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Abstract 28 

Nociceptive processing in the human brain is a signal that enables harm avoidance, with large 29 

interindividual variance. The relative contributions of genes and environment to the neural 30 

structures that support nociception have not been studied in twins previously. Here, we employed 31 

a classic twin-design to determine brain structures influenced by additive genetics. We found 32 

genetic influences on nociceptive processing in the midcingulate cortex, bilateral posterior insulae 33 

and thalamus. In addition to brain activations, we found genetic contributions to large-scale 34 

functional connectivity during nociceptive processing. We conclude that additive genetics 35 

influence specific aspects of nociceptive processing, which improves our understanding of human 36 

nociceptive processing.  37 

 38 

Introduction 39 

Nociceptive processing is important for survival as it provides an organism with information 40 

about potential or actual tissue damage. The neural processes underlying this capacity are 41 
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evolutionary conserved, as evolved nociceptive systems are observed in a variety of species 42 

(Walters & Williams, 2019). In humans, neuroimaging studies have established a large network 43 

of brain regions that consistently activate in response to nociceptive information (Jensen et al., 44 

2016). Most such activations are evoked independently of type of nociceptive input and can be 45 

found in infants with minimal prior exposure to pain (Goksan et al., 2015). This suggests that 46 

genes modulate basic aspects of nociceptive processing in the human brain.  47 

 48 

There is considerable variation in nociception between individuals and attempts have been made 49 

to determine the genetic influence on such differences (Mogil, 2012). The genetic influence on 50 

sensitivity to experimental pain, for example, has been investigated by comparing identical and 51 

fraternal twins and estimated to 26% for heat- and 60% for cold-induced pain (Nielsen et al., 2008). 52 

Another study found similar genetic influence on individual sensitivity to pain, ranging from 22-53 

55% depending on pain modality (Norbury, MacGregor, Urwin, Spector, & McMahon, 2007). 54 

Studies that link single-nucleotide polymorphisms to functional neuroimaging data e.g. (Oertel et 55 

al., 2008; Vachon-Presseau et al., 2016; Zubieta et al., 2003) and studies of rare genetic mutations 56 

that affect pain perception (Salomons, Iannetti, Liang, & Wood, 2016) suggest that our genes 57 

influence nociceptive processing, and our subjective experience of pain. Yet, the specific neural 58 

mechanisms and magnitude of such influence needs to be determined.  59 

 60 

The experience of pain likely involves cross-communication between both nociceptive and non-61 

nociceptive brain regions (Geuter et al., 2020; Kucyi & Davis, 2015). To capture genetic influences 62 

on nociceptive processing, it is therefore relevant to move beyond mere activations in specific 63 

brain regions, to also consider their interactions. Recent advances in the neurosciences have seen 64 

a rapid increase in studies that model the brain as a large-scale network, which allows for 65 

estimating the degree of the interaction or cross-communication between brain regions and/or sub-66 

networks (Bullmore & Bassett, 2011; Sporns, 2013). For example, the default-mode network that 67 

consistently activates during rest and deactivates when engaged in a task, show increased 68 

deactivation during painful tasks (Kong et al., 2010; Kucyi, Salomons, & Davis, 2013). Recent 69 

findings also show decreased functional connectivity between the primary somatosensory cortex 70 

and the default-mode network in chronic low back pain (Kim et al., 2019). Several studies have 71 

elucidated the relationship between genetics and functional brain network topology by means of 72 

functional Magnetic Resonance Imaging (fMRI), both for resting-state (Fornito et al., 2011; Glahn 73 

et al., 2010; Miranda-Dominguez et al., 2018; Reineberg, Hatoum, Hewitt, Banich, & Friedman, 74 

2019; Xu et al., 2017) and experimental tasks (Alstott, Breakspear, Hagmann, Cammoun, & 75 

Sporns, 2009; Colclough et al., 2017; Yang et al., 2016). Estimates of the genetic influence of 76 

resting-state brain networks are replicable across studies and imply genetic influences on large-77 

scale networks (Adhikari et al., 2018).  78 

In this study, we estimated the genetic influence on nociceptive processing in the brain. A total 79 

of 246 twins (56 identical pairs; 67 fraternal pairs) participated in a fMRI study that included an 80 

aversive conditioning paradigm using electrical shocks. The aim was to estimate the genetic 81 

influence on 1) neural responses in pain processing regions and 2) whole-brain functional 82 

connectivity during nociceptive processing, as described in our preregistration protocol 83 

