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Abstract  19 

Background: Epidemiologic studies have linked antibiotic exposure to subsequent sepsis, 20 

suggesting that microbiome disruption may be in the causal pathway and an independent risk 21 

factor. This study tests whether variation in the gut microbiota associates with risk of sepsis 22 

onset and its outcomes. 23 

Methods: Using a validated surveillance definition, patients with an archived rectal swab from 24 

intensive care and hematology units were screened for sepsis. After confirmation by chart 25 

review, cases were matched to controls in a 1:2 ratio based on age, gender, and collection date. 26 

Relative taxon abundance was measured by sequence analysis of 16S rRNA gene amplicons; 27 

total bacterial abundance was measured by qPCR of the 23S rRNA gene. Conditional logistic 28 

regression identified clinical and microbiota variables associated with sepsis. 29 

Results: There were 103 sepsis cases matched to 206 controls. In a final model adjusting for 30 

exposure to broad-spectrum antibiotics and indwelling vascular catheters, high relative 31 

abundance (RA) of Enterococcus (Odds Ratio (OR) 1.36 per 10% increase, P=.016) and high 32 

total bacterial abundance (OR 1.50 per 10-fold increase in 23S copies/µL, P =.001) were 33 

independently associated with sepsis. Decreased RA of butyrate-producing bacteria also 34 

independently associated with sepsis (OR 1.20 for 10% decrease in RA, P =.041), and mortality 35 

in unadjusted analysis (OR=1.47 for 10% decrease in RA, P=.034). 36 

Conclusions: This study indicates that the microbiota is altered at sepsis onset. The decreased 37 

RA of butyrate-producing bacteria in sepsis also associates with mortality, suggesting a 38 

therapeutic role for prebiotics and probiotics in the prevention and treatment of sepsis.  39 
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Importance 40 

Early detection of patients at risk for sepsis could enable interventions to prevent or rapidly treat 41 

this life-threatening condition. Prior antibiotic treatment is associated with sepsis, suggesting that 42 

disruption of the bacterial population in the gut (the intestinal microbiome) could be an important 43 

step leading to disease. To investigate this theory, we matched hospitalized patients with and 44 

without sepsis and characterized the patients’ microbiomes close to or at onset of sepsis. We 45 

found that several microbiome alterations, including having more total bacteria in the gut was 46 

associated with onset, regardless of prior antibiotic treatment. This signature of microbiome 47 

disruption brings us closer to identifying the biological causes of sepsis and could be used to 48 

develop new diagnostic tests to identify patients at risk of sepsis.  49 
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Introduction  50 

Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to 51 

infection, affects 1.7 million people annually in the United States (1, 2). As successfully 52 

advocated by the Surviving Sepsis Campaign, to prevent death from sepsis, intervention must be 53 

rapid and include a combination of supportive care and treatment of the underlying infection (3). 54 

Though advances in care have reduced mortality from 46.9% in the early 1990s to 29% by 2009 55 

(4), this is still an unacceptably high risk of death. Furthermore, prevention efforts have been less 56 

successful, as there has been little progress made on overall sepsis incidence, which for example 57 

remained stable from 2009–2014 (3) and the worldwide incidence may be significantly higher 58 

than previously estimated (5). Prior antibiotic exposure is associated with subsequent sepsis. In 59 

particular,  antibiotics most disruptive of the gut microbiome as measured by the strength of 60 

association with Clostridioides difficile infection are high-risk antibiotics for subsequent sepsis 61 

(6). This indicates that alterations in the microbiome may be an important sepsis risk factor and a 62 

possible target for better preventative and therapeutic efforts 63 

 64 

The microbiome may affect sepsis risk by multiple, potentially overlapping, mechanisms. 65 

Bacteremia from Enterococcus and Proteobacteria are associated with intestinal domination by 66 

these taxa (7, 8), suggesting a direct causative link between the microbiome and infections. 67 

Alternatively, depletion of butyrate-producing taxa are associated with viral respiratory 68 

infections, suggesting the microbiome may also play a more indirect immunomodulatory role 69 

