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Abstract1

A longstanding question in infection biology is why two very similar individuals, with very sim-2

ilar pathogen exposures, may have very different outcomes. Recent experiments have found3

that even isogenic Drosophila melanogaster hosts, given identical inoculations of some bacterial4

pathogens at suitable doses, can experience very similar initial bacteria proliferation but then di-5

verge to either a lethal infection or a sustained chronic infection with much lower pathogen load.6

We hypothesized that divergent infection outcomes are a natural result of mutual negative feed-7

backs between pathogens and the host immune response. Here we test this hypothesis in silico8

by constructing process-based dynamic models for bacterial population growth, host immune9

induction, and the feedbacks between them, based on common mechanisms of immune system10

response. Mathematical analysis of a minimal conceptual model confirms our qualitative hypoth-11

esis that mutual negative feedbacks can magnify small differences among hosts into life-or-death12

differences in outcome. However, explaining observed features of chronic infections requires an13

extension of the model to include induced pathogen modifications that shield themselves from14

host immune responses at the cost of reduced proliferation rate. Our analysis thus generates new,15

testable predictions about the mechanisms underlying bimodal infection outcomes.16
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1 Introduction17

Despite more than a century of infectious disease research, we still do not understand why two18

similar individuals exposed to nearly identical bacterial infections may experience dramatically19

different outcomes, with some dying while others mount a successful defense and survive. It is20

routine to define the LD50 of a given pathogen as the infectious dose at which half the infected21

hosts will die. But why do half die while the other half survive? Analogously, we have very22

little understanding of why some individuals develop severe infections while others remain safe23

and healthy after similar exposures to opportunistic pathogens. Widely divergent outcomes, even24

when controlling for genotype and environment, give the appearance that the outcome is random25

or arbitrary.26

We have recently found that Drosophila melanogaster reared in a common controlled envi-27

ronment experience biphasic outcomes after identical injections (insofar as experimentally pos-28

sible) of an opportunistic pathogen [7]. Some hosts die from from acute infection with a high29

pathogen burden, others survive infection but sustaining a lifelong chronic bacterial burden at30

much lower density (Fig. 1A). That pattern occurs even when the hosts are isogenic (Fig. 1B). Very31

similar patterns are seen in Drosophila infected with other bacteria [6, 14], flour beetles (Tribolium32

castaneum) infected with Bacillus thuringiensis, with higher survival among offspring of immune-33

primed mothers (Fig. 1C, data from [20, Fig.1D]), virus-infected flies [8], and Plasmodium-infected34

mosquitos (Fig. 1D, data from [1, Fig. 2A]).35

Production of anti-microbial peptides (AMP) is a principal defense against invading bacte-36

ria in Drosophila and many other insects [13]. AMP production following pathogen invasion may37

be up-regulated primarily through the Imd or Toll signaling pathways (or both in combination),38

depending on the structure of the peptidoglycan in the bacterial cell wall [3]. Response to Prov-39

idencia rettgeri primarily involves the Imd pathway. Flies deficient in Imd-dependent immune40

response all experienced lethally high pathogen burdens following inoculation with P. rettgeri41

(Fig. 1E), while bimodal infection outcomes persisted in Toll-deficient mutants (Fig. 1F) and in42

phagocytosis-deficient mutants [7].43

In attempting to explain the observed bimodal outcomes, Duneau et al. [7] therefore tested44

whether flies vary in the speed and magnitude of Imd pathway induction. They found substantial45

variation in mRNA levels of the Diptericin gene, a readout of Imd pathway activity, 4 hours after46

pathogen injection. At that time, which is prior to the divergence in outcomes, Imd activity was47

more variable than bacterial load. Thus, the Imd variability presumably reflects intrinsic variabil-48

ity among the flies (despite their genetic homogeneity and common rearing), rather than being49

a side-effect of differences in bacterial population growth. Based on that finding, Duneau et al.50

[7] presented a phenomenological model positing that a fly either succeeds or completely fails51

to control the infection, depending on whether Imd up-regulation occurs before or after bacterial52

density crosses some threshold. Bimodality of outcomes is thus an assumption of their model, not53

an outcome.54
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Figure 1: A),B),E),F) Some experimental results from Duneau et al. [7] in which flies D. melanogaster
were given uniform injections of opportunistic pathogens but infection outcomes could be highly
variable. Each data point represents a fly that was sacrificed some time after infection to assay
its total bacterial load. C) Experimental results from [20] in which flour beetles Tribolium cas-
taneum were experimentally infected with Bacillus thuringensis. The data plotted are unprimed
beetles from Experiment 1 of that paper. The high bacterial load beetles at 12h post infection were
described as “moribund” [20]. D) Experimental results from Bian et al. [1, Fig. 2A] in which
mosquitos Anopheles stephensi were experimentally infected with Plasmodium falciparum. The plot-
ted data are Plasmodium ookinetes per midgut lumen in the LBT mosquito strain. Figure drawn
by script Figure1.R.
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Our goal here is to develop a general mechanistic explanation for outcome bimodality as55

an emergent property of interactions between the pathogen and host immune responses. van56

Leeuwen et al. [21] have recently presented an explanation specifically for intestinal parasites,57

based on nutritional interactions between parasite and host [e.g., 9, 10]. The mechanism in their58

model, parameterized for a nematode parasite of mouse, is competition for energy and nutrients:59

a larger pathogen population is increasingly able to divert the resources ingested by the host from60

the host to itself. The pathogen thus benefits from increased abundance (an Allee effect), po-61

tentially resulting in bimodal outcomes where infection duration is long or short depending on62

whether the initial pathogen abundance is above or below a threshold.63

Here we propose an alternative, broadly applicable explanation, that bimodal infection out-64

comes are a natural result of two negative feedbacks: hosts mount an immune response to erad-65

icate the pathogen, while pathogens attempt to counteract or squelch the immune responses so66

they can proliferate at the expense of the host. Then, depending on the balance between host im-67

mune response and pathogen counter-response, the outcome can be bistable dynamics, in which68

similar initial states lead to widely divergent outcomes. A simple analogy is the well-known “tog-69

gle switch” model for two genes that mutually repress each other’s activity levels. For suitable70

parameter values, this results in two stable equilibria (each with one gene “on” and the other71

“off”), separated by an unstable saddle equilibrium. Two trajectories with very similar initial con-72

ditions near the origin, but on opposite sides of a separatrix (the stable manifold of the saddle)73

follow similar paths initially but then separate and eventually converge to different stable equilib-74

ria. Continuous variation in initial conditions spanning the separatrix produces discrete variation75

in outcomes.76

We first present a minimal conceptual model for our hypothesis based on the Drosophila77

experimental system. We posit that flies respond to a bacterial infection by producing bacteriocidal78

AMPs, while bacteria can inactivate AMPs by sequestration and produce proteases that degrade79

AMPs [12]. In addition, bacteria can produce effectors that interfere with AMP production [e.g.,80