(https://osf.io/zesw5). To achieve our first aim, we constrained our analysis to pain processing 84 

regions defined independently of the current study (Wager et al., 2013). Regarding the second 85 

aim, we used a whole-brain parcellation scheme to study pain-evoked functional connectivity. 86 

 87 
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Materials and Methods 88 

Subjects 89 

Twins between ages 20 and 60 years were recruited for the present study through the Swedish 90 

Twin Registry (STR). The STR contains more than 194 000 twins and represents an 91 

epidemiological resource for the study of genetic and environmental influences on human traits, 92 

behaviors, and diseases (https://ki.se/en/research/the-swedish-twin-registry). Twin pairs with 93 

known zygosity were selected based on their capability to undergo magnetic resonance imaging 94 

as well as screened for substance abuse, ongoing psychological treatment or medicine affecting 95 

emotion or cognition. Only same-sex twin pairs were included in this study and after initial 96 

screening, 305 participants were recruited to the study and underwent fMRI scanning. Imaging 97 

data were excluded from the analysis if one of the following criteria were fulfilled (i) excessive 98 

amount of head motion (more than 50 % of the data frames contained framewise displacement 99 

above 0.5 mm) (n=16). (ii) presence of outliers in terms of amplitude of brain responses. We here 100 

used the median absolute deviation method (Leys, Ley, Klein, Bernard, & Licata, 2013) to detect 101 

and outliers (here meaning a mean blood-oxygenated-level-dependent (BOLD) response deviating 102 

more than 3 times the medial standard deviation across the whole sample). Imaging data from 103 

participants deemed to be outlies were removed together with data from their co-twin and not used 104 

in the subsequent analysis (n=8).  (iii) missing data / incomplete data collection from both twin 105 

pairs (n=35). The final sample (n=246) included 56 identical (35 female, 21 male) twin pairs (age: 106 

M=34, SD=8) and 67 fraternal (39 female, 28 male) twin pairs (age: M=33, SD=11). All 107 

participants provided written informed consent in accordance with the Uppsala Ethical Review 108 

Board Guidelines. Participants received reimbursement of SEK 1000 (roughly equal to 100 USD) 109 

for their participation.   110 

Brain imaging 111 

Imaging data were acquired using a 3.0 T scanner (Discovery MR750, GE Healthcare) and an 8-112 

channel head-coil. Foam wedges, earplugs and headphones were used to reduce head motion and 113 

scanner noise. We acquired T1-weighted structural images with whole-head coverage, 114 

TR=2.4s, TE=2.8s, acquisition time 6.04 min and flip angle 11 (degrees). Functional images were 115 

acquired using gradient echo-planar-imaging (EPI), TR = 2.4 s, TE = 28ms, flip angle = 80 116 

(degrees), with 47 seven volumes acquired with slice thickness 3.0 mm3 (no spacing, axial 117 

orientation, phase-encoding direction A/P). The slices were acquired in an interleaved ascending 118 

order. Higher order shimming was performed, and five dummy scans were acquired before the 119 

experiment.  120 

Stimuli and Contexts 121 

Visual stimuli were presented on a flat screen in the MR scanner via a projector (Epson EX5260) 122 

(Fig. S1). The computer running the stimulus presentation used a custom version of Unity (version 123 

5.2.3, Unity Technologies, San Francisco, CA) and communicated with BIOPAC for electrical 124 

stimuli (BIOPAC Systems, Goleta, CA) through a parallel port interface. The software for the 125 

parallel port interface was custom made and used standard .NET serial communication libraries 126 

by Microsoft (Microsoft Corporation, Albuquerque, New Mexico). 127 

fMRI paradigm design 128 
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Noxious electrical stimuli were administered as part of a fear conditioning procedure. The 129 

paradigm was used to test genetic aspects of fear acquisition and results that focus on neural 130 

responses to trials that did not include an electrical shock will be reported elsewhere. Two virtual 131 

characters served as visual stimuli (CS) and were presented at a distance of 2.7 m projected on a 132 

screen in the MR scanner (Fig. S1). One of the virtual characters served as the aversive cue (CS+) 133 

and preceded the electrical stimuli whereas the other virtual character served as a safety cue (CS-134 