(9). Most studies of the microbiome measure relative abundance of bacterial taxa, but their 70 

absolute abundance individually and as a community are also associated with various disease 71 

states (10) (11). Although there is strong evidence that antibiotics that disrupt the microbiome 72 
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 5 

increase sepsis risk, and that dominance of certain microbiome taxa increase the risk of 73 

corresponding infections, the specific pattern of microbiome disruption associated with sepsis 74 

onset is unclear. To identify the microbiome variables associated with sepsis and its outcomes, a 75 

single-center case-control study was performed using rectal swabs collected before or at the time 76 

of sepsis onset. 77 

 78 

Results 79 

Identifying important potential clinical confounders 80 

Cohort characteristics and unadjusted analysis. Using a Centers for Disease Control (CDC) 81 

surveillance definition (1) with confirmation by manual chart review, 103 cases and 206 controls 82 

were identified among intensive care and hematology oncology patients with an available rectal 83 

swab between January 2016–February 2017. Of the sepsis cases, 86 were community onset and 84 

17 were hospital onset, and 73 cases had the rectal swab collected on the same day as starting 85 

antibiotics for treatment while 30 had the swab collected in the week prior to starting antibiotics. 86 

Among controls, 22 had the swab collected on the same day as, and 6 had the swab collected in 87 

the week prior to, starting antibiotics. The remaining 178 controls either did not start antibiotics 88 

(66) or started prior to swab collection (112). Cases and controls were well-matched with respect 89 

to demographics (Table 1). However, cases had worse baseline vital signs and laboratory values 90 

compared to controls, consistent with sepsis, and a higher Elixhauser comorbidity score (12). 91 

More cases were exposed to a high-risk antibiotic (third- or fourth-generation cephalosporins, 92 

lincosamides, β-lactam/β-lactamase inhibitor combinations, oral vancomycin, and carbapenems) 93 

in the 90 days prior to admission. 94 
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 95 

Modeling sepsis with clinical variables. To determine which clinical variables were 96 

independently associated with sepsis, a model was derived by backward elimination (Table 2). 97 

High-risk antibiotic exposure, fluid & electrolyte disorder, and indwelling venous catheter at 98 

baseline were independent risk factors for sepsis. There were also inverse associations between 99 

peripheral vascular disorder and valvular disease and sepsis that could not be explained within 100 

the limits of the dataset and retrospective data collection. The model fit the data well, with an 101 

area under the receiver operator curve (AUROC) of 0.93 (Supplemental Figure 1). These 102 

variables were then considered as potential confounders as we tested hypotheses about 103 

microbiota features associated with sepsis. 104 

 105 

Identifying microbiota features associated with sepsis   106 

Community structure, and sepsis. We measured Shannon diversity and observed a threshold 107 

effect, defining “low Shannon diversity” at an optimal cut point of <2.5. Low Shannon diversity 108 

associated significantly with sepsis on unadjusted analysis (OR=1.79, P =.024, Supplemental 109 

Table 3).  110 

 111 

There was a significant difference in the relative abundances of shared and non-shared OTUs of 112 

samples from sepsis cases compared to controls (beta-diversity) as measured by Analysis of 113 

Molecular Variance (AMOVA) on θYC distances (represented by PCoA, Supplemental Figure 114 

2; P <.001) (13, 14). There was no significant difference between the microbiota of samples 115 

taken from sepsis patients on the day of sepsis diagnosis (n=73) versus the week prior to sepsis 116 
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diagnosis (n=30) (P =.904) and both were significantly different than controls (P <0.001 and P 117 

=.004, respectively). There was also no difference between the microbiota of community onset 118 

(n=86) and hospital onset cases (n=17) by AMOVA (P = 0.566) and both were significantly 119 

different than controls (P <.001 and P =.005, respectively). Individual subject scores from PCoA 120 

axes 1 and 3 were significantly associated with sepsis (Supplemental Table 3). Using 121 

Partitioning Against Medoids (PAM) clustering based on Jensen-Shannon Divergence and 122 

without regard to case status, the samples clustered into 2 community types (optimal partitioning 123 

based on highest Laplace value, testing up to 5 partitions), and with community type 2 associated 124 

with sepsis (Supplemental Table 3) (15, 16). 125 

 126 

High-rank taxonomic and constructed variables vs. sepsis. High relative abundance of the 127 

Bacteroidetes phylum and the Enterobacteriaceae family associated with sepsis, while relative 128 

abundance of the Firmicutes was higher in controls. Neither the microbiome health index 129 