16]. A slow-fast approximation to this model produces a two-dimensional system, and phase81

plane analysis of that system verifies our hypothesis that bimodality is a robust outcome of the82

mutual negative feedbacks.83

Importantly, we do not merely confirm that the “toggle switch” mechanism for bistability can84

be made to operate in a host-pathogen interaction. Our analysis shows that bistability occurs in85

our model across a wide range of biologically plausible parameter values, and it identifies several86

specific scenarios in which small between-host differences can be amplified into widely divergent87

outcomes.88

However, analysis of the minimal model shows that for biologically reasonable parameter89

values, the “toggle switch” mechanism does not provide a complete explanation for the experi-90

mental observations. Specifically, it cannot explain the common observation that the pathogen is91

controlled in surviving hosts but not eliminated or reduced to very low numbers. Rather, there is92
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a a chronic infection held in check by sustained immune system activation [5], which can break93

out into an active infection if the host immune response is subsequently eliminated (B.P. Lazzaro,94

unpublished data). We therefore extend the model by allowing bacteria to enter a “protected” state95

where they are partially shielded from immune response. Several such mechanisms for bacterial96

defense against AMPs are known, including biofilm formation and various cell envelope mod-97

ifications [12]. The conditions for stable chronic infection in the extended model lead to new,98

testable predictions about the mechanisms that account for chronic infection rather than complete99

or near-complete elimination of the pathogen.100

Finally, we develop a detailed model for the IMD signaling pathway, to show that our min-101

imal model’s “cartoon” description of immune system activation dynamics, and how it varies102

among individuals, can be realized in a completely mechanistic model for a defense activation103

pathway.104

2 Conceptual model105

Our conceptual model tracks a bacterial population B growing within an invertebrate host, suffer-106

ing mortality caused by host-produced AMPs A, and producing proteases R that degrade AMPs:107

dB
dt

= rB(1− B/K)− cAB

dA
dt

= f (B)− δA A− hAR− cAB

dR
dt

= gB− δRR

where f (B) =
QAB

SA + B

(1)108

and all parameters are positive. In the absence of AMPs, bacteria have logistic population growth109

with maximum per-capita growth rate r and “carrying capacity” K. The carrying capacity corre-110

sponds to pathogen growth ceasing because the host is completely consumed, so any model solu-111

tion where B gets close to K is interpreted as pathogen killing the host. cAB is bacteria mortality112

due to AMPs. AMP production rate f is a function of bacteria abundance, monotonic increasing113

from f (0) = 0 and saturating at maximum rate QA. SA is the bacterial abundance at which AMP114

production rate reaches half its maximum value. In our model, AMPs are lost three ways: natural115

degradation at rate δA A, degradation by protease at rate hAR, and sequestration, i.e. each “kill”116

of a bacterium binds and thus inactivates the A molecule that was involved. Over the time-scale117

of interest AMPs are very stable molecules, so δA � 1 [17, 18]. However, AMPs can be produced118

quickly enough to create a lethal within-host environment for the pathogen [3]. Proteases R are119

produced by bacteria at constant per-capita rate g and degrade naturally at rate δRR, which is not120

necessarily very small. Protease is not consumed in the process of promoting AMP degradation,121

so the hAR term is not replicated in the dR/dt equation.122
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To keep this “proof of concept” model as simple as possible, we have omitted two poten-123

tial features of the host-pathogen interaction: a constitutive immune response (i.e., production124

of AMPs in the absence of bacteria [11]), and bacterial production of effectors that interfere with125

the host mounting an immune response [e.g., 16] rather than acting through AMP degradation126

and sequestration. In Electronic Supporting Material ESM S.2 we present an extended model that127

includes these features. We show that the only qualitative effect of the extensions is to add one128

more scenario (described at the end of this section) where small individual differences in the host129

immune induction can produce bimodal outcomes.130

Before analysis we re-scale the model, setting B̃ = B/SA, Ã = A/SA, R̃ = hR and t̃ = rt.131

For the sake of visualization and analysis, we reduce the dimension of the model by assuming132

that R is a “fast” (i.e., g and δR are large) that remains close to its steady state conditional on the133

other variables, R = mB where m = g/δR. The calculations are carried out in MAXIMA script134

RescaleBAR.max. Then dropping the tilde’s on rescaled variables and parameters for clarity, the135

model we consider is136

dB
dt

= B(1− B/K)− cAB

dA
dt

= f (B)− δA A− (c + m)AB

where f (B) =
QAB
1 + B

.

(2)137

Note that equilibria (Ā, B̄) of the reduced model (2) are in 1-to-1 correspondence with equilibria138

(Ā, B̄, mB̄) of the full system (1). Because bacterial abundance is now scaled relative to the half-139

saturation abundance for immune response, and immune response is triggered when bacteria are140

far below a lethal abundance, we can assume that K � 1. Time is scaled so that bacteria that are141

unhindered by resource shortage or immune response would double in log 2 ≈ 0.7 time units.142

Observed doubling times are typically on the order of 1h in real time [7], so we can still assume143

that δA is a small parameter in the rescaled model.144

Equilibria occur at intersections of the B and A nullclines (the sets of (B, A) values at which145

dB/dt = 0 and dA/dt = 0, respectively). The B nullcline consists of the axis B = 0 and the line146

A = c−1(1− B/K); the A nullcline is the curve147

A =
QAB

(1 + B)(δA + (c + m)B)
. (3)148

The infection-absent state (B = A = 0, open diamond) is always an equilibrium. Analysis of149

the model (in electronic supplementary material ESM S.1) shows that this equilibrium is always150

unstable: a small inoculum of bacteria initially increases. Other equilibria and their stability de-151

pend on the configuration of the B and A nullclines in the interior of the first quadrant. There are152

three possibilities, shown in Figure 2 A). Model behavior in each of these cases is analyzed in elec-153

tronic supplementary material ESM S.1. When host immune response is very strong (large QA,154
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Figure 2: Phase-plane diagrams of the conceptual model. A) Possible nullcline configurations.
The blue line is the B nullcline, the three green curves are the A nullcline for three different values
of QA (4, 5.8, and 8) from lowest to highest, with K = 6, δA = 0.05, c = 0.2, m = 0.45 Equilibria
(where nullclines intersect) can be stable (solid square) or unstable (open diamond). B) Phase
portrait in the bistable case. Black and red curves are the stable and unstable manifolds of the
interior unstable equilibrium, which is a saddle. Solution trajectories (purple curves) converge to
one or the other stable equilibia, depending on the location of their starting point lies. Figures
were created by script files BAnullclinesPlot.R, BAModel.R.
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dotted green curve) there is only one nullcline intersection giving a stable equilibrium at B ≈ 0155

and A ≈ 1/c. Model solutions starting anywhere except B = A = 0 converge to that equilibrium:156

immune response always holds the infection in check. When host immune response is very weak157

(small QA, dashed green curve) there is again only one possible outcome: the stable equilibrium158

near B = K, A = 0, representing a pathogen that has overcome the host’s immune defenses. In159

between these extremes (solid green curve) there are three interior equilibria, one unstable and160

two locally stable, at widely differing pathogen densities.161

Figure 2 B) illustrates how, in the three equilibrium case, small differences in initial condi-162

tions can produce large differences in the infection outcome. The unstable manifold of the middle163

interior equilibrium consists of two solution trajectories with exactly the right initial conditions164

so that solutions converge to the middle equilibrium. Initial conditions off the stable manifold165

lead to infection dynamics that first approach the middle equilibrium, but then veer off to one of166

the stable interior equilibria, depending on which side of the stable manifold they started. The167

right-most equilibrium is always a node, but the left-most can be a spiral (as in this example) if it168

occurs where the A nullcline is very steep.169

In electronic supplementary material ESM S.1 we derive the following approximate condi-170

tion for occurence of bistability in the scaled model:171

1 <
QAc

c + m
<

(K + 1)2

4K
(4)172

Although eqn. (4) is approximate, we have found numerically that bistability occurs when neither173

inequality is close to being violated. This condition can be interpreted biologically, showing that174

the requirements for bistability will often be satisfied. In the scaled model, K is the pathogen175

carrying capacity relative to the half-saturation constant for immune system up-regulation. Thus,176