). Stimuli serving as CS+ and CS- was counterbalanced across participants. Each of the cues 135 

appeared for 6s. Participants were not told which character would be associated with electrical 136 

shocks. Prior to the conditioning phase, a habituation phase took place, during which each CS was 137 

presented four times without any electrical shocks. During conditioning, each cue type was 138 

displayed 16 times. Eight of the aversive cues co-terminated with presentation of the electrical 139 

shock (US) and eight of the aversive cues did not include a shock. Four stimulus presentation 140 

orders were used to counterbalance the timing of CSs across subjects. An inter-stimulus interval 141 

(randomized jittering) followed each trial, with no cues present for 8-12s. Total duration for the 142 

conditioning task was 9 minutes and 47 seconds. The initial 8 presentations (habituation) were not 143 

considered for this analysis.  144 

The electrical shocks were delivered to the distal part of the participant’s left volar forearm 145 

(adjacent to the wrist) via radio-translucent disposable dry electrodes (EL509, BIOPAC Systems, 146 

Goleta, CA). As the present study also served to investigate fear acquisition, i.e., neural responses 147 

to trials that did not include electrical stimulation) (to be published elsewhere), the US presentation 148 

was brief (16 ms). Shock delivery was controlled using the STM100C module connected to the 149 

STM200 constant current stimulator (BIOPAC Systems, Goleta, CA), using a unipolar pulse with 150 

a fixed duration of 67 Hz. The physical voltage was individually calibrated before the experimental 151 

task using an ascending staircase of electrical currents until shocks were rated as ‘aversive’ (Rosen, 152 

Kastrati, Reppling, Bergkvist, & Ahs, 2019). After finding the physical voltage that participants 153 

rated as aversive, this parameter was kept constant throughout the experiment. The determined 154 

average electrical voltage was M=31V, SD=7 across participants.  155 

Analysis of fMRI imaging data 156 

Analyses of fMRI-data were performed using SPM12 (Welcome Department of Cognitive 157 

Neurology, University College, London, https://www.fil.ion.ucl.ac.uk/spm). Preprocessing of 158 

functional image volumes included interleaved slice time correction, realignment, co-registration 159 

to the T1-weighted image, spatial normalization to Montreal Neurological Institute (MNI) space 160 

(MNI152NLin6Asym), and spatially smoothed with an 8mm Gaussian kernel.  161 

In the first-level analysis, an event-related approach was used to estimate BOLD responses during 162 

nociceptive processing. Three event types were modeled, using separate regressors: the aversive 163 

cue that preceded the US (CS+US), the same CS+ that did not precede the US (CS+no US), and the 164 

electrical shock itself (US). Note that the aversive cue (CS+) co-terminated with the onset of the 165 

US 50% of the times. The duration of the visual cue (CS+) was set to 6 seconds and the US to 3 166 

seconds. The first-level contrast for each participant that was latter used to estimate the genetic 167 

influence h2 on nociceptive processing per se was modeled as (CS+US & US > CS+no US). Since the 168 

aversive cue (CS+US) was immediately followed by the US, without any delay, the CS+US and US 169 

were combined. The same visual cue (CS+no US), not followed by the US, was then subtracted in 170 

order to estimate the neural correlates to nociceptive processing per se. The group-level result for 171 

the same contrast is found in Table S1 and Fig. S2. The statistical significance threshold was set 172 
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to P < 0.05, family-wise error corrected (FWE) for multiple comparisons. Anatomical labeling of 173 

significantly activated brain regions were performed using the SPM Anatomy toolbox v.2.2c 174 

(Tzourio-Mazoyer et al., 2002). 175 

Defining the functional connectome in response to nociceptive input 176 

To investigate task-specific functional connectivity, the CONN functional connectivity toolbox 177 

was used (Whitfield-Gabrieli & Nieto-Castanon, 2012) (http://www.nitrc.org/projects/conn, 178 

version 18b). As input to the CONN toolbox, we used the same preprocessing pipeline as outlined 179 

above except for removing the spatial smoothing. This decision was to minimize a spurious 180 

increase in local connectivity that would be induced otherwise. Subsequently, image data 181 

underwent ART-based outlier detection of volumes (version 2015-10) followed by image 182 

scrubbing. For the scrubbing procedure, we used a liberal threshold of the 99th percentile of 183 

normative sample, with a global-signal z-value threshold of 9 standard deviations and a subject 184 

motion threshold of 2mm. Next, confounders were removed from the data. These consisted of the 185 

effect of each task (in order to remove constant task-induced responses in the BOLD signal), 186 

cerebrospinal fluid, white matter, SPM covariates (6 motion parameters and their quadratic effect) 187 

and regressors for scrubbing per individual (one regressor for each volume deemed a potential 188 

outlier; from zero to a maximum of 25 regressors per individual). Finally, image data was low-189 

pass filtered [0.008, 0.09]. BOLD time-series were extracted using a parcellation scheme with 400 190 

nodes (Schaefer et al., 2018). We computed first-level weighted ROI-to-ROI functional 191 

connectivity (wFC) by computing task-specific bivariate correlation using weighted Least Squares 192 