(relative abundance of [Bacteroidia + Clostridia]/[ γ-Proteobacteria + Bacilli]) (17) nor the 130 

Firmicutes/Bacteroidetes ratio associated with sepsis (Supplemental Table 3). However, the 131 

relative abundance of butyrate-producing bacteria (Supplemental Dataset; (9) was inversely 132 

associated with sepsis (OR=0.77 for every 10% increase, P=.001). 133 

 134 

Individual bacterial taxa and sepsis. Linear discriminant analysis Effect Size (LEfSe) (18) 135 

analysis of the individual OTUs enriched in the two different community types and in sepsis 136 

cases vs. controls revealed that OTU #2 / Enterococcus was enriched in both sepsis cases and 137 

microbiota community type 2 (Supplementary Results, Supplemental Figure 3). Although 138 
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LEfSe does not account for matching between cases and controls, it is a robust method that 139 

avoids type I statistical errors without a significant reduction in statistical power. As a 140 

complementary approach, unadjusted analyses of OTUs using conditional logistic regression 141 

accounting for case/control matching was performed (Supplemental Table 3). The presence and 142 

abundance of specific OTUs, in particular relative abundance of OTU #2 / Enterococcus, were 143 

associated with higher odds of sepsis, though these analyses did not reach statistical significance. 144 

 145 

Total bacterial abundance. To measure total bacterial abundance in rectal swab samples, we 146 

developed a PCR assay for 23S rRNA by compiling a focused list of the organisms most 147 

prevalent in stool and using PanelPlex and ThermoBLAST software (DNA Software, Inc., Ann 148 

Arbor, MI) to find optimal consensus primers and probes (Supplemental Results, 149 

Supplemental Table 1) (19, 20). This assay demonstrated a significant association on 150 

unadjusted analyses between increased total bacterial abundance and sepsis (OR 1.67 for every 151 

10-fold increase in 23S gene copies/ µL, P <.001, Supplemental Table 3). 152 

 153 

Holistic modeling of sepsis risk with both clinical and microbiome variables. 154 

Analysis of the clinical variables for confounding (associated both with sepsis and one or more 155 

microbiota variables) identified multiple co-morbidities and exposure to high risk antibiotics as 156 

potential confounders to include in our adjusted models (Supplemental Table 4). To avoid an 157 

unstable and overfit model caused by too many candidate variables, high Elixhauser score was 158 

carried forward as a measure of comorbidity burden into the models instead of individual 159 

comorbidities. Since it was not selected for inclusion, we forced “high Elixhauser score” back 160 

into this model to control for comorbid disease, and it neither changed the results of the other 161 
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covariates nor was significant itself (P =.771), so it was not included in the final model 162 

containing two clinical and two microbiota variables (Table 3). After adjusting for indwelling 163 

vascular catheter and prior high-risk antibiotic exposure, we found that for every 10-fold increase 164 

in 23S rRNA gene copies/µL, there was a 1.50-fold increased odds of sepsis. That is, the odds of 165 

sepsis rose as bacterial abundance rose. Additionally, every 10% increase in Enterococcus 166 

relative abundance results in a 1.36-fold increased odds of sepsis. Thus, these microbiota-derived 167 

variables were the best independent predictors of sepsis when considered alongside clinical 168 

predictors. Given its functional and potential therapeutic significance, we separately tested the 169 

hypothesis that decreased relative abundance of butyrate-producing bacteria was associated with 170 

sepsis, and found it was associated with sepsis independent of indwelling vascular catheter and 171 

high risk antibiotic exposure (OR 1.2 for every 10% decrease; Supplemental Table 5) (9). 172 

 173 

Identification of microbiota features associated with outcomes following sepsis 174 

Mortality among sepsis patients and microbiota factors. Among the 103 subjects with sepsis, 28 175 

(27.2%) died. In an exploratory analysis of predictors of mortality, gut microbial community 176 

type 2 (OR=5.40, P=.03) and decreased relative abundance of butyrate-producing bacteria 177 

(OR=1.47 per 10%, P=0.034) were strongly associated with mortality among septic patients. In 178 

contrast, scores from PCoA axis 1 and increased relative abundance of Peptoniphilus species had 179 

protective effects on unadjusted analyses (Supplemental Table 6). Modeling, limited by sample 180 

size, only selected 2 variables, and after accounting for age, having a gut community type 2 181 

retained borderline statistical significance for increased mortality risk (OR=4.48, P=.057, 182 

