns the 157 

residues in the protein, as well as the percentage of residues that the model predicts are binding 158 

residues with high confidence. To compute this score, a Gaussian distribution was fit to the 159 

distribution of binding residue percentages in each protein from the training dataset (Fig S4A). 160 

The resulting score was the weighted average of the top n residue probabilities and the likelihood 161 

that a binding site would be composed of those n residues based on the aforementioned 162 

Gaussian. For each protein, n was chosen to maximize the score. As done in a previous study 163 

(Johansson-Åkhe et al, 2019), the weight assigned to each component of the score was chosen to 164 

maximize the correlation between the MCC of the prediction for each protein in the validation 165 

dataset, and its score (Fig S4B,C). This was motivated by the fact that the confidence of the 166 

model should correlate with its correctness. 167 

 We used the models to predict binding sites for domains in every unique chain in the 168 

PDB not within 30% homology of a sequence in the training dataset and domains in every 169 

sequence in the reference human proteome from UniProt (Consortium, 2018), not within 30% 170 

homology of a sequence in the training dataset. Domains were extracted by assigning PFAM 171 

(Finn et al, 2013) annotations using InterProScan (Jones et al, 2014) (Table S1, S2). To assess 172 

the capacity of the models to discriminate between peptide binding modules and other domains, 173 

we compared the distribution of scores for canonical PRMs to that of other proteins. Previously 174 

defined modular protein domains (Jadwin et al, 2012), and peptide binding domains 175 
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(Cunningham et al, 2020) were considered canonical PRMs. In both the case of the PDB and the 176 

human proteome, the distribution of scores for canonical PRMs was higher than the background 177 

distribution (Fig 3C, D). 178 

In total, PepNN-Struct assigns 39 623 domains in the PDB a score higher than the mean 179 

PRM score and PepNN-Seq assigns 10 332 domains in the human proteome a score higher than 180 

the mean PRM score. Analysis of the distribution of scores for different domains reveals that 181 

many DNA binding domains, including different transcription factors and DNA modifying 182 

enzymes, were assigned low scores on average by PepNN (Table S3, S4). This indicates that 183 

PepNN has the capacity to discriminate between different types of binding sites. There are, 184 

nonetheless, some nucleic acid binding domains with high scores (Table S3, S4) suggesting that 185 

there are false positives and that downstream computational and experimental work is required to 186 

validate putative peptide binding sties. 187 

One domain identified by PepNN-Struct is the sterile alpha motif (SAM) domain of the 188 

Deleted-in-liver cancer 1 (DLC1) protein (Table S1). This domain was recently shown to be a 189 

peptide binding module (Joshi et al, 2020), demonstrating the capacity of the model to identify 190 

novel peptide binders. Another interesting hit identified using PepNN-Struct is the ORF7a 191 

accessory protein from the SARS-Cov-2 virus (Table S1). The model predicts that this protein 192 

has a peptide binding site located between two beta-sheets at the N-terminal end of the protein 193 

(Fig 4A). Validating this peptide binding site involves identifying a binding peptide and showing 194 

that the residues that comprise the binding site are necessary for the interaction. The ORF7a 195 

homolog from SARS-Cov has been shown to bind the ectodomain of the human BST-2 protein 196 

(Taylor et al, 2015). BST-2 binds and tethers viral particles to the cell membrane, thereby 197 

preventing viral exit  (Taylor et al, 2015). It was shown that by binding BST-2, ORF7a prevents 198 
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its glycosylation and thus reduces its ability to inhibit viral exit  (Taylor et al, 2015). Given the 199 

fact that BST-2 forms a coiled-coil structure, it is possible that a linear segment along one of its 200 

helices binds to ORF7a at the predicted peptide-binding pocket. 201 

As a preliminary, unbiased, test of this prediction, we performed global docking of BST-202 

