1	Colistin resistance in Acinetobacter baumannii is driven by multiple genomic traits:		
2	Evaluating the role of ISAba1-driven eptA overexpression among Indian isolates		
3	Saranya Vijayakumar ¹ , Jobin John Jacob ¹ , Karthick Vasudevan ¹ , Baby Abirami Shankar ¹ , Maria		
4	Lincy Francis ¹ , Agilandeeswari Kirubananthan ¹ , ShaliniAnandan ¹ , Karthik Gunasekaran ² ,		
5	KaminiWalia ³ , Indranil Biswas ⁴ , Keith S Kaye ⁵ , *Balaji Veeraraghavan ¹		
6	¹ Department of Clinical Microbiology, Christian Medical College, Vellore – 632004, India		
7	² Department of Medicine, Christian Medical College, Vellore – 632004, India		
8	³ Division of Epidemiology and Communicable Diseases, Indian Council for Medical Research,		
9	New Delhi – 110029, India		
10	⁴ Department of Microbiology, Molecular Genetics and Immunology, University of Kansas		
11	Medical Center, United States of America		
12	⁵ Division of Infectious Diseases, University of Michigan Medical School		
13	Running title: Characterization of colistin resistance among Indian isolates of A. baumannii		
14	*Corresponding author:		
15	Dr. V. Balaji		
16	Professor		
17	Department of Clinical Microbiology		
18	Christian Medical College		
19	Vellore – 632 004		
20	Tamil Nadu, India		
21	Ph: +91 9442210555		
22	E-mail: vbalaji@cmcvellore.ac.in		
23			

24 Abstract

25	Colistin resistance in Acinetobacter baumannii is mediated by multiple mechanisms. Recently,
26	mutations within <i>pmrAB</i> two component system and overexpression of <i>eptA</i> due to upstream
27	insertion of ISAba1 play a major role. To characterize colistin resistance mechanisms among the
28	clinical isolates of A. baumannii in India. A total of 224 clinical isolates of A. baumannii
29	collected from 2016 to 2019 were included in this study. Mutations within lipid A biosynthesis
30	and <i>pmrAB</i> genes were characterized by Whole Genome Shotgun sequencing. Twenty eight
31	complete genomes were further characterized for insertional inactivation of <i>lpx</i> genes and the
32	association of ISAba1-eptA using hybrid assembly approach. Non-sysnonymous mutations like
33	M12I in <i>pmrA</i> , A138T and A444V in <i>pmrB</i> and E117K in <i>lpxD</i> were identified. Four of the five
34	colistin resistant A.baumannii isolates had insertion of ISAba1 upstream eptA. No mcr genes
35	were identified. Overall, the present study highlights the diversity of colistin resistance
36	mechanisms in A. baumannii. ISAba1-driven eptA overexpression could be responsible for
37	colistin resistance among Indian isolates of colistin resistant A. baumannii.
38	
20	
39	
40	
41	
42	
43	
44	

45 Introduction

46	Acinetobacter baumannii is a major nosocomial pathogen which is responsible for wide			
47	range of infections and has been reported as a public health problem globally [1, 2]. Multi-drug			
48	and extensively-drug resistant A. baumannii have been reported world-wide which results in the			
49	paucity of treatment options against Acinetobacter infections [3]. Carbapenems are considered to			
50	be the last-line antibiotics for treating A. baumannii infections and more than 80% resistance to			
51	carbapenem was reported [4]. More than 60% mortality rates have been reported for the most			
52	common carbapenem resistant A. baumannii (CRAB) infections like blood stream infections			
53	(BSI) and hospital-acquired pneumonia (HAP) [5].			
54	Recently, World Health Organization (WHO) categorized CRAB as "Priority one"			
55	pathogen in the global list of antibiotic-resistant bacteria for the development of new antibiotics			
56	[3]. The most common antimicrobials considered for treating CRAB include colistin-based,			
57	tigecycline-based and sulbactam-based combinations [6]. Unfortunately, increased usage of			
58	colistin for treating Acinetobacter infection results in resistance to these last-line drugs [7].			
59	In A. baumannii colistin resistance is mediated by multiple mechanisms [8]. This			
60	includes, (i) Loss of lipopolysaccharide (LPS) production, due to mutations in lipid A			
61	biosynthesis genes like <i>lpxA</i> , <i>lpxC</i> and <i>lpxD</i> . In addition, insertional inactivation of <i>lpxACD</i>			
62	genes due to insertion element, ISAball causes both loss of LPS and increased colistin			
63	resistance [9, 10]. (ii) Point mutations in <i>pmrA</i> and <i>pmrB</i> genes of <i>pmrAB</i> two component system			
64	(TCS) results in decreased membrane permeability leading to colistin resistance [11]. (iii)			
65	Recently, Gerson et al reported the presence of phosphoethanolamine (pEtN) transferase eptA, a			
66	homologue of <i>pmrC</i> and insertion of ISAba1 upstream <i>eptA</i> results in overexpression and high			

colistin resistance [3] and (iv) Colistin resistance due to plasmid mediated pEtN transferase, *mcr*genes [12].