K is large, and the right-most term will be large, so long as the host responds strongly to a bacterial177

infection when it is still far below the level at which the host’s survival is threatened. The middle178

term can be written as QA/(1 + m/c). QA determines how quickly the host can produce AMPs to179

ward off a pathogen attack, and m/c is a measure of how effectively the pathogen can counter the180

host by degrading AMPs, relative to the lethality of the host response. The middle term is thus a181

measure of the “balance of forces” between host and pathogen – if either antagonist is too strong182

or too weak, there is only one possible outcome. Condition (4) thus says that if the pathogen is a183

sufficient threat that the host responds to its presence in low numbers, bistability will occur across184

a wide range of values for the “balance of forces” between host and pathogen.185

The location of the stable manifold depends on parameter values. Here, parameter values186

were such that small differences in initial bacterial density produce radically different outcomes.187

In the Duneau et al. [7] experiments, where flies differed in the time required for immune activa-188

tion, the “initial bacterial density” would be the bacterial density at the time of immune activation,189

with higher bacterial density after a longer delay. The dynamics in Fig. 2 B) thus provide a qual-190
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Figure 3: Two replicates of a simulated experiment with 100 host individuals each in the min-
imal model eqn. (2), with parameter values QA = 10, δA = 0.02, c = 0.1, m = 0.2, K = 1000.
For comparison with experimental results, time was not scaled; bacteria had intrinsic growth rate
r = 0.5 multiplying the logistic growth term. Each plotted point represents “data” on one host
individual. Hosts vary in the delay period and ramp-up speed to full immune response, as de-
scribed in the main text. Hosts were “sacrificed” at a random time between 0.25 and 24 hours,
and Gaussian “measurement error” with σ = 0.35 was added to log2(B). Figure made by script
Split Outcomes BA.R.

itative explanation for observed bimodality in outcomes from very similar inoculations of very191

similar flies.192

Figure 3 shows simulations of experiments like those in Fig. 1 using the minimal model.193

We assumed that host individuals varied randomly in their pattern of immune system activation.194

This variability could have several different biological causes, including host resource or energetic195

limitations, but at the level of our model all that matters is the temporal pattern of activation. In all196

hosts, following the pathogen inoculation, the AMP production rate term f (B) was multiplied by197

a three-piece function representing immune system activation: a delay period during which AMP198

production rate is zero; a linear ramp-up from zero to one; and thereafter constant at 1. The dura-199

tion (in hours) of the delay period was chosen from a Uniform[1.5, 2.5] distribution, and the time200

required for the ramp-up was chosen from a Uniform[1,2] distribution. Each plotted point rep-201

resents one simulated host that was “sacrificed” at a random time, and Gaussian “measurement202

error” with σ = 0.35 was added to log2(B). These simulations show that our conceptual model203

provides a potential mechanistic basis for the hypothesis of Duneau et al. [7] that small variations204

in the speed of immune system activation can produce drastic, bimodal variation in outcomes. In205

Electronic Supplementary Material ESM S.3 we develop a detailed mechanistic model for the Imd206

signaling pathway leading to AMP production, and confirm that among-individual variation in207
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kinetic parameters of the pathway can produce a wide range of temporal patterns for immune208

activation (Fig. S-4).209

At other parameter values, the lower left branch of the unstable manifold approaches the210

A axis, rather than the B axis. In our extended model that includes constitutive defense (see211

Electronic Supplementary Material ESM S.2) this situation creates another way for small between-212

host differences to produce bimodal outcomes. Constitutive defense moves the pathogen-free213

equilibrium from the origin to a point (0, α) on the A axis. The location of this equilibrium relative214

to the stable manifold determines whether a small invading pathogen population sparks a lethal215

infection, or is driven down by the host immune response (fig S-2B,C). This scenario can produce216

bimodal outcomes from small variance among hosts in their constitutive defense levels.217

3 Chronic infection and protected pathogens218

The minimal model can explain bimodal outcomes, but cannot explain another important experi-219

mental observation: that the alternative to host death may be a chronic, low-level infection where220

bacteria remain present at substantial but non-lethal levels, and the host immune response is never221

fully down-regulated [7, 5]. At the low-B equilibrium in fig. 2 the pathogen density is extremely222

low. This is not just a feature of the particular parameters in that figure. The slope of the A223

nullcline (green curve) at B = 0 is QA/δA, so it rises very steeply, and the peak of the nullcline224

occurs at B =
√

δA
c+m . So under the biologically relevant assumption that δA is small, and host and225

pathogen interact strongly (so c and m are not small), the low-B equilibrium will always occur at226

very low B. At the parameters used in Fig. 3, the low-B equilibrium is very near zero even though227

δA is not greatly smaller than c or m. In our extended model (Electronic Supplementary Matrial228

ESM S.2) the low-B equilibrium can be at B = 0 when hosts have constitutive AMP production.229

However, empirical observation is that substantial bacterial loads can persist for the duration of230

life in hosts that survive the initial infection [7], engendering only a mild reduction in lifespan [4].231

Moreover, as bacterial abundance has been scaled in the model so that SA = 1, B � 1 implies232

that the immune system is almost completely down-regulated, which is also out of line with the233

experimental observations.234

To remove this conflict with empirical observations, we add one more feature to the pathogen235

population model: the ability of pathogens to achieve some degree of protection from the host236

immune response, at the cost of reducing their division rate. Several mechanisms are known that237

can produce this effect [12]. One is for cells to enter a “tolerant” or “persister” state, analogous238

to known mechanisms of antibiotic tolerance [2] involving either physiological changes (such as239

cell wall reduction or loss) or a reduction in metabolic rate (dormancy, Westblade et al. [22]). A240

second is for pathogens to invade some tissue that is protected from the host immune response.241

For example, intracellular pathogens such as Mycobacterium tuberculosis (the causative agent of242

tuberculosis) and Listeria monocytogenes do this by allowing themselves to be phagocytosed, then243

living inside the macrophage while being protected from host immune responses [15]. Any tissue244
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isolated from the host immune system could play the same function. A final possibility is for cells245

to form a structure such as a biofilm that protects most cells against host immune response, and246

allows them to safely remain metabolically active to some extent, while not changing dramatically247

in numbers [12]. For our purposes we need not distinguish between these possible mechanisms;248

we can just posit that cells can activate some mechanism affording protection at the cost of reduced249

proliferation rate.250

We thus extend the model to distinguish between “normal” bacteria N, and “protected” bac-251

teria P. For a minimally complex proof of concept model, we assume that protected cells are252

completely invulnerable to AMPs (without specifying how this is achieved), but have a lower in-253

trinsic division rate and protease production rate than normal bacterial (by a factor η < 1), and254

a lower carrying capacity L (lower carrying capacity is a necessary assumption in this model, as255

slower division would otherwise simply delay the progression to a high lethal pathogen burden,256

but host defenses could also limit protected bacterial growth if the assumption of complete invul-257

nerability is relaxed). We assume that the per-capita conversion rate from N to P states is a sigmoid258

increasing function p(A) of AMP concentration. Because our focus is on modeling chronic infec-259

tion states where the immune system remains activated, we omit back-conversion from P to N260

states that might occur at low AMP concentrations. However, we do assume that division of P261

cells produces both a fraction ν of N cells. When AMP concentrations are low, these N cells could262

proliferate and potentially re-seed a growing infection.263

The model is then264

dN
dt

= rN(1− N/K) + νηrP(1− P/L)− cAN − p(A)N

dP
dt

= (1− ν)ηrP(1− P/L) + p(A)N − δPP

dA
dt

= f (N)− δA A− hAR− cAN

dR
dt

= g(N + ηP)− δRR

where f (N) =
QAN
1 + N

.