Supplemental Table 7). Adding relative abundance of butyrate-producing bacteria into this 183 

model, it had borderline significance as a protective factor (Supplemental Table 8).  184 
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Discussion 185 

Our finding that several features of the gut microbial community are independently associated 186 

with sepsis supports the hypothesis that the gut microbiome, at least in part, mediates sepsis risk 187 

(6). Our most notable findings are that within a week of sepsis onset, higher total bacterial 188 

abundance, higher relative abundance of OTU #2 (Enterococcus species), and lower relative 189 

abundance of butyrate-producing bacteria all associated with increased odds of sepsis. These 190 

findings held even after adjustment for potential clinical confounders, including exposure to 191 

high-risk antibiotics associated with sepsis (6).  192 

 193 

The association with increased total bacterial abundance, as measured by 23S rRNA gene qPCR, 194 

is particularly intriguing. Since 16S rRNA gene sequencing alone only allows for calculation of 195 

relative abundance, absolute quantification of taxa is less commonly reported. Based on 196 

measuring DNA concentration normalized to total weight of fecal samples,  patients with 197 

recurrent C. difficile infection had lower overall bacterial density compared to those with non-198 

recurrent disease, and this lower overall bacterial density was restored by fecal transplant (10). 199 

Our findings suggest that sepsis may be associated with higher absolute bacterial abundance. 200 

Alternatively, there may be differences in the amount of fecal material in the rectal and perirectal 201 

area of patients that develop sepsis, which could be attributed to physiological variables (e.g. 202 

anal sphincter function) or hygiene. There is also likely variation in sample collection, which 203 

could lead to differences in measured total bacterial abundance. However, this variation is likely 204 

to be random, and we have also observed an association between Enterobacterales total 205 

abundance and infection (11). Thus, our findings should be confirmed in a study that utilizes 206 

stool samples. 207 
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 208 

The biological reason for the association between Enterococcus abundance and sepsis is unclear. 209 

Previous studies have shown that Enterococcus dominance is associated with subsequent 210 

vancomycin-resistant Enterococcus bacteremia (7). Furthermore, there is evidence that 211 

dominance by Enterococcus may be associated with poor patient health (21), and with loss of 212 

colonization resistance to resistant Gram-negative pathogens (22). 213 

 214 

We also found that a lower relative abundance of butyrate-producing bacteria was associated 215 

with sepsis. Butyrate has been associated with immunomodulatory effects in the intestine and on 216 

lung infections
 
(9), and could have similar protective effects against sepsis. This separate finding 217 

hints at functional disruptions of the microbiome that could be therapeutic targets for reduction 218 

of sepsis using probiotics and/or prebiotics as demonstrated for prevention of neonatal sepsis 219 

(23). 220 

 221 

The clinical model (Table 2) confirmed that high-risk antibiotics were associated with sepsis, as 222 

observed in the epidemiologic study by Baggs et al (6). We also found a positive association 223 

with fluid and electrolyte disorders and neurologic disorders, which we previously found to be 224 

associated with Klebsiella pneumoniae infections from this same patient population (24). The 225 

reason for the inverse association between sepsis and both peripheral vascular disorder and 226 

valvular disease was unclear. However, we also observed this inverse correlation between 227 

peripheral vascular disorder and K. pneumoniae infection previously (25). These negative 228 
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 12 

associations could indicate that patients with these disorders are admitted for surgery and are a 229 

distinct subset of the ICU population at lower risk of infections, and this deserves further study. 230 

 231 

Our study has several limitations. Though a major problem nationwide, at the level of our 232 

individual health system, sepsis is still a rare outcome. This necessitated a case-control design in 233 

lieu of a more methodologically straightforward cohort study, and there are inherent concerns 234 

regarding information bias, confounding, and data reliability in any retrospective study. We 235 

attempted to mitigate these limitations through manual chart review, matching, and careful, 236 

adjusted modeling. Ideally all of our rectal swab samples would have been collected before 237 

sepsis onset and before any antibiotics were started, but we were limited in the samples available 238 

to us and many were obtained on the day of sepsis onset. It is reassuring that there were no 239 

substantial differences in overall community structure, as measured by beta-diversity, when 240 

comparing samples from the week prior to sepsis to ones obtained on the day of onset (P =.904). 241 