(WLS), with weights defined as condition timeseries convolved with a canonical hemodynamic 193 

response function. Results were Fisher-transformed correlation coefficients between each pair of 194 

nodes. The first-level contrasts were modelled in the same way as described above for brain 195 

activations (CS+US & US > CS+no US). Fig. 2A and 2C shows the group-level result for the same 196 

contrast. For visualization purpose, we computed the within-network and between-network sum 197 

of functional connectivity between each pair of networks (Fig. 2C). For each network, say A and 198 

B, we sum the functional connectivity between A and B and divide by the number of nodes 199 

contained in the two networks. If A=B, the result is the sum of the within-network connectivity; 200 

otherwise, the result is the between-network connectivity.  201 

Estimation of genetic influences on brain function  202 

Exclusion of outliers: We identified univariate outliers in our data sample using the median 203 

absolute deviation method (Leys et al., 2013). Any participant with a mean BOLD response 204 

deviating more than 3 times the median standard deviation was removed as well as their respective 205 

twin (number of participants removed = 8). Included in the final analysis was a sample of 56 206 

monozygotic (35 females, 21 males) and 67 dizygotic (39 females, 28 males) twin pairs.  207 

In brief, the phenotypic variance can be decomposed into additive genetic variance (A) as genetic 208 

effects for a phenotype or trait that add up linearly, common or shared environmental variance (C) 209 

and unique environmental, or error variance (E) (Falconer & Mackay, 1996). Using the simplest 210 

Falconer’s formula, the A, C, and E-factors can be estimated by contrasting monozygotic-twin pair 211 

correlations with dizygotic-twin pair correlations. The A-factor can be identified because 212 

monozygotic-twins are genetically identical while dizygotic-twins share 50% of their co-213 

segregating alleles on average. Additionally, we assume that a shared environmental contribution 214 

(C) is equally shared within pairs regardless if they are monozygotic or dizygotic twins. Finally, 215 
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any variance not attributable to factors shared between twins (A and C), i.e., that make twins in 216 

pairs dissimilar, in the model assigned to the E-factor. The genetic influence (h2), is the proportion 217 

of a phenotypic variance explained by additive genetic effects, i.e. h2 is equal to A/(A+C+E). In 218 

the present study, we computed heritability using the APACE software package (Accelerated 219 

Permutation Inference for the ACE model) (Chen et al., 2019). APACE uses a non-iterative linear 220 

regression-based method based on squared twin-pair differences, with permutation-based multiple 221 

testing correction to control the family-wise error rate. For the mass-univariate analysis, for each 222 

first-level contrast described above, we used the Neurologic Pain Signature as a priori template 223 

for regions in which to test for significant differences in genetic influences between twin groups 224 

(Wager et al., 2013). The number of permutations was set to 1000 and we used the cluster-based 225 

inference in the APACE (Accelerated Permutation Inference for ACE models) software package 226 

(Chen et al., 2019) with cluster-forming threshold set to p < 0.05 based on the parametric likelihood 227 

ratio null-distribution. We additionally computed an estimate of the genetic influence of choice of 228 

threshold for the electrical stimulation using the mets package (Holst, Scheike, & Hjelmborg, 229 

2016; Scheike, Holst, & Hjelmborg, 2014) implemented in R (R Core Team, 2017).   230 

Estimating the genetic effect on the functional connectome 231 

All individual-level functional connectivity matrices (CS+US & US > CS+no US) were entered into 232 

APACE (Chen et al., 2019) and the genetic influences was computed by fitting the model to each 233 

edge in the matrices. This resulted in a 400 by 400 symmetric matrix with h2 estimated for each 234 

edge. Subsequently, we used a method based on network-based statistics (Zalesky, Fornito, & 235 