(5)265

For this section we again scale state variables so that SA = h = 1, but leave time unscaled for the266

sake of comparisons with experimental results. A doubling time of 1 - 2 hours (r = 0.35− 0.7) can267

be taken as typical for the Drosophila pathogens shown to exhibit bimodal infection outcomes [7].268

The extended model readily produces bimodal outcomes in which the pathogen is never269

reduced to extremely low levels (Fig. 4). Simulations where the pathogen is held in check (fig.270

5) confirm that the model can capture the known qualitative features of chronic infections: the271

outcome is a stalemate, converging to a stable equilibrium where a small bacterial population that272

continues to undergo cell divisions is held down by host immune responses. For these parameters273
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Figure 4: As in Figure 3, for the extended model eqn. (5) with normal and protected bacteria.
Parameter values r = 0.5; QA = 12; δA = 0.02; c = .1; K = 1000; m = .25; δR = 2; g = 0.5; η =
0.25; ν = 0.5; L = 5; δP = 0.02 Conversion rate from N to P was given by the logit function
p(A) = αΦ(A|µ = AP, σ = σP), where Φ is the cumulative distribution function of a Gaussian
distribution with mean µ and standard deviation σ, with α = 0.1, AP = 5; σP = 0.5. Figure made
by script Split Outcomes NPAR.R.

there are enough N-state bacteria, sustained by division of P-state cells, to keep AMP production274

at roughly 30% of its maximum rate. However, sustained AMP production could also result, in275

theory, if protected bacteria do not divide but nonetheless produce metabolic products that induce276

a host immune response (having little or no effect on them).277

Any observed chronic infection load (those in our Drosophila experiments are roughly 104 −278

105 per host) can be matched in model (5) through a “protected tissue” scenario where protected279

bacteria remain near their carrying capacity L. But even in this simple model there are multiple280

ways to achieve any desired equilibrium for P as the balance between cell divisions and killing by281

AMPs.282

The outcomes in figs. 4 and 5 are not the only possiblity. In particular, the split into lethal283

or chronic infections can be transient (Electronic Supplementary Material Fig. S-1). With a larger284

carrying capacity L for the protected pathogens, and sufficiently high conversion rate, a large285

protected population can become established while the normal, unprotected cells are being driven286

down by the host immune response. The normal daughters of protected parents can then give the287

normal population enough of a “boost” that they rebound from near-elimination, and increase to288

a lethal infection.289
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Figure 5: Infection dynamics in the extended model, for a host with fast immune induction so that
the outcome is a chronic infection. Parameter values are the same as in fig. 4. Figure made by
script Split Outcomes NPAR.R.

4 Discussion290

The models presented here provide a proof of concept for our general negative feedbacks hy-291

pothesis. Hosts mounting a bacteriocidal immune response, and pathogens responding through292

mechanisms that degrade the bacteriocides or impede their production, is a simple but very gen-293

eral recipe for dynamics where small differences in initial conditions, or small differences between294

individuals in the values of key parameters, lead to dramatically different outcomes in different295

individuals. The effects of these differences occur within the first few hours of infection but the296

ultimate outcome may not be apparent until several days later. When we additionally allow bac-297

teria to enter a protected state at the cost of reduced ability to proliferate, the model can generate298

outcomes very much like those observed experimentally. The protected state could be a literal safe299

haven (e.g., a host tissue where they are shielded from immune responses), or a physiological or300

metabolic state with reduced sensitivity fo the immune response.301

Our model for protected pathogens assumed strictly one-way conversion302

(normal→protected) because that is sufficient to explain chronic infections. Allowing back-303

conversion would increase the theoretical potential for a suppressed bacteria population to304

rebound after an initially strong immune response has abated, provoking a second round of305

immune response. In theory this might lead to cyclical rise and fall of infection, or to a series306

of infection-suppressiong-rebound events that grow in magnitude and eventually overwhelm307
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the host. However, we are not aware of any empirical evidence for these scenarios in bacterial308

infections.309

Being able to fit previously collected data is not a strong test of a model, especially when310

information that would constrain model assumptions and parameter values is limited. However,311

that exercise has produced some new predictions that can be tested experimentally:312

1. Chronic infections are dominated by a sub-population of protected pathogens.313

2. Protected pathogens are not merely inert and invulnerable – they are doing something that314

provokes a sustained host immune response. In our models that “something” is that some315

daughter cells have the normal, unprotected phenotype, but other mechanisms (such as host316

sensing of metabolic by-products) could have the same effect.317

Stronger tests of our hypothesis should involve predicting in advance the outcome of new experi-318

ments, using mutant hosts and pathogens with modified kinetic parameters. The models here are319

built from causal links (e.g., pathogens evoke a host immune response whose strength depends on320

pathogen abundance) without specifying the underlying “machinery” (e.g., signaling pathways).321

This is valuable because it means that model predictions are not dependent on those details. How-322

ever, it does not allow us to test our hypothesis more rigorously by predicting in advance what323

happens if we monkey with the machinery. To do that, our phenomenological model of the initial324

activation of host immune responses (a linear ramp from onset to completion) needs to be re-325

placed by a detailed “systems biology” model for the kinetic pathways leading to immune system326

activation, primarily the Imd signaling pathway. The actual nature of protected pathogens needs327

to be identified, and state transitions modeled mechanistically. than specifying the outcomes at328

the level of population parameters (birth, death, and state transition rates). Such models will also329

help us identify exactly what processes generate the variation among genetically homogeneous330

hosts, raised in a common environment, that can be amplified into divergent infection outcomes.331
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Figure S-1: As in fig. 5 except protected bacteria have carrying capacity L = 15. Figure made by
script Split Outcomes NPAR.R.

ESM S.1 Analysis of the basic conceptual model, Eqn. (2)404

The analysis uses only standard tools of phase-plane and equilibrium stability analysis. We being405

with local stability analysis of equilibria, and then demonstrate that periodic and homoclinic orbits406

cannot occur. We use the notation .x = dx/dt.407

There is always an equilibrium is at B = A = 0. This is the pathogen-free equilibrium, where408

there are no bacteria, no possibility of bacterial population growth, and no immune response to409

bacterial infection. Elsewhere on the axes we have
.

A < 0 when B = 0 and
.

A > 0 when A = 0, so410

there are no other equilibria on the axes.411

Interior equilibria occur at interior intersections of the B nullcline A = c−1(1− B/K) with the A412

nullcline (3). The A nullcline begins at A = 0 when B = 0. Its derivative is positive at B = 0 and413
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is easily seen to have a single sign change from positive to negative, being zero at only one point.414

With increasing B the nullcline therefore increases to a unique maximum and then decreases, but415

it remains positive for all B > 0. These properties imply that (as depicted in fig. 2) there is at416

least one interior equilibrium, and there can be up to three. Because the condition for nullcline417

intersection is a cubic polynomial, there cannot be more than three.418

For stability analysis it is convenient to consider general f (B) (subject to f (0) = 0), and (until419

further notice) to scale B such that K = 1. This means that we are scaling B relative to the maxi-420

mum population that could be produced by unchecked proliferation within the host; in the main421

text B is scaled relative to the density that evokes the host immune response at half its maximum422

possible rate. Many of the calculations are done using MAXIMA in the script file BAModel.max.423