69	In this study, a total of 224 clinical isolates of A. baumannii were characterized for their
70	susceptibility profile and multiple resistance mechanism that contributes to colistin resistance. In
71	addition, subset of complete genomes were characterized to investigate the inactivation of <i>lpxA</i>
72	or <i>lpxC</i> by ISAba11 and to decipher the presence of ISAba1 upstream <i>eptA</i> .

73 Materials and methods

74 Bacterial isolates

A total of 1214 consecutive non-duplicate clinical isolates of *A. baumannii* collected during January 2016 to December 2019 from the routine cultures of clinical samples, blood (n=314) and endo-tracheal aspirate (ETA) (n=900) were included in this study. All the isolates were identified up to the species level as *Acinetobacter baumannii calcoaceticus* complex (*Acb* complex) using conventional biochemical methods [13]. MALDI-TOF was used to confirm at the species level as *Acinetobacter baumannii*. Further confirmation of *Acb* complex as *A. baumannii* was performed targeting chromosomally encoded *bla*_{OXA-51 like} gene by PCR [14].

82 Anti-microbial susceptibility testing (AST)

AST was performed for all the isolates against different classes of antibiotics by Kirby
Bauer disc diffusion (DD) method and interpreted according to Clinical Laboratory Standards
Institute (CLSI) guidelines [15]. The antibiotics tested includes ceftazidime, cefepime,
piperacillin/tazobactam , cefoperazone/Sulbactam, imipenem, meropenem , aztreonam,
amikacin, netilmycin, tobramycin, levofloxacin, tetracycline, minocycline, tigecycline and
trimethoprim-sulfamethoxazole.

89 Minimum inhibitory concentration (MIC) by broth micro dilution (BMD)

90	As recommended by CLSI 2017 guidelines, colistin MIC was determined for all the	
91	blood and ETA isolates using broth micro dilution (BMD) and interpreted accordingly [16].	
92	Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used as quality	
93	control (QC) strains. Also, mcr-1 positive E. coli was used as an internal control. Two in-house	
94	quality controls, <i>Klebsiella pneumoniae</i> BA38416 with MIC of 0.5 μ g/ml and <i>Klebsiella</i>	
95	pneumoniae BA25425 with 16 μ g/ml were also included in every batch of testing.	
96	Whole genome sequencing (WGS), assembly and annotation	
97	A subset of 224 clinical isolates of <i>A. baumannii</i> (Blood = 117 & ETA = 107) were	
98	selected based on the susceptibility profile for further characterization by WGS. Genomic DNA	
99	was extracted using QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany) according to the	
100	manufacturer's instructions and WGS was performed. In brief, short read sequencing was	
101	performed using IonTorrent TM Personal Genome Machine TM (PGM) (Life Technologies,	
102	Carlsbad, CA) with 400-bp read chemistry or Illumina MiSeq as per the manufacturer's	
103	instructions. Long read sequencing was performed using SQK-LSK108 Kit R9 version (Oxford	
104	Nanopore Technologies, Oxford, UK) using 1D sequencing method according to the	
105	manufacturer's protocol. To obtain complete genome, hybrid assembly was performed for a	
106	subset of 28 genomes (Blood = 21 and ETA= 7) using long reads from MinION and short reads	
107	from either IonTorrent or Illumina as described previously [17].	
108	All the genomes were assembled and annotated using the NCBI Prokaryotic Genome	
109	Annotation Pipeline (PGAP). Furthermore, downstream analysis was done using tools from	
110	Center for Genomic Epidemiology (CGE) server (<u>http://www.genomicepidemiology.org/</u>).	

111 Antimicrobial resistance genes (ARG) were using ResFinder 3.0 database

112 (<u>https://cge.cbs.dtu.dk/services/ResFinder/</u>) [18]. Sequence type of the isolates was assigned by

113 MLST 2.0 tool using the Oxford scheme (*gltA, gyrB, gdhB, recA, cpn60, gpi,* and *rpoD* genes)

114 (<u>https://cge.cbs.dtu.dk//services/MLST/</u>) [19]. SNP based phylogenetic tree was constructed and

- 115 meta-data like colistin susceptibility, chromosomal mutation profile and International Clones
- 116 were added using iTOL (<u>https://itol.embl.de/</u>) [20].

117 Mutation analysis of *lpxACD* and *pmrAB* genes

118 *In-silico* mutation analysis of genes involved in lipid A biosysthesis pathway (*lpxA*,

119 *lpxC* and *lpxD*) and *pmrAB* TCS (*pmrA* and *pmrB*) were determined in all the genomes using

120 Blast analysis (<u>https://blast.ncbi.nlm.nih.gov</u>) and compared with the reference strain of *A*.

121 *baumannii* ATCC 17978 (GenBank Accession Number CP000521). Other reference strains like

122 A. baumannii AYE (GenBank Accession Number NC010410), A. baumannii ACICU (GenBank

Accession Number NC010611) and ATCC 19606 (GenBank Accession Number CP046654)

were included in the analysis to identify the genetic polymorphisms. Plasmid mediated colistin

resistance determinant gene (*mcr*) were detected using Resfinder and by *in-silico* Blast analysis

against the reference sequences of *mcr* genes reported so far [21]. In addition to the mutation