2 onto ORF7a using the ClusPro webserver  (Kozakov et al, 2017; Vajda et al, 2017). In seven 203 

of the top ten poses, BST-2 was found to interact with ORF7a at the predicted binding site. In 204 

four of these poses, the N70 residue on BST-2, a known glycosylation site (Wollscheid et al, 205 

2009), was completely buried. To validate these docking results, those four systems were subject 206 

to short, 50 ns, MD simulations. ORF7a was stably bound to BST-2 in one of the four systems. 207 

To better evaluate this putative binding conformation at a longer time scale, a truncated system 208 

was built and it was subjected to three simulations of at least 200 ns. ORF7a remained bound to 209 

BST-2 throughout the different trajectories (Fig 4B), and hydrogen bond analysis showed that 210 

several charged/polar sidechains at the interface contribute to the majority of the binding affinity 211 

(Fig 4C).  212 

Application of PepNN to epitope prediction 213 

 The binding of antibodies to their target antigens is largely facilitated by a set of variable 214 

segments known as complementarity-determining regions (CDRs). It has been shown that 215 

synthetic peptides derived from the sequences of these CDRs can bind the target antigen of the 216 

antibody from which they were derived (Williams et al, 1991, 1988; Taub et al, 1989).  We thus 217 

re-trained PepNN to predict the binding sites of different CDRs given an antigen structure. The 218 

estimated interface energy of peptide-protein complexes is greater than that of CDR-protein 219 

complexes (Fig S5). The pre-training dataset was consequently remade with less stringent 220 

thresholds (see Methods). We also ensured that fragments forming helix or strand secondary 221 
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structures were filtered from the pre-training dataset. We trained the model to predict binding 222 

sites given H1, H2, and H3 loops. To generate a full epitope prediction, we assigned each residue 223 

the maximum score from the three models. Overall, the observed performance was worse than 224 

that on peptide binding site prediction (Fig S6A). Nevertheless, the model makes reasonable 225 

predictions on numerous test antigens (Fig S6B). 226 

Discussion 227 

We have developed parallel structure and sequence-based models for the prediction of 228 

peptide binding sites. These models, PepNN-Struct and PepNN-Seq, make use of a novel 229 

attention-based deep learning module that is integrated with transfer learning to compensate for 230 

the scarcity of peptide-protein complex data. Comparison to existing approaches shows that 231 

PepNN achieves state-of-the-art on the task of identifying peptide binding sites. In addition, 232 

unlike previously developed approaches, PepNN does not rely on structural or sequence 233 

alignments and is thus not dependent on the presence of structural data for homologs. Given the 234 

success of this approach, PepNN can be incorporated into local docking pipelines in order to 235 

facilitate the generation of protein-peptide complex models, a necessary step in delineating the 236 

molecular mechanisms underlying many cellular processes. 237 

We furthermore demonstrated that PepNN can make accurate peptide-agnostic 238 

predictions. This observation is concordant with recent work that has suggested that a protein’s 239 

surface contains the majority of information regarding its capacity for biomolecular interactions 240 

(Gainza et al, 2020). Other approaches, trained on negative binding data, are better suited than 241 

PepNN to discriminate between identified binding peptides (Lei et al, 2020; Cunningham et al, 242 

2020). By contrast, PepNN can uniquely be used to score proteins lacking a known peptide 243 

ligand to predict their ability to bind peptides. Running this procedure on all proteins in the PDB 244 
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and the reference human proteome revealed a number of putative novel peptide recognition 245 

modules, suggesting that a large portion of the space of PRMs has yet to be characterized. As a 246 

demonstration of the model's capacity to identify novel peptide binders, we performed MD 247 

simulations on putative ORF7a/BST-2 complexes, suggesting that the former protein can 248 

potentially bind a linear fragment of BST-2 at a predicted peptide binding site.  The observation 249 

that PepNN can make predictions in the absence of a known peptide binder can also be used to 250 

discern regions of proteins that can be readily targeted by peptides. PepNN predictions can thus 251 

be used to inform the application of high-throughput experimental approaches to different 252 

proteins for the purpose of identifying therapeutic peptides.  253 

Materials and Methods 254 

Datasets 255 

 A dataset of protein-peptide complexes was generated by filtering complexes in the PDB. 256 