Bullmore, 2010) to compute a significant cluster or ‘largest connected component’ of the h2 matrix. 236 

We ran 1000 iterations and re-computed the 400x400 h2 matrix with permuted twin identity. 237 

Finally, we computed the largest connected component of our observed h2 matrix and compared 238 

to the distribution of randomly generated h2 matrices, determining significance at 𝛼 = 0.05. Of 239 

note, the network-based statistics approach requires a choice of a threshold for which below all 240 

values are set to zero and all values above are set to one. The usage of thresholds that are set too 241 

conservatively typically results in network components that are too small to be deemed significant 242 

compared to random networks. On the other hand, thresholds that are set too low results in very 243 

large network components that are biologically unrealistic. We found that the largest component 244 

broke at h2 = 0.328, however we show that there are larger components that are significant by 245 

computing components over several thresholds from h2 = 0.25 up to 0.32 in steps of 0.01 (see Fig. 246 

S5). For interpretability, we chose the component from the largest threshold, denoted the h2-247 

component (h2 = 0.328) for visualization. To further aid interpretability, we computed the sum of 248 

within-network and between-network edges in the h2-component (Fig. 2D). All brain graphs where 249 

visualized using BrainNet Viewer (Xia, Wang, & He, 2013). Node labeling was done with the 250 

automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 2002) by taking the coordinates 251 

from the Schaefer parcellation (Schaefer et al., 2018) that overlap between the AAL and the h2-252 

component. 253 

Notes on the preregistration  254 

The aim of the current study as stated in the preregistration (https://osf.io/zesw5) was to 255 

characterize the genetic influence on functional connectivity in pain related brain regions. Our 256 

first approach was to use the automated online meta-analysis tool Neurosynth (Yarkoni, 257 

Poldrack, Nichols, Van Essen, & Wager, 2011) to determine the brain regions of interest. We 258 

here instead decided to use the Neurologic Pain Signature (Wager et al., 2013), since it is more 259 
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well-defined and validated. In addition, instead of focusing the functional connectivity between 260 

brain regions related to pain, we took a whole-brain approach. This way, we could estimate the 261 

genetic influence on functional interactions between nociceptive and non-nociceptive brain 262 

regions. We decided furthermore to us weighted functional connectivity instead of generalized 263 

psychophysiological interactions (McLaren, Ries, Xu, & Johnson, 2012) since the former is 264 

conceptually simpler and sufficed for the present purpose. Finally, the permutation test based on 265 

network-based statistics (Zalesky et al., 2010) was added later, since element-wise (per edge) 266 

estimates of genetic influence assumes independence between edges, and would also match the 267 

cluster-based statistics from the univariate analysis.  268 

 269 

Results 270 

Genetic influence on brain activations during nociceptive processing  271 

In response to nociceptive stimuli, we detected local increases in blood-oxygenated level-272 

dependent (BOLD) fMRI signals in the bilateral anterior insulae, bilateral posterior insulae, 273 

cingulate cortex, thalamus, cerebellum, and the right amygdala (p<0.05, FWE corrected). For a 274 

full representation of all regions activated during nociceptive processing see SI Appendix, Table 275 

S1 and SI Appendix, Fig. S2. Estimates of the genetic influence on brain responses during 276 

nociceptive processing was constrained to brain regions defined by the Neurologic Pain Signature 277 

(Wager et al., 2013). Using permutation tests to assess the degree of genetic influence (h2 ranging 278 

from 0 to 1) on brain activation patterns (Chen et al., 2019), we found significant effects in the 279 

right (contralateral) postcentral gyrus (h2 = 0.52), right posterior insulae (h2 = 0.50), right superior 280 

temporal gyrus (h2 = 0.45), right supramarginal gyrus (h2 = 0.44), left postcentral gyrus (h2 = 0.54), 281 

left supramarginal gyrus (h2 = 0.52), left posterior insulae (h2 = 0.43), left superior temporal gyrus 282 

(h2 = 0.43), left anterior cingulate cortex (h2 = 0.46), right posterior-medial frontal gyrus (h2 = 283 

0.41) and bilateral midcingulate cortex (h2 = 0.40) (Fig. 1) (see SI Appendix, SFig. 3 for an 284 

unthresholded image of the genetic influence, and SI Appendix, SFig. 4 for twin-pair correlations).   285 

 286 

 287 
Fig. 1. Twin-data brain regions with genetic influences during nociceptive processing. Sagittal 288 

view of clusters with significant genetic influence, including the contralateral somatosensory 289 

cortex, bilateral dorsal posterior insulae, anterior and midcingulate cortex. The threshold was set 290 

at p<.05, FWE-corrected for multiple comparisons at the cluster-level. The heat bar represents h2 291 

heritability values. 292 
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Table 1. Genetic influence, h2 during nociceptive processing (P<0.05, family-wise error 
corrected). R = right hemisphere, L = left hemisphere. 
   