The Jacobian at (0, 0) has +1 as one eigenvalue and the other is negative, implying that the424

pathogen-free equilibrium is always a saddle. Any interior equilibrium lies on the interior B null-425

cline, where the Jacobian of the model is found to be of the form426

J =

[
−B −cB

f ′(B) + (B− 1) c−m
c −(dA + (c + m)B)

]
. (S1)427

The trace is negative, so stability depends on the determinant,428

det(J) = B
(
δA + f ′(B)c + (2B− 1)(c + m)

)
(S2)429

with local stability when det(J) < 0.430

We now show that local stability is determined by the direction of the nullcline crossing at the431

equilibrium, with stability when the A nullcline crosses from below to above the B nullcline as432

B increases. This model is simple enough to do the stability calculations explicitly, but we will433

instead use a general analysis which also covers the extended model in section ESM S.2.434

The Jacobian at any internal equilibrium has negative trace (this is shown in scripts BAmodel.max435

and BAImodel.max for the present model and the extended model, respectively), so stability de-436

pends on the sign of the determinant (stable if positive, a saddle if negative). We can write the437

model abstractly as438

dB
dt

= F(B, A)

dA
dt

= G(B, A)

(S3)439

The interior nullclines can be expressed as the graphs of some functions of B, A = Ā(B) and440

A = B̄(B), respectively, for the A and B nullclines. On the nullclines, we have F = G ≡ 0 and441
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hence (using subscripts to denote partial derivatives)442

FB + FAB̄B = 0

GB + GA ĀB = 0.
(S4)443

Both of these equalities hold at any interior equilibrium. Solving (S4) for B̄B and ĀB, we have that444

ĀB > B̄B at the equilibrium (i.e., the A nullcline crosses the B nullcline from below to above as B445

increases) is equivalent to446

−GB

GA
> − FB

FA
. (S5)447

FA and GA are both negative in the interior. Multiplying through (S5) by the negative number448

−FAGA we have FAGB < FBGA, hence FBGA − FAGB > 0. That expression is the determinant449

of the model’s Jacobian. Hence an “upcrossing” equilibrium is stable, and a “downcrossing”450

equilibrium is unstable, as illustrated in in fig. 2B. The connection between between nullcline451

crossing and the Jacobian determinant must be well known; if any reader can give us a citation for452

it, we would be grateful.453

An upcrossing can be either a spiral or a node, depending on the sign of the discriminant D =454

T2 − 4D (T, D =trace and determinant of the Jacobian). Returning to our conceptual model (2),455

D includes a term −4Bc f ′(B) which is ≤ 0 because f is by assumption non-decreasing, and no456

other term involving f ′ or f . Consequently D < 0 when f ′(B) is sufficiently large, implying457

complex conjugate eigenvalues, hence the equilibrium is a spiral. On the other hand, suppose458

the upcrossing occurs when the slope of the A nullcline is 0 or smaller. Using (S4), at a tangent459

intersection of the two nullclines, the determinant of the Jacobian is exactly zero. Therefore, at an460

upcrossing where the slope of the A nullcline is just slightly above the (negative) slope of the B461

nullcline, the determinant will be nearly zero. The trace at an equilibrium equals−B(1+ m + c)−462

δA which is strictly negative (see script BAmodel.max), hence the discriminantD is positive and the463

equilibrium is a node. This confirms that the transition from three equilibria to one always occurs464

through a saddle-node collison, as we would expect.465

Before returning to our specific model, we note that these general arguments about equilibrium466

stability and type also apply to the extended model in the following section.467

The three-equilibrium case is the one of most interest. Analytic conditions for the three-468

equilibrium case to occur in our conceptual model involve a cubic polynomical in B and so are469

hard to interpret. However, we can derive an approximate conditionfor the biologically relevant470

case that δA � 1, meaning that little degradation of AMPs occurs on the time scale of interest471

(hours to days after an infection occcurs). For this calculation we return to the scaling used in472

the main text, which sets SA = 1 rather than K = 1. Then except when B is very small (so that473
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(c + m)B is comparable in magnitude to δA) the A nullcline (eqn. (3)) is approximately given by474

A =
QA

(c + m)(1 + B)
. (S6)475

What this approximation misses is that the A nullcline actually takes a “nosedive” down to B =476

A = 0 as B ↓ 0, and if that “nosedive” starts above the B nullcline it gives rise to an additional477

equilibrium with B very close to zero.478

With a bit of algebra, intersections of the B nullcline with the approximate A nullcline occur where479

(1 + B)(1− B/K) =
QAc

c + m
. (S7)480

The three-equilibrium case occurs when this quadratic equation has two positive roots sufficiently481

far from B = 0 that eqn. (S6) is accurate, and the “nosedive” equilibrium is then the third equi-482

librium. The left-hand side of (S7) is a downward-curving parabola with roots at -1 and K. There483

will be two solutions of (S7) with B > 0 when the (i) K > 1 so that the peak of the parabola occurs484

when B > 0, (ii) the parabola is below the right-hand side at B = 0, and (iii) the parabola is above485

the right-hand side at its peak. These conditions are satisfied iff486

1 <
QAc

c + m
<

(K + 1)2

4K
(S8)487

The outer inequality implies K > 1, the inner two imply the other conditions. Although (S8)488

is approximate, we have found that it provides a reliable recipe for finding parameter values at489

which there are three interior equilibria: pick c, m so c + m is well above δA, choose QA well above490

(m + c)/c, and K such that
QAc

c + m
� (K + 1)2

4K
.491

We now consider global properties of solution trajectories.492

First, we find a trapping region in the first quadrant. The axes cannot be crossed from the interior493

of the first quadrant because {B = 0} is invariant, and
.

A ≥ 0 when A = 0. Clearly
.
B < 0494

whenever B > K. When B = 0,
.

A = −δA A < 0 for all A > 0, and for B 6= 0 we have
.

A <495

QAB − (c + m)AB so
.

A < 0 for A ≥ QA/(c + m). Therefore the rectangle {0 ≤ B ≤ K, 0 ≤496

A ≤ QA/(c + m)} is invariant. Moreover, the derivative bounds imply that eventually B ≤ K497

and A ≤ QA/(c + m), so that rectangle is eventually entered by any trajectory starting outside it.498

The portion of the B nullcline interior to the first quadrant is a line running from one axis to the499

other, and any interior equilibrium must lie on this line. By enlarging the rectangle (if necessary)500

to contain the interior portion of the B nullcline, we have an attracting and trapping region that501

contains all equilibria in the first quadrant.502
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Second, periodic solutions can be ruled out using the Bendixson-Dulac negative criterion for pla-503

nar systems. Let .x denote dx/dt for any variable x. The criterion says that if there is a smooth504

function g(B, A) such that505

∂(g
.
B)

∂B
+

∂(g
.

A)

∂A
(S9)506

has constant non-zero sign almost everywhere in a simply connected region R in the plane, then

there is no closed orbit contained in R. For (2) we consider the region R = {B > 0} and take

g(A, B) = 1/B. With some help from MAXIMA (script BAmodel.max) we find that (S9) equals

−(BKm + KδA + BKc + B)/(BK) < 0

so there are no closed orbits contained entirely in the region B > 0. Can there nonetheless be a507

closed orbit contained in {B ≥ 0}? Any such orbit that is not contained in {B > 0}must include a508

point where B = 0. But the region B = 0 is invariant, hence that orbit must lie entirely in {B = 0},509

which is impossible. Thus, there cannot be any closed orbits in the region B ≥ 0 other than the510

trivial equilibrium B = A = 0. Note that the functional form of f (B) is irrelevant for this result,511

because f (B)/B is independent of A and so it contributes nothing to (S9).512

Additionally, there cannot be a homoclinic orbit running from (0, 0) to itself. Any such orbit would513

constitute the stable and unstable manifolds of (0, 0). However, the stable manifold of (0, 0) is the514

axis {B = 0} on which the dynamics are
.