Crystal structures with a resolution of at least 2.5 Å that contain a chain of at least 50 amino 257 

acids in complex with a chain of 25 or less amino acids were considered putative peptide-protein 258 

complexes. Using FreeSASA (Mitternacht, 2016), complexes with a buried surface area of less 259 

than 400 Å2 were filtered out, leaving 3046 complexes. The sequences of the receptors in the 260 

remaining complexes were clustered at a 30% identity threshold using PSI-CD-HIT (Fu et al, 261 

2012), and the resulting clusters were divided into training, validation, and test sets at 262 

proportions of 80%, 10% and 10% respectively. The test set contains 305 examples and is 263 

referred to as TS305.  264 

A similar process was used to generate a dataset of protein fragment-protein complexes. 265 

Using the PeptiDerive Rosetta protocol  (Sedan et al, 2016), the PDB was scanned for protein 266 

fragments of length 5-25 amino acids with a high predicted interface energy when in complex 267 
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with another chain of at least 50 amino acids. Complexes were filtered out based on the 268 

distribution of predicted interface energies from the dataset of real protein-peptide complexes. 269 

Only complexes with an interface score less than one standard deviation above the mean of the 270 

peptide-protein complex distribution were maintained. The complexes were also filtered by 271 

buried surface area. Complexes with less than 400 Å2 were once again filtered out. The final 272 

dataset contained 406 365 complexes. For data splitting, complexes were again clustered at 30% 273 

identity. In both datasets, binding residues were defined as those residues in the protein receptor 274 

with a heavy atom within 6 Å2 from a heavy atom in the interacting chain. 275 

In addition to TS305, the models were also tested on benchmark datasets compiled in 276 

other studies. This includes the test dataset used to evaluate the Interpep approach (Johansson-277 

Åkhe et al, 2019) (TS251), the test dataset used to evaluate the PepBind approach (Zhao et al, 278 

2018) (TS639), and the test dataset used to evaluate SPRINT-Str (Taherzadeh et al, 2017) 279 

(TS125). 280 

Complexes from the non-redundant SAbDab dataset were used for training the model to 281 

predict epitopes (Dunbar et al, 2014). CDRs were defined using the PyIgClassify dataset (Adolf-282 

Bryfogle et al, 2015). Complexes where a particular CDR was not in contact with the antigen 283 

were filtered out when training the model to predict the binding site of that CDR. Antigen 284 

sequences were clustered at 30% identity before splitting the dataset. For pre-training on 285 

fragment-protein complexes, less stringent thresholds of a Rosetta interface score of -10 and a 286 

buried surface area of 250 Å2 were used for filtering. In addition, secondary structure annotations 287 

were assigned to each fragment in the dataset using the MDTraj software (McGibbon et al, 288 

2015), and any fragment with more than two residues in the helix or strand classes were filtered 289 

out. The resulting dataset contained 684 912 entries. 290 
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Input representation 291 

In the case of PepNN-Struct, input protein structures are encoded using a previously 292 

described graph representation (Ingraham et al, 2019), with the exception that additional node 293 

features are added to encode the side chain conformation at each residue. In this representation, a 294 

local coordinate system is defined at each residue based on the relative position of the Cα to the 295 

other backbone atoms (Ingraham et al, 2019). The edges between residues encode information 296 

about the distance between the resides, the relative direction from one Cα to another, a 297 

quaternion representation of the rotation matrix between the local coordinate systems, and an 298 

embedding of the relative positions of the residues in the protein sequence (Ingraham et al, 299 