Although we identified the microbiome-derived variables most strongly associated with sepsis 242 

after adjustment for clinical confounders, some of the other microbiota associated variables we 243 

identified on unadjusted analysis may also be important (Supplemental Table 3), and there may 244 

be others of importance that we did not have sufficient power to detect at all. This may be due to 245 

confounding from clinical variables or lack of sufficient power for model inclusion in the setting 246 

of other, more explanatory variables, which could be addressed in a future study with a larger 247 

sample size. 248 

 249 
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In conclusion, our study is consistent with the hypothesis that the gut microbiome in part 250 

mediates risk of sepsis and its subsequent outcomes. These findings also have immediate 251 

feasibility for monitoring and prediction, as the final model incorporates information that is 252 

easily obtainable during a patient’s hospitalization and we currently have a qPCR design that 253 

measures total rectal bacterial abundance that is associated with sepsis. This could be paired with 254 

an Enterococcus-specific qPCR to measure relative abundance and obtain the 4
th

 variable in the 255 

model. Such detection of high-risk patients, if achieved rapidly and cheaply, can enable trials of 256 

infection prevention interventions. 257 

  258 
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Methods 259 

Study design. This was a nested case-control study within a retrospective cohort of intensive 260 

care and hematology/oncology patients with archived rectal swabs. Based on a power 261 

calculation, the enrollment goal was 100 cases of sepsis matched to 200 controls (see 262 

Supplementary Methods). Electronic medical record data from patients with an archived rectal 263 

swab sample obtained between January 2016 and February 2017 were screened by Sepsis-3 264 

criteria (1) (2). Sepsis was defined as 1) presumed serious infection indicated by obtaining blood 265 

cultures; 2) 4 days of antibiotic treatment started ±2 days from blood cultures; and  3) acute 266 

organ dysfunction present ±2 days from blood cultures (1). Each case screening positive was 267 

confirmed with manual review by an infectious diseases attending physician (KR). Controls were 268 

excluded if they had evidence of infection or an ICD-9 code for sepsis that did not meet criteria 269 

upon manual review. Cases were matched to eligible controls based on age (+/- 10 years), sex, 270 

and date of swab collection (+/- 45 days). 271 

 272 

For all cases and controls, detailed electronic medical record data was extracted. Comorbidities 273 

and Elixhauser scores were extracted and calculated as previously described (12). Baseline 274 

values for labs and vitals were defined as the either the maximum (e.g. temperature) or minimum 275 

value (e.g. albumin) within 48 hours of admission. Antibiotic exposure metrics for the 90 days 276 

prior to admission included total duration, the number of concurrent classes of antibiotics, and 277 

risk category, defined as high, medium, or low based on prior association with both microbiome 278 

disruption and sepsis (6).  High-risk antibiotics were defined as third and fourth-generation 279 

cephalosporins, lincosamides, β-lactam/lactamase inhibitors, oral vancomycin, carbapenem, 280 

daptomycin, and metronidazole (the latter changed from low in the original Baggs et al. study, 281 
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(6)based on personal communication with the authors). Medium risk antibiotics included 282 

penicillins, aminoglycosides, and intravenous vancomycin. Low risk antibiotics were first and 283 

second-generation cephalosporins, macrolides, tetracyclines, sulfa antibiotics, and 284 

fluoroquinolones (the latter changed from high in the original Baggs et al. study, based on 285 

personal communication with the authors). 286 

 287 

Bacterial community analysis. Rectal swab analysis was performed on 250 µL of liquid Amies 288 

transport media in the E-swab transport system (Becton Dickinson, Franklin Lakes, NJ). Total 289 