MNI 
   

Area of Local Maximum h2 X Y Z Voxels in 

cluster 

R Postcentral gyrus .52 60 -16 30 876 

R Insula  .50 36 -20 18 
 

R Superior temporal gyrus .45 54   -30 18 
 

R Supramarginal gyrus .44 56 -24 18  

L Postcentral gyrus .54 -65 -20 28 627 

L Supramarginal gyrus .52 -62 -22 32  

L Insula  .43 -36 -20 18  

L Superior temporal gyrus  .43 -64 -30 22  

L Anterior cingulate .46 0 20 28 620 

R Posterior-medial frontal .41 2 -14 58  

R Midcingulate  .40 8 -14 40  

L Midcingulate .40 -2 -4 40  

  294 
 295 

Genetic influence on functional connectivity during nociceptive processing  296 

During nociceptive processing we observed increases in functional connectivity between several 297 

brain networks, including the somatomotor and dorsal attention networks (Fig. 2A, C). The 298 

functional connectivity within the default-mode-network decreased during nociceptive processing 299 

and increased within the visual network. To estimate the genetic influence on functional 300 

connectivity, we used a permutation test based on network-based statistics (Zalesky et al., 2010). 301 

This approach allowed us to identify a cluster of connections from the full h2-matrix (Fig. 2B), 302 

where each connection represents the genetic influence on functional connectivity (Fig. 2D-F) 303 

(thresholded at p<0.05, corrected using 1000 permutations). The most conservative threshold 304 

where a significant cluster of connections could be determined (h2-component) was h2 = 0.328 (see 305 

SI Appendix, SFig. S5 for other thresholds). The edges of the h2-component linked together brain 306 

regions located within as well as outside the Neurologic Pain Signature (Fig. 2F). Nodes within 307 

the h2-component were spatially situated in the dorsal posterior insulae, anterior-, mid- and 308 

posterior cingulate cortex, precuneus, and orbitofrontal cortex.  309 

 310 
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Figure 2. Twin-data functional connectivity during nociceptive processing. (A) Group-averaged 312 

functional connectivity (FC) during nociceptive processing. Positive values (red) indicate edges 313 

with stronger FC during nociceptive processing. (B) Unthresholded genetic influence (h2) for every 314 

edge in the functional connectivity during nociceptive processing. (C) Graphical summary of the 315 

functional connectivity results in (A). The diagonal squares represent the within-network and off-316 

diagonal squares represent the between-network sum of functional connectivity during nociceptive 317 

processing. Positive values are represented by warm colors. Minimum and maximum values 318 

denote the mean +/- two standard deviations. (D) The number of edges in the connectivity cluster 319 

defined by genetic influence, called the h2-component, within and between networks. Dark color 320 

denotes higher number of edges. The largest number of edges was found between the somatomotor 321 

and default-mode network. (E) Brain graph representing the h2-component from (D). The edges 322 

comprise an h2-component that represents significant genetic influences on nociceptive processing 323 

(p<0.05, corrected, h2 threshold = 0.328). Nodes are color-coded according to the network 324 

definitions given in (Yeo et al., 2011). (F) The number of nodes in the parcellation scheme that 325 

overlap with the h2-component (blue) (defined with a threshold of h2 = 0.328) or the Neurologic 326 

Pain Signature (orange). 327 

 328 

Genetic influence on behavioral sensitivity to electrical stimuli 329 

There was a significant genetic influence on nociceptive thresholds, based on perception-matched 330 

aversive electrical stimuli (p<0.0001, h2 = 0.18, on choice of threshold). Estimates of the between-331 

twin correlation of nociceptive thresholds for monozygotic twins was higher (r = 0.18, 95% CI = 332 

[-0.02-0.38]) than the between-twin correlation for dizygotic twins (r = 0.09, 95% CI = [-0.01-333 