2019). The nodes include a one-hot representation of the amino acid identity and the torsional 300 

backbone angles (Ingraham et al, 2019).  301 

To encode information about the side-chain conformation, the centroid of the heavy side 302 

chain atoms at each residue is calculated. The direction of the atom centroid from the Cα is 303 

represented using a unit vector based on the defined local coordinate system. The distance is 304 

encoded using a radial basis function, similar to the encoding used for inter-residue distances in 305 

the aforementioned graph representation (Ingraham et al, 2019). A one-hot encoding is used to 306 

represent protein and peptide sequence information. The pre-trained contextualized language 307 

model, ProtBert (Elnaggar et al, 2020), is used to embed the protein sequence in PepNN-Seq. 308 

Model architecture 309 

The developed architecture takes inspiration the original Transformer architecture 310 

(Vaswani et al, 2017), as well the Structured Transformer, developed for the design of proteins 311 

with a designated input structure (Ingraham et al, 2019). Like these models, the PepNN 312 

architecture consists of repeating attention and feed forward layers (Fig 1A). PepNN differs from 313 
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conventional Transformers, however, in that does not follow an encoder-decoder attention 314 

architecture and it makes use of multi-head reciprocal attention. This is a novel attention-based 315 

module that shares some conceptual similarity to a layer that was recently used for salient object 316 

detection (Xia et al, 2019). Conventional scaled dot attention, mapping queries, represented by 317 

matrix 𝑄, and key-value pairs, represented by matrices 𝐾 and 𝑉, to attention values takes the 318 

following form (Vaswani et al, 2017): 319 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 320 

In reciprocal attention modules, protein residue embeddings are projected to a query matrix, 𝑄 ∈321 

ℝn×dk and a value matrix, Vprot ∈ ℝn×dv , where 𝑛 is the number of protein residues. Similarily, 322 

the peptide residue embeddings are projected a key matrix, 𝐾 ∈ ℝ𝑚×𝑑𝑘, and a value matrix, 323 

𝑉𝑝𝑒𝑝 ∈ ℝ𝑚×𝑑𝑣 , where 𝑚 is the number of peptide residues. The resulting attention values are as 324 

follows: 325 

Attention𝑝𝑟𝑜𝑡(𝑄, 𝐾, 𝑉𝑝𝑒𝑝) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉𝑝𝑒𝑝 326 

Attention𝑝𝑒𝑝(𝑄, 𝐾, 𝑉𝑝𝑟𝑜𝑡) = softmax (
𝐾𝑄𝑇

√𝑑𝑘

) 𝑉𝑝𝑟𝑜𝑡 327 

Projecting the residue encodings multiple times and concatenating the resulting attention values 328 

allows extension to multiple heads, as described previously (Vaswani et al, 2017). The overall 329 

model architecture includes alternating self-attention and reciprocal attention layers, with a final 330 

set of layers to project the protein residue embedding down to a residue-wise probability score 331 

(Fig 1A). For the purpose of regularization, dropout layers were included after each attention 332 

layer. 333 
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Model hyperparameters were tuned using random search to optimize the cross-entropy 334 

loss on the fragment complex validation dataset. Specifically, eight hyperparameters were tuned; 335 

𝑑𝑚𝑜𝑑𝑒𝑙 (the model embedding dimension), 𝑑𝑖 (the dimension of the hidden layer in the feed 336 

forward layers), 𝑑𝑘, 𝑑𝑣, the dropout percentage, the number of repititions of the reciprocal 337 

attention module, the number of heads in each attention layer, and the learning rate. In total, 100 338 

random hyperparameter trials were attempted. 𝑑𝑚𝑜𝑑𝑒𝑙 was set to 64, 𝑑𝑖 was set to 64, 𝑑𝑘 was set 339 

to 64, 𝑑𝑣was set to 128, dropout percentage was set to 0.2, the number of repetitions of the 340 

reciprocal attention module was set to 6, and each multi-head attention layer was composed of 6 341 

heads. 342 

Training 343 

Training was done using an Adam optimizer with a learning rate of 1e-4. A weighted 344 

cross-entropy loss was optimized to take into account the fact that the training dataset is skewed 345 