DNA extraction, library preparation, and 16S rRNA gene-based sequencing using Illumina 290 

technology were conducted by the University of Michigan Microbial Systems Laboratory (MSL) 291 

using dual-indexing sequencing strategy targeting the 16S rRNA V4 region(26) . The resulting 292 

sequences were processed and analyzed using mothur v1.39.5 293 

(www.mothur.org/wiki/MiSeq_SOP) (26, 27). Analysis was performed on 309 samples from 103 294 

complete strata with a minimum of 2500 sequences per sample. Bacterial abundance was 295 

measured by 23S rRNA gene qPCR on an aliquot of the same DNA used for sequencing. Details 296 

are described in Supplemental Methods.  297 

 298 

Modeling. The primary outcome was sepsis and the primary predictors of interest were features 299 

of the gut microbiota. We assessed for threshold effects and, where present, reconstructed the 300 

variables (e.g. dichotomization). In addition to diversity and richness, we considered various 301 

taxonomic variables such as phylum (focus on Bacteroidetes, Firmicutes) and class (focus on 302 

Bacilli, Clostridia, Bacteroidia, and γ-Proteobacteria). The OTUs were modeled both as relative 303 
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abundance and as absent/present. To reduce false positives, we focused only on the filtered list of 304 

OTUs and applied a false discovery rate correction. Only OTUs with a corrected P value <.2 305 

were carried forward for consideration in adjusted models. Conditional logistic regression was 306 

used for both the unadjusted and adjusted analyses to test our hypotheses. To build models, we 307 

only included clinical covariates that were flagged as potential confounders (i.e. associated both 308 

with the microbial predictor and sepsis) and performed backward elimination with a likelihood 309 

ratio test (cutoff of P <.05 for retention). We assessed for interactions in the final models and 310 

included them if statistically significant. 311 

 312 

  313 
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Tables 444 

Table 1. Selected baseline characteristics of the study population. 

Variable Cases (n=103) Controls (n=206) OR P 

Demographics 

Age (Years) 59.32±16.79 59.18±16.53 1.02 .701 

Male 58(56.31) 116(56.31) 1.00 >.99 

White 86(83.50) 169(82.04) 1.62 .260 

Non-Hispanic or Latinx 98(95.15) 198(96.12) 2.50 .403 

Vitals and laboratory values 

Baseline body mass index (kg/m
2
) 27.98± 6.59 30.19± 7.41 0.96 .019 

Baseline glucose level (mg/dL) 196.84 ±145.41 156.75± 63.50 1.01 .003 

Baseline hemoglobin level (g/dL) 9.03± 2.50 10.60±2.46 0.77 <.00

1 

Baseline white blood cell count 

(K/µL) 

17.47± 10.79 15.77± 47.66 1.00 .723 

Baseline platelet level (K/µL) 169.50± 98.55 185.06± 90.74 1.00 .170 

Baseline albumin level (g/dL) 2.89± 0.64 3.44± 0.62 0.25 <.00

1 
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Baseline albumin > 3.0 (g/dL) 38 (36.89) 118 (57.28) 0.20 <.00

1 

Baseline creatinine level (mg/dL) 2.06± 1.97 1.22± 1.25 1.50 <.00

1 

Baseline heart rate (Beats/min) 116.52± 23.93 100.76±21.37 1.03 <.00

1 

Baseline systolic blood 

pressure(mmHg) 

112.41± 23.60 119.42 ±19.69 0.98 .010 

Baseline diastolic blood pressure 

(mmHg) 

60.52± 14.23 63.85±11.49 0.98 .042 

Baseline temperature (F) 100.16± 1.48 99.10± 0.86 2.28 <.00

1 

Baseline respiratory rate 

(breaths/min) 

38.55± 14.67 25.93± 11.27 1.08 <.00

1 

Baseline SPO2 (peripheral oxygen 

saturation) 

95.37± 2.97 95.01± 3.68 1.04 .345 

Baseline PTT (partial thromboplastin 

time in seconds) 