0.19]).  334 

 335 

Discussion  336 

There is high variability in the way humans respond to nociceptive stimuli and express pain, yet 337 

there is little knowledge about the contributions of nature versus nurture to this variation. In this 338 

study, we used a twin-study approach to determine the magnitude and spatial representation of 339 

genetic influences on brain circuits involved in nociceptive processing. We found significant 340 

genetic influence on activity in brain regions typically activated by nociceptive processing (Fig. 1, 341 

Table 1). Interestingly, genetic influence on nociceptive functional connectivity was not restricted 342 

to these areas but also included regions across the brain (Fig. 2D-F).   343 

 344 

Nociceptive responses in bilateral dorsal posterior insulae and mid/anterior cingulate cortex were 345 

influenced by genetics (Fig 1. Table 1), even if the cluster on the contralateral insular side was 346 

more pronounced. Previous studies have suggested that the dorsal posterior insulae may be of 347 

importance for nociceptive processing (Segerdahl, Mezue, Okell, Farrar, & Tracey, 2015). It is a 348 

primary projection point from the ventral medial nucleus of the thalamus and constitutes a core 349 

pathway for nociception in all primates (Craig, 2003). This thalamocortical pathway is believed to 350 

provide a sensory reflection of the condition of the body, and thereby has great evolutionary value 351 

(Craig, 2003). This is corroborated by fMRI data from newborn babies as it reveals a large overlap 352 

between nociceptive processing in adults and infants, including the thalamus, insulae and 353 

mid/anterior cingulate cortex (Goksan et al., 2015). This network could be considered as potential 354 

targets in studies searching for markers of chronic pain and novel treatment, especially for 355 

conditions with known familial risk. Genetic variability is likely to be involved in the mechanisms 356 

underlying some of our most common pain conditions (Parisien et al., 2017) but the mediating 357 
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mechanisms are poorly understood. The results presented here demonstrate that nociceptive 358 

processing is significantly influenced by genetics and is likely to mediate the different nociceptive 359 

processing seen in individuals with chronic pain (Hashmi et al., 2013; Jensen et al., 2009).  360 

 361 

Regarding the functional connectivity results, we observed that the nodes within the so-called h2-362 

component (connectivity influenced by genetics) were localized in several different networks, 363 

most notably, the somatomotor, default-mode and dorsal attention networks (Fig. 2D-F). This 364 

indicates that genetic influence on functional connectivity during nociceptive processing 365 

encompasses both sensory and affective-cognitive processes. Since nociception is shaped by 366 

interactions between sensory, cognitive and affective processes there is indeed a possibility that 367 

some aspect of all these components is heritable. As an example, our results on the genetic 368 

influences on brain networks reveal a brain-wide pattern that includes regions implicated in 369 

cognitive-affective processes.  370 

 371 

Notably, the largest number of connections in the h2-component was found between the default-372 

mode and somatomotor networks (Fig. 2D). This was the case even though functional connectivity 373 

between the two was not the strongest (Fig. 2AC). In terms of functional connectivity, we observed 374 

a decrease in within default-mode network correlation, in line with previous findings (Kong et al., 375 

2010; Kucyi et al., 2013). The clinical relevance for default-mode network has been observed 376 

previously since the precuneus region was associated with individual differences in pain sensitivity 377 

(Goffaux, Girard-Tremblay, Marchand, Daigle, & Whittingstall, 2014). Furthermore, functional 378 

connectivity was shown to decrease between default-mode network and primary somatosensory 379 

cortex following exacerbated pain in patients with chronic low back pain (Kim et al., 2019). We 380 

show an increase in functional connectivity between the default-mode and the somatomotor 381 

network, and that the largest number of connections were observed between the two in the heritable 382 

cluster. This is relevant to the translational potential between our data and clinical pain. The genetic 383 

influence on default-mode network and somatomotor connectivity, together with previous reports 384 

of altered connectivity in chronic pain, suggest it may serve as an intermediate marker of aberrant 385 

nociception.  386 

 387 

Here, we isolated the genetic contribution to task-evoked functional connectivity. Yet, several 388 

findings show great similarity between task-evoked and resting-state functional connectivity 389 

(Cole, Bassett, Power, Braver, & Petersen, 2014; Fox & Raichle, 2007). Such similarities, 390 

however, should not be transferred by analogy to a comparison between resting-state and pain-391 

evoked functional connectivity. Even comparing non-painful and painful stimuli shows marked 392 

differences whereby the former resembles a network formation akin to resting-state (Zheng et al., 393 