A = −δA A, and trajectories on the axis do not approach515

(0, 0) as t→ −∞.516

Finally, we show that when there is only one interior equilibrium, it is globally stable in the interior517

of the first quadrant. Any solution trajectory eventually enters and stays in the trapping region,518

so (by the Poincaré-Bendixson Theorem) its ω-limit set must be an equilibrium, a periodic orbit,519

or a finite set of equilibria connected by homoclinic and/or heteroclinic orbits. With only one520

interior equilibrium, no periodic orbits, and the origin a saddle that can only be approached along521

an axis, the ω-limit set must be either that one equilibrium, or that equilibrium and a homoclinic522

orbit originating and ending at the equilibrium. However, we have shown above that when there523

is only one interior equilibrium, it is locally stable, so there cannot be any such homoclinic orbit.524

Thus, every trajectory originating in the interior of the first quadrant comes arbitrarily close to the525

unique interior equilibrium, and therefore must converge to it.526

ESM S.2 Analysis of an extended model527

As noted in the main text, our model assumes that there is no constitutive defense (AMP pro-528

duction rate is zero when B = 0) and the pathogens remove existing AMPs by degradation and529

sequestration, rather than interfering with their production. To show that our conclusions are not530
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special to that situation, for the moment suppose that there can be a low-level constitutive defense,531

and that effectors R interfere with AMP production, either as an alternative to degradation or in532

addition to degradation. Specifically, assume that AMP production rate is positive at B = 0, and is533

decreased by a factor e−µB in the slow-fast reduction of the scaled model where R is proportional534

to B. To allow outcomes where the host defense is successful, we assume µ = O(1) at most. This535

means that immune suppression does not already stifle AMP production before the pathogen den-536

sity is high enough to induce an immune response with nontrivial effects on the pathogen. The537

equation for A in the scaled model is then538

dA
dt

= (a + f (B))e−µB − δA A− qAB (S10)539

where f (B) = QAB/(1 + B), as in the original model, and q ≥ 0 represents the combined effects540

of degradation and sequestration (which in general could be absent). The A nullcline is given by541

the curve542

A =
a(1 + B) + QAB

(1 + B)(δA + qB)eµB . (S11)543

α = a/δA is the constitutive level of defense, i.e. the steady-state value of A in the absence of544

pathogens. The equilibrium B = A = 0 in our original model thus becomes B = 0, A = α545

when constitutive defense is possible. The biologically relevant situation is that α is small relative546

to the values that can occur when pathogen is present. The slope of the nullcline at B = 0 is547

δ−2
A (QAδA − aµδA − aq) which can be positive or negative at zero.548

Elementary calculus shows that the slope of the A nullcline is a positive factor times a term that549

has the sign of the slope at 0, and decreases monotonically in B, eventually becoming negative.550

Thus, when the slope at 0 is positive, the the nullcline has the same qualitative shape as in our551

original model, increasing at B = 0 up to a peak, and then decreasing. When the slope at zero is552

negative, it remains negative for all B.553

The Jacobian at the pathogen-free equilibrium (B = 0, A = α) has eigenvalues −δA, 1− αc so for554

α small it will be a saddle, as in our original model. Specifically, it will be a saddle whenever the555

pathogen-free equilibrium lies below the B nullcline. Thus, the three qualitative options shown556

in fig. 2A also hold for the modified model. The Bendixson-Dulac criterion rules out periodic557

orbits in the region B > 0, and periodic or homoclinic orbits that include a point where B = 0558

are also ruled out, by arguments identical to those for the original model. The general argument559

in sec. ESM S.1 shows that equilibrium stability depends on the direction of nullcline crossings,560

exactly as in the original model, and that the type (spiral or node) depends on the steepness of the561

crossing.562

With constitutive defense possible (a > 0), all the possible nullcline configurations in the original563

model (fig. 2A) remain possible, but it is also possible for the pathogen-free equilibrium to lie564
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Figure S-2: Phase-plane diagrams of the extended conceptual model. A) The nullcline con-
figuration producing bistability in the extended model when the constitutive defense equilib-
rium B = 0, A = a/δA lies above the B nullcline. B),C) Nullcline and stable manifold con-
figurations that can occur when there is a low-level constitutive defense. Parameter values
QAQ = 2.4, δA = 0.05, c = .4, K = 6, q = .5, mu = 0.15 in all panels, and a = 0.25, 0.05, 0.02
in panels A), B), C) respectively. Figures created by script file BAIModel.R.
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above the B nullcline, as illustrated in fig. S-2A. In that situation, the Jacobian eigenvalues imply565

that the pathogen-free equilibrium is a stable node. This creates the potential for the bistability566

scenario shown in which the low-B stable equilibrium has B = 0 exactly. If the interior A nullcline567

is entirely above the interior B nullcline (not shown), the pathogen-free equilibrium is the only568

equilibrium and therefore globally stable, for the same reasons as in the original model. However,569

these cases only occur when the constitutive defense is so strong that a small introduced pathogen570

population is quickly exterminated.571

In the more realistic situation of low-level constitutive defense, the extended model offers one572

more scenario for small between-host variability to produce bimodal outcomes. For parameter573

values such that the stable manifold of the interior saddle approaches the A axis, invasion of the574

host by a small bacterial population (i.e., initial conditions 0 < B� 1, A = α) lead to chronic infec-575

tion if the pathogen-free equilibrium is above the stable manifold (fig. S-2B), and lethal infection576

if the opposite is true (fig. S-2C).577

It is reasonable to ask if the extended model model might offer an explanation for chronic infec-578

tions, so that we do not need to posit protected pathogens, but this cannot occur for biologically579

reasonable parameter values. That is, it is not possible for the value of B at the low-B equilibrium580

to change much. Increasing a from zero (as in the original model) to a positive value moves the581

A nullcline up, and decreases the B value at the low-B equilibrium. Increasing µ from zero has582

the opposite effect, but it is small. The effect can be approximated by using the Implicit Function583

Theorem to compute the derivative of a nullcline intersection point with respect to perturbation584

of mu away from zero (see script BAImodel.max). At B = 0 that derivative is zero. The derivative585

at small B is therefore O(B), hence the change in B at the low-B equilibrium is O(µB). Extremely586

strong suppression of the host immune response by a small number of bacteria would therefore587

be required for suppression to have a substantial effect on the location of low-B equilibrium.588

ESM S.3 Modeling the Imd signaling pathway589

In this section we present the structure and assumptions of our model for the Imd signalling590

pathway leading to AMP production, and the resulting dynamic equations. We then show that591

the model can produce a wide range of temporal patterns for the ramp-up of AMP production592

rate, to justify the simulations of infection dynamics models in the main text where between-host593

variation in the ramp-up temporal pattern leads to bimodal infection outcomes. Mathematical594

derivation of the dynamic equations is in Electronic Supplementary Material ESM S.4.595

Figure S-3 summarizes our model for the Imd signalling pathway. We assume that the fork of596

this pathway through PGRP-LE is much less important for immune activation [19], and model597

the fork through PGRP-LC. Our model is based on the experimentally determined structure of the598
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Figure S-3: Our simplified model for the fork of the IMd signaling pathway in D. melanogaster cells
going through PGRP-LC. Solid black arrows indicate flows. Dashed red lines indicate affects of a
variable’s concentration on the rate of a reactions, either positive (lines ending in arrowheads) or
negative (lines ending in solid circles). The state variables are G: peptidoglycans exterior to the
cell (moles/l); P, P∗: unbound and bound PGRP-LC (moles); I, I∗: free and recruited IMD (moles);
RB, RP: Relish B and P outside the nucleus; • RN , R∗N : unbound and bound Relish in the nucleus;
H, A: feedback effector molecules (of various kinds) that act within the cell (H) and exterior to the
cell A (moles). We consider A to include AMPs that defend against bacteria.