39.52± 26.46 29.86± 14.23 1.02 .009 

Baseline INR 1.58± 0.96 1.20± 0.53 2.10 <.00

1 
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Medications 

Total prior antibiotic duration (days) 13.98 ±19.32 14.37± 23.27 1.00 .943 

Total number prior concurrent 

antibiotic classes 

2.31± 1.40 1.86± 1.43 1.10 .667 

High-risk antibiotic exposure at 

baseline 

27 (26.21) 19 (9.22) 3.43 <.00

1 

Proton pump inhibitor  53 (51.46)  82 (39.81)  1.61 .053 

Probiotics  3 (2.91)  1 (0.49) 6.00 .121 

Immunosuppressant 34 (33.01)  45 (21.84)  1.77 .036 

Immunomodulator  8 (7.77)  16 (7.77)  1.00 >.99 

H2 receptor blocker 52 (50.49)  73 (35.44) 1.85 .013 

Antipsychotic 26 (25.24) 37 (17.96) 1.52 .144 

Comorbidities 

Cardiac arrhythmias 67 (65.05)  76(36.89) 3.20 <.00

1 

Chronic pulmonary disease  38 (36.89) 40 (19.42) 2.39 .001 

Coagulopathy 31 (30.10) 35 (16.99) 1.94 .014 

Congestive heart failure  39(37.86) 46 (22.33) 2.22 .005 
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Iron deficiency anemia 17 (16.50)  12 (5.83) 3.14 .004 

Diabetes 36(34.95) 46(22.33) 1.89 .021 

Fluid electrolyte disorders 78 (75.73) 55 (26.70) 10.40 <.00

1 

Liver disease  27 (26.21) 31 (15.05) 2.06 .019 

Metastatic cancer 9 (8.74) 35 (16.99)   0.48 .059 

Other neurological disorders 28 (27.18) 11(5.34)  5.82 <.00

1 

Paralysis 6 (5.83)   2 (0.97)     6.00 .029 

Psychoses  7 (6.80)  4 (1.94)  4.22 .039 

Renal failure  32 (31.07) 35 (16.99) 2.26 .005 

Solid tumor without metastasis 17 (16.50) 63 (30.58) 0.45 .010 

Valvular disease 18 (17.48)  53 (25.73) 0.56 .082 

Weight loss  25 (24.27)  23 (11.17) 2.58 .004 

Elixhauser score 6.82± 2.39 4.75± 2.84 1.32 <.00

1 

High_Elixhauser(elixhauser_score 

>7) 

 33(32.04) 32 (15.53) 2.46 .001 
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Devices 

Urinary catheter at baseline  81 (78.64)  116 (56.31) 2.85 <.00

1 

Indwelling venous catheter at 

baseline 

 79 (76.70) 88 (42.72) 4.33 <.00

1 

Feeding tube at baseline 56 (54.37)  70 (33.98)  2.32 <.00

1 
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 446 

Table 2. Final clinical model for sepsis. 

Variable OR [95%CI] P 

High-risk antibiotic 

exposure at baseline 

4.10 [1.52, 11.07] .005 

Fluid & Electrolyte 

Disorder 

10.86 [4.23, 27.92] <.001 

Other Neurological 

Disorders 

6.52 [2.12, 19.99] .001 

Peripheral Vascular 

Disorder 

0.22 [0.07, 0.68] .009 

Cardiac Arrhythmias  2.74 [1.21, 6.21]  .016 

Valvular Disease  0.24 [0.09, 0.68] 0.007 

Indwelling venous catheter 

at baseline 

5.78 [2.41, 13.85] <.001 
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 448 

Table 3. Final multivariable model for sepsis. 

Variable OR [95% CI] P 

Indwelling vascular catheter 4.75 [2.5, 9.0] <.001 

High risk antibiotic exposure at 

baseline 

3.52 [1.5, 8.1] .003 

23S rRNA gene copies/µL (per 10-fold 

increase) 

1.50 [1.2, 1.9] .001 

OTU #2 / Enterococcus (for every 10% 

increase in abundance) 

1.36 [1.1, 1.8] .016 
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Figure Legends 450 

Figure 1. Increased total bacterial abundance, measured by 23S rRNA gene qPCR, is 451 

associated with sepsis. 23S rRNA gene from rectal swabs of cases of sepsis (n=103) and 452 

matched controls (n=106) was amplified by qPCR and quantified in gene copies/ul relative to a 453 

standard curve of Klebsiella pneumoniae KPPR1 genomic DNA.  Box and whiskers plots 454 

showing median, interquartile ranges, minimum and maximum values are shown. P <0.001 in 455 

unadjusted logit analysis. 456 
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Supplemental Materials 458 

 459 

Supplemental Results and Methods. Additional results and methodological details. 460 

 461 

Supplemental Dataset 1. Sequences and taxa used for PCR design and identification of butyrate 462 

producing taxa.  463 

 464 

 Supplemental Dataset 2. Sequence Read Archive accession numbers and associated metadata. 465 
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