towards non-binding residues. In both the pre-training step with the fragment complex dataset 346 

and the training with the peptide complex dataset, early stopping was done based on the 347 

validation loss. Training was at most 500 000 iterations during the pre-training step and the at 348 

most 25 000 iterations during the fine-tuning step. 349 

Scoring potential novel peptide binding sites 350 

Peptide-agnostic prediction of proteins in the human proteome and the PDB was 351 

performed by providing the model with a protein sequence/structure and a poly-glycine sequence 352 

of length 10 as the peptide. When computing scores using PepNN-Struct, the weight given to the 353 

top 𝑛 residue probabilities was 0.97. When computing scores using PepNN-Seq, this weight was 354 

set to 0.99. Pairwise comparisons were done with the distributions of every PFAM domain to 355 
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remaining domains with a Wilcoxon rank-sum test and multiple testing correction was done 356 

using the Benjamini-Hochberg procedure. 357 

Statistical tests 358 

 Wilcoxon signed-rank and rank-sum tests were done using the SciPy python library 359 

(Virtanen et al, 2020). Multiple testing correction was done using the statsmodels python 360 

package (Seabold & Perktold, 2010). The DeLong test was done using the pROC R package 361 

(Robin et al, 2011). 362 

Protein-protein docking and molecular dynamics simulations on ORF7a/BST-2 363 

The structure of the SARS-CoV-2 ORF7a encoded accessory protein (PDB ID 6W37) 364 

and mouse BST-2/Tetherin Ectodomain (PDB ID 3NI0 (Swiecki et al, 2011)) were used as input 365 

structures for the ClusPro webserver (Kozakov et al, 2017; Vajda et al, 2017). The top 10 results, 366 

ranked by binding affinity, were retrieved for further analysis. The ClusPro docking poses of the 367 

ORF7a/BST-2 complex were directly used as input to the Charmm-gui webserver (Brooks et al, 368 

2009; Jo et al, 2008; Lee et al, 2016) to set up MD systems. The systems have a size of 369 

approximately 1803 Å3 and a total of ~570,000 atoms. To speed up the simulation, a truncated 370 

system was also created. Amino acids after residue 100 in BST-2 were removed, resulting in a 371 

system of size ~1003 Å3 and approximately 91,300 atoms. The energy minimization and MD 372 

simulations were performed with the GROMACS program (Pronk et al, 2013) version 2019.3 373 

GPU using the CHARMM36 force field (Klauda et al, 2010; Huang & MacKerell Jr, 2013) and 374 

TIP3P water model (Jorgensen et al, 1983).  375 

Code and data availability 376 

The datasets used in this study and the code to run PepNN are available at 377 

https://gitlab.com/oabdin/pepnn. 378 
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 513 

Figure 1: Model architecture and training procedure. A) Attention layers are indicated with 514 

orange, normalization layers are indicated with blue and simple transformation layers are 515 

indicated with green. B) Input layers for PepNN-Seq. C) Transfer learning pipeline used for 516 

model training. 517 
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 518 

Figure 2: Impact of transfer learning on model performance on the peptide complex validation 519 

dataset. A) ROC curves on all residues in the dataset using predictions from PepNN-Struct 520 

trained on different datasets. B) Comparison of the distribution of ROC AUCs on different input 521 

proteins using predictions from PepNN-Struct with different training procedures and sequence 522 

embeddings (Wilcoxon signed-rank test). C) Predictions of the binding site of the Bro domain of 523 

HD-PTP (PDB code 5CRV) using PepNN-Struct trained on different datasets. D) ROC curves on 524 

all residues in the dataset using predictions from the sequence model with different training 525 

procedures and sequence embeddings. E) Comparison of the distribution of ROC AUCs on 526 

different input proteins using predictions from PepNN-Seq trained on different datasets 527 

(Wilcoxon signed-rank test). 528 
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 529 