2020). The cluster of edges identified in the present study captures variance associated with 394 

additive genetics supporting the search for a genetically informed neural pain signature (Davis et 395 

al., 2020). Future studies should compare resting-state and pain-evoked functional connectivity 396 

and estimate the extent of their shared genetics and the neural targets of their shared and non-397 

shared genes.  398 

 399 

As nociception is represented by activation in several brain regions, it has been difficult to 400 

determine which aspects of nociception are heritable and which ones are shaped by life experience. 401 

The data in the present study provides the first genetically informed nociceptive signature that 402 

distinguishes between heritable and acquired nociceptive responses in the brain. There is currently 403 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.08.425878doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425878
http://creativecommons.org/licenses/by-nd/4.0/


 

12 

 

a need for better characterization of the biological and genetic foundations of the neural 404 

representation of pain. One major reason for the urgency of improving our understanding of the 405 

neural representations of pain is the opioid crisis, where opioid-based analgesics have created a 406 

wave of addiction, leading to overdoses and deaths. One review and a recent consensus paper by 407 

leading pain clinicians and scientists (Davis et al., 2020; Tracey, Woolf, & Andrews, 2019) 408 

explicitly ask for pain biomarkers– verifiable in preclinical models and patients. Stratification 409 

biomarkers may increase the probability of success in pharmacological clinical trials by as much 410 

as 21% in phase III clinical trials in all disease areas (Davis et al., 2020). Our results may help 411 

determine if clinical pain is manifested in genetically inferred nociceptive regions, and hopefully 412 

lead to beneficial sub-grouping and patient stratification.  413 

 414 

There are several limitations in our study that need to be addressed. First, the experiment also 415 

included a fear conditioning task, which entails a risk that our findings are confounded by cognitive 416 

and affective processes related to learning and anxiety. On the one hand, our analytical approach 417 

isolated the effects of the nociceptive stimulus itself and hopefully minimized any brain activations 418 

related to the fear learning component of the experimental paradigm. On the other hand, there is 419 

an inherent affective component of nociception and it will thus be difficult to remove all fear-420 

related brain activations as they may also be present during the nociceptive stimulation modeled 421 

in our analysis. Related to this, there are other psychological factors that are heritable, for example 422 

anxiety, that could influence nociceptive processing. We can, therefore, not exclude the 423 

contribution of closely related heritable factors to our findings. For example, genetic factors could 424 

influence anxiety that in turn influence nociceptive processing. Another limitation is that we 425 

examined the genetic influence on nociceptive processing and not subjective pain. While the 426 

nociceptive stimuli in our study represent aversive events in the sensory domain (Lee, Necka, & 427 

Atlas, 2020), participants did not provide subjective ratings of pain. This would have allowed a 428 

clearer relationship between genetic influences on brain activation and functional connectivity 429 

with the subjective pain experience. Further, this study examined only one nociceptive modality – 430 

electrical stimulation. Even if our findings elucidate heritable neural mechanisms that overlap with 431 

findings among patients with clinical pain they may not generalize to a clinical context. If we had 432 

used other nociceptive stimuli that stimulate deeper tissues, and provide C-fiber mediated 433 

activations, it would have made a stronger case for a possible clinical translation. Nevertheless, 434 

the level of the electrical stimuli in this study are comparable to previous studies that studied pain 435 

(Liu et al., 2020). Finally, the sample size is relatively small and may be underpowered to detect 436 

some effects. With our sample size, reaching 80% power (p = 0.05) requires the true effect of 437 

additive genetics to be 0.5. These calculations (Visscher, 2004; Visscher, Gordon, & Neale, 2008) 438 

are, however, based on a generic tool for twin studies and may not be comparable to the statistics 439 

of neuroimaging. 440 

   441 

To summarize, our findings support the idea that brain regions associated with nociceptive 442 

processing are under significant genetic influence. The genetic influence on functional 443 

connectivity during nociceptive processing is not limited to core nociceptive brain regions, such 444 

as the dorsal posterior insulae and somatosensory areas, but also involves cognitive and affective 445 

brain circuitry. There are efforts to characterize the association between functional brain networks 446 

and gene expression (Richiardi et al., 2015). Future endeavors in the pain field can provide insights 447 

into clinical pain conditions and help improve their treatments. 448 

 449 
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