IMD pathway [13], but as noted below, at one point we simplify the model by assuming that a599

particular step happens quickly relative to the others. In addition to the initial signaling cascade,600

our model includes the main known feedbacks whereby up-regulated gene products modify the601

reaction rates of steps in the cascade, because those can play an important role in shaping the602

temporal pattern of immune activation (see ESM S.3.1 below).603

The steps in our model of the pathway are as follows.604

1. Presence of bacteria is indicated by peptidoglycans (PGN) G (moles/l), external to the cell.605

We will eventually couple the Imd pathway to a population of bacteria, in which creation606

and loss of PGN is explicitly modeled. In this section we treat [G] as an exogenous variable607

affected by feedback effector molecule A as described below.608

2. Signaling is initiated by PGN G binding to PGRP-LC P to produce bound PGRP-LC, P∗. We609

assume that this is a higher-order reaction, as PGN are a polymer and PGRP-LC form poly-610

mers on binding to it.611
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3. Bound P∗ catalyzes the conversion of free Imd I to recruited Imd I∗; reversion from recruited612

to free is assumed to have first-order kinetics.613

4. In our model, recruited Imd catalyzes the conversion of RelishB to RelishP. This is a deliber-614

ate simplification. In reality, recruited Imd catalyzes the conversion caspase to active caspase615

(which catalyzes conversion of RelishB to RelishU) and the conversion of kinase to active616

kinase (which catalyzes the conversion of RelishU to RelishP). Because these steps are not af-617

fected by the negative regulators (described below), we can simplify the model without losing618

any qualitative features by assuming that active caspace and kinase are “readout” variables619

for recruited Imd, and ignoring the intermediate form RelishU .620

5. RelishP can be transported into the nucleus, where it can be unbound (RN) or bound to pro-621

moter sites for the production of AMPs and negative regulators (R∗N). Binding and unbinding622

are not especially fast relative to other steps in the cascade, so we cannot assume that bound623

vs. unbound RelishP are in steady-state with respect to the total amount in the nucleus. By624

only tracking the total bound amount, we simplify the reality that nuclear Relish actually625

binds to several promoter sites for different processes.626

6. Similarly, although multiple pathways connect nuclear bound Relish to its feedbacks on the627

signaling cascade, we aggregate them into two effectors, one acting in the cytoplasm which628

we call H, and the other (called A for amydase) which acts outside the nucleus. H impedes629

formation of P∗ and I∗ in the nucleus, and A degrades free PGN. We assume that both A and630

H are produced even in the absence of bound Relish, but their production rate increases in631

proportion to the amount of bound Relish.632

7. Bound nuclear Relish also up-regulates production of bacteriocidal AMPs. Rather than model633

this separately, we assume that AMP concentration is proportional to A.634

8. There is also positive feedback from to production of RelishB. If this feedback is directly635

proportional to the amount of bound nuclear Relish in the nucleus, the model can produce636

an unlimited spiral of Relish increase. We therefore assume a Michaelis-Menten saturating637

relationship for this feedback.638

The rate equations for each of these reaction steps are derived in Electronic Supplementary Mate-639

rial ESM S.4. Notation for the model is summarized in Table S-1, and the resulting model equations640

are presented in Table S-2.641

ESM S.3.1 Temporal patterns of immune activation642

We now reach the second aim of this section, which is to explore the range of temporal activation643

patterns that the model can produce. AMP production rate is proportional to R∗N , so we ask how644

R∗N can increase over time from its initial value of zero up to a steady state, when the pathway is645

activated by G going from zero to a positive value.646
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Table S-1: Parameters and state variables for the Imd pathway model and their definitions. Active
or bound forms of a molecule are indicated by a star, as in I∗. Coefficient subscripts indicate what
they multiply in the model, e.g. cI and δI multiply I.

Parameter Definition or formula Units

δX First-order degradation rate of molecule X time−1

ρX∗ First-order inactivation or unbinding rate of X∗ time−1

cX Rate constant for a reaction involving X and
possibly others

concentration(s) ×
time−1

QX External supply rate, or replenishment rate, of
X

moles/time.

φX Coefficient for the strength of a feedback effect
of bound Relish

varies; often 1/concen-
tration

[X] Concentration of X (any variable) moles/l

G Peptidoglycans exterior to the cell moles/l

P, P∗ PGRP-LC — bound and unbound moles

I, I∗ Imd — free and recruited moles

RB, RP Relish — outside the nucleus moles

RN , R∗N Relish – free and bound, in the nucleus moles

A, H Effector molecules up-regulated by bound nu-
clear Relish

moles
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Table S-2: Dynamic equations for the simplified Imd signalling pathway model. The equations
assume that all catalyzed reactions are in the first-order phase (i.e., all reactants are at low con-
centrations) so that saturation, as in the Michaelis-Menten rate equation, can be ignored (Ingalls
2013). Units of state variables are either amounts (moles) in a cell of volume V, or a concentra-
tion (moles/l) where [X] denotes the concentration of X. Feedback effects triggered by binding of
nuclear Relish are indicated by purple font.
——————————————————————————————————————————

dP
dt

= QP −mcPe−φP[H]Pk[G]e−φG [A] − δPP (S12a)

dP∗

dt
= cPe−φP[H]Pk[G]e−φG [A] − δP∗P∗ (S12b)

d[I∗]
dt

= cIe−φI [H]
(
[IT]− [I∗]

)
P∗ − ρI∗ [I∗] (S12c)

d[RB]

dt
= QR/V + φR

[R∗N ]
KR + [R∗N ]

− cB[I∗][RB]− δR[RB] (S12d)

d[RP]

dt
= cB[I∗][RB]− DP[RP]− δR[RP] (S12e)

d[RN ]

dt
= DP[RP]/VN − cN [RN ] + cN∗ [R∗N ]− δN [RN ] (S12f)

d[R∗N ]
dt

= cN [RN ]− cN∗ [R∗N ] (S12g)

d[H]

dt
= QH/V + cH [R∗N ]− δH [H] (S12h)

d[A]

dt
= QA/V + cA[R∗N ]− δA[A] (S12i)

——————————————————————————————————————————
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Table S-3: Optimized parameter values corresponding to the four curves in Figure S-4. Columns
1-4 give parameters for the black, red, blue, and purple curves. Other parameters had the same
value for all four curves: V = 1, VN = 0.1, G = 10, m = 2, k = 2, δP = .01, δP∗ = 0.02, δR =
.01, δN = 0.01, cH = 0.05, cA = 0.1, δH = .05, δA = .05, ρI∗ = 0.01, KR = 2.