Figure 3: Peptide-agnostic binding site prediction using PepNN-Struct and PepNN-Seq. A) ROC 530 

curves on the validation dataset using PepNN-Struct with different input peptide sequences. B) 531 

ROC curves on the validation dataset using PepNN-Seq with different input peptide sequences. 532 

C) Scores assigned by PepNN-Struct to different domains in the PDB (Wilcoxon rank-sum test). 533 

D) Scores assigned by the PepNN-Seq to different domains in the reference human proteome 534 

(Wilcoxon rank-sum test).  535 
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 536 

Figure 4: A) ORF7a peptide binding site prediction. B) Ensemble plot of putative ORF7a/BST-2 537 

complex from a 300 ns MD simulation. C) Hydrogen bonds between residues at the BST/ORF7a 538 

interface in the predicted complex 539 
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Table 1: Comparison of the developed model to existing approaches 541 

Test dataset Training dataset 

size 

Model ROC AUC MCC 

TS305 2394 PepNN-Struct 0.893 0.483 

PepNN-Seq 0.859 0.401 

475 

 

PBRpredict-flexible (Iqbal 

& Hoque, 2018) 

0.653 0.139 

PBRpredict-moderate 

(Iqbal & Hoque, 2018) 

0.620 0.127 

PBRpredict-strict (Iqbal & 

Hoque, 2018) 

0.598 0.100 

TS251 251 PepNN-Struct 0.817 0.370 

PepNN-Seq 0.758 0.278 

Interpep (Johansson-Åkhe 

et al, 2019) 

0.793 --- 

 TS639 640 PepNN-Struct 0.838 0.301 

PepNN-Seq 0.792 0.251 

PepBind (Zhao et al, 

2018) 

0.767 0.348 

TS125 640 PepNN-Struct 0.841 0.321 

PepNN-Seq 0.805 0.278 

PepBind (Zhao et al, 

2018) 

0.793 0.372 

1156 SPRINT-Str (Taherzadeh 

et al, 2017) 

0.780 0.290 

1199 SPRINT-Seq (Taherzadeh 

et al, 2016) 

0.680 0.200 

1004 Visual (Wardah et al, 

2020) 

0.730 0.170 
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 543 

Supplementary Figure 1: Comparison of the performance of the developed model to a 544 

Transformer with the same hyperparameters on the fragment complex validation dataset. A) 545 

ROC curves on all residues in the dataset. B) Comparison of distribution of ROC AUCs on 546 

different input proteins (Wilcoxon signed-rank test). 547 

 548 

 549 

Supplementary Figure 2: A) Curation pipeline for generation of a protein fragment-protein 550 

dataset. B) Comparison of estimated interface distribution for the all fragment-protein complexes 551 

and the dataset of peptide-protein complexes. The dashed lines indicates the threshold used for 552 

filtering fragment-protein complexes. 553 
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 554 

Supplementary Figure 3: Probabilities assigned by PepNN-Struct and PepNN-Seq to different 555 

models residues with and without the native peptide sequence. A) Probabilities assigned by 556 

PepNN-Struct to binding residues. B) Probabilities assigned by PepNN-Struct to non-binding 557 

residues. C) Probabilities assigned by PepNN-Seq to binding residues. D) Probabilities assigned 558 

by PepNN-Seq to non-binding residues.  559 

 560 

 561 

Supplementary Figure 4: A) The percentage of binding residues in different examples in the 562 

training dataset. B) Relationship between scores assigned by PepNN-Struct and MCC of 563 

predictions. C) Relationship between scores assigned by PepNN-Seq and MCC of predictions. 564 

 565 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.10.426132doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.10.426132


 566 

Supplementary Figure 5: Comparison of estimated interface energies for peptide-protein 567 

complexes and CDR-protein complexes. 568 

 569 

 570 

Supplementary Figure 6: Performance of PepNN on the task of epitope prediction. A) ROC 571 

curves on all residues in the test dataset. B) Distribution of ROC AUC for different input 572 

antigens from the test set. 573 
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