Parameter 1 2 3 4
DP 0.56 9.94 0.59 8.96
cP 0.00 1.30 0.00 0.06
cI 3.86 4.88 10.00 2.38
cB 0.06 0.09 0.01 0.04
cN 0.04 5.35 0.01 0.06
cN∗ 8.77 4.26 0.01 9.97
φP 0.00 0.14 0.00 0.07
φG 0.00 0.11 0.00 0.05
φI 0.12 0.41 0.33 0.32
φR 10.01 0.02 0.04 6.08

The absolute rates of processes in the model are controlled by parameters for which we have647

no empirical estimates, so we can only ask about relative changes over time. We therefore first648

rescaled the model so that P, [RB], [H] and [A] have steady-state value 1 in the absence of pathogen649

(G = 0) and [IT] = 1. This results in the rescaled model having parameter values650

QP = δP, IT = 1, QR/V = δR, QH/V = δH, QA/V = δA. (S13)651

By trial and error, we found a set of plausible “default” parameter values producing a moderately652

fast ramp-up during a time period centered at time t = 4 hours after the pathogen arrives to653

initiate activation. We then used numerical optimization to find kinetic parameters producing654

ramp-up patterns that minimized the sum of squared deviations from four “target” patterns of655

monotone increase from zero to an asymptote (script Imd Simplified RampUp.R. Values of the656

parameters DP, cP, cI , cB, cN , cN∗ , φP, φG, φI and φR were allowed to vary; others were held constant657

at the default values. The resulting optimal parameter sets included some astronomically large658

kinetic parameters (up to 1018), so we modified the optimization so that the goodness-of-fit was659

penalized when any parameter exceeded 10 (with time measured in minutes), with the penalty660

proportional to the square of the excess.661

The optimized parameters with that penalty, listed in Table S-3, produced the four curves in Fig.662

S-4: slow (blue) or fast (red) steady increase starting very soon after the pathogen arrives, or rapid663

increase following a shorter (purple) or longer (black) delay. Model solutions over a longer time664

span confirm that all solution curves asymptote to a constant steady-state value. These four do665

not exhaust the possibilities; they were chosen to illustrate that the model666
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Figure S-4: Four possible patterns of immune response activation in the Imd pathway model,
Table S-2, rescaled according to eqn. (S13). Parameter values for the curves are given in Table S-3.
Figures created by script file Imd Simplified RampUp.R
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ESM S.4 Derivation of rate equations for Imd pathway model667

We consider a signaling cascade initiated by the increase of PGN concentration from 0 to [G] > 0.668

As noted in the main text, we assume that all catalyzed reactions are in the first-order phase that669

occurs when all reactants are at low concentrations (Ingalls 2013).670

Models need to be derived in terms of the amounts of different molecules rather than their concen-671

trations, because amounts flow (e.g., into and out of the nucleus, from bound to unbound states),672

not concentrations. However, reaction rates per unit volume within in the cell typically depend673

on concentrations, so many rate equations include concentrations [X] = X/V (V =cell volume),674

and then the rate per unit volume is scaled back up by cell volume. If the dynamic equation for a675

extra-nuclear molecule X is first-order with respect to [X], then the equation can written entirely676

in terms of [X]. That is,677

dX
dt

= [X]× (something not involvingX)×V

=⇒ d[X]

dt
= [X]× (something not involvingX).

(S14)678

On the other hand, if the reaction is higher-order in [X] this generally won’t be true. We do the679

same for molecules in the nucleus, scaling by nuclear volume VN .680

For transmembrane (PGRP-LC) and within-nucleus molecules, we use amounts rather than con-681

centrations as the units for state variables.682

We begin by modeling the initial cascade leading to buildup of Relish in the nucleus. The subse-683

quent feedbacks resulting from bound nuclear Relish will then be added.684

The reaction diagrams below often omit degradation processes. To prevent unrealistic buildups,685

every molecule with a nonzero baseline production rate (in the absence of any stimulus by PGN)686

is tacitly assumed to have first-order degradation kinetics.687

• PGRP-LC, P:
QP−−→ P −→ P∗ −→688

Unbound PGRP-LC is replenished at rate QP, and can form a bound complex with PGN.

Because PGN is a polymer and a bound complex includes several PGRP-LC molecules, we

assume that this reaction rate is higher-order in [P] with exponent k > 1, and formation of one

bound complex eliminates m > 1 unbound molecules. A reasonable default assumption is

m = k; this would hold exactly if complex formation involves simultaneous binding of m = k
PGRP-LC molecules, or as an approximation for multistep cooperative binding (Ingalls 2013,

sec. 3.3). We assume that there is no reversion from bound to unbound states, but bound and

unbound complexes degrade at rates δP and δP∗ , respectively. Letting P∗ denote the number
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of bound complexes, the kinetic equations are then

dP
dt

= QP −mcPPk[G]− δPP (S15)

dP∗

dt
= cPPk[G]− δP∗P∗ (S16)

• Imd: I 
 I∗689

Recruitment of free Imd molecules is catalyzed by bound PGRP-LC complexes, and reversion690

to free Imd has first-order kinetics. Because [I] + [I∗] remains at some constant level [IT], we691

can write an equation for I∗ only:692

d[I∗]
dt

= cI([IT]− [I∗])P∗ − ρI∗ [I∗] (S17)693

• Extranuclear Relish:
QR−−→ RB −→ RP −→ RN694

As noted in the main text, I∗ catalyzes formation of activated caspase and kinase, which

then catalyze conversion of RB to RU and conversion of RU to RP. We simplify this step

by assuming that the concentrations of activated caspace and kinase are proportional to I∗,
and collapsing the conversion of RB to RP into a single step. RP can be transported into the

nucleus (RP in the nucleus is denoted RN); we assume that this occurs at a rate proportional to

its extra-nuclear concentration. This is active transport, rather than diffusion, and we assume

that it is irreversible. For simplicity we give the same intrinsic degradation rate δR to both

forms of Relish.

d[RB]

dt
= QR/V − cB[I∗][RB]− δR[RB] (S18)

d[RP]

dt
= cB[I∗][RB]− DP[RP]/V − δR[RP] (S19)

• Relish in the nucleus :
DP[RP]V−−−−−→ RN 
 R∗N −→.695

Relish in the nucleus promotes several different processes, so to model in full detail we should

consider several different binding sites. However, we simplify this by just classifying Relish

in the nucleus as bound or unbound, and have all up-regulated processes respond to the total

amount of bound Relish. RN , R∗N denote unbound and bound, respectively, RP in the nucleus.

Note that Relish diffusing into the nucleus is divided by nuclear volume VN in the first rate

equation because the Relish inflow rate is DP[RP].

d[RN ]

dt
= DP[RP]/VN − cN [RN ] + cN∗ [R∗N ]− δN [RN ] (S20)

d[R∗N ]
dt

= cN [RN ]− cN∗ [R∗N ]. (S21)

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425954doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425954


• Effects of bound Relish696

While multiple pathways connect nuclear bound Relish to its negative feedbacks on the Imd

pathway, for simplicity we aggregate them into two effectors, one acting in the cell cytoplasm

which we call H, and the other (called A for amydase) which acts outside the cell. The model

tracks their extra-nuclear concentrations:

d[A]

dt
= QA/V + cA[R∗N ]− δA[A] (S22)

d[H]

dt
= QH/V + cH [R∗N ]− δH [H] (S23)

H impedes formation of P∗ and I∗ in the nucleus, and A degrades the external stimulus,697

free PGN. We assume that both A and H are produced even in the absence of bound Relish,698

but their production rate increases in proportion to the amount of bound Relish. Both have699

first-order degradation kinetics.700

There is also a positive feedback from bound Relish, an increased production rate of RelishB.701

If this feedback is directly proportional to the amount of bound Relish in the nucleus, we can702

get an unlimited spiral of Relish increase. We therefore assume a Michaelis-Menten saturating703

relationship.704

The final dynamic equations presented in Table S-2 include these feedback effects of H and A.705
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