127 analysis, all the 28 complete genomes were characterized manually for other colistin resistance

mechanisms like insertional inactivation of lpxA, lpxC and lpxD genes due to insertion sequence,

129 ISAball and over-expression of *pmrC* homologue, *eptA* due to upstream presence of ISAbal.

130 Nucleotide accession numbers

The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under
BioProject numbers PRJNA603876, PRJNA604897, PRJNA610496 and PRJNA610503. The

- 133 complete genome project has been deposited at DDBJ/ENA/GenBank under accession numbers
- 134 AB01 (CP040080), AB02 (CP035672), AB03 (CP050388), AB04 (CP040040), AB05
- 135 (CP040047), AB06 (CP040050), AB07 (CP035930), AB08 (CP038500), AB09 (CP038644),
- 136 AB010 (CP040053), AB011 (CP040056), AB012 (CP040084), AB013 (CP040087), AB014
- 137 (CP050421), AB015 (CP050403), AB016 (CP040259), AB017 (CP050385), AB018
- 138 (CP050523), AB019 (CP050400), AB020 (CP050390), AB021 (CP050410), AB022
- 139 (CP050412), AB023 (CP050415), AB024 (CP050425), AB025 (CP050432), AB026
- 140 (CP051474), AB027 (CP050526) and AB028 (CP050401).
- 141 **Results**

142 Bacterial isolates and AST

- All the study isolates (n=1214) were first identified as *Acb* complex and confirmed as *A*.
- 144 *baumannii* by MALDI-TOF. *bla*_{OXA-51} like PCR re-confirmed *Acb* complex as *A. baumannii*.
- AST revealed that 99% (Blood, n=313 and ETA, n=899) of the study isolates were extensively
- drug resistant (XDR) and showed resistance to all the tested antibiotics. Of the remaining two
- 147 isolates, one from ETA was pan-susceptible (AB01- Accession No. CP040080) while the other
- 148 from blood was multi-drug resistant (MDR). The MDR (AB025 Accession No.CP050432)
- isolate was resistant to cephalosporins, fluoroquinolones, aminoglycosides, tetracyclines,
- tigecycline and trimethoprim-sulfamethoxazole while susceptible to carbapenems.

151 Determination of colistin MIC by BMD

- Among the tested isolates, 10.8% (n=34) from blood and 8.2% (n=74) from ETA were
- 153 colistin resistant *A. baumannii* respectively. The colistin MIC range, MIC_{50} and MIC_{90} of the
- 154 blood and ETA isolates were tabulated (Table 1).

155 Characterization of various colistin resistance mechanisms using WGS

156	A subset of 224 clinical isolates of A. baumannii was subjected to WGS based on the		
157	susceptibility profile. Of the 117 blood isolates, one isolate was MDR, 84 were carbapenem		
158	resistant-colistin susceptible A. baumannii (CR-ColSAB) and 32 were carbapenem -resistant-		
159	colistin resistant A. baumannii (CR-ColRAB). Similarly, among the 107 ETA, one was pan-		
160	susceptible, 46 were CR-ColSAB while 61 were CR-ColRAB.		
161	Sequencing of <i>lpx</i> genes in both CR-ColSAB (n=131) and CR-ColRAB (n=93) revealed		
162	the presence of various amino acid substitutions. Within <i>lpxA</i> : Y131H, <i>lpxC</i> : C120R-P148S-		
163	F230Y-N287D and <i>lpxD</i> : Q4K-V63I-V93I-E117K-G166S-T287I-S299P substitutions were		
164	identified in comparison with the reference strain ATCC 17978. Three non-synonymous		
165	mutations Q4K, V63I and E117K within <i>lpxD</i> were identified in both CR-ColSAB and CR-		
166	ColRAB. Y131H, C120R and N287D substitutions were identified in all the three reference		
167	strains and all the CR-ColSAB and CR-ColRAB. Other amino-acid substitutions like P148S and		
168	F230Y in <i>lpxC</i> , V93I, G166S, T287I and S299P in <i>lpxD</i> were first described in this study. On the		
169	other hand, sequencing of <i>pmrAB</i> genes identified the following amino acid substitutions, <i>pmrA</i> :		
170	M12I and <i>pmrB</i> : A138T-L168S-A226T-V300E-G315A-P360Q-A444V. Single non-synonymous		
171	mutation, M12I in <i>pmrA</i> and A138T in <i>pmrB</i> was identified in all the CR-ColSAB and CR-		
172	ColRAB (Fig 1). None of the study isolates harbor any of the reported plasmid mediated colistin		
173	resistance determinant, mcr-1 or its homologues.		
174	Among the 28 complete genomes of A. baumannii, 21were from blood of which 17 were		
175	CR-ColSAB while four were CR-ColRAB. Of the seven from ETA, five were CR-ColSAB, one		
176	was CR-ColRAB and one was pan-susceptible. Characterization of complete genomes for other		
177	colistin resistance mechanisms showed the presence of ISAba11 among two CR-ColSAB blood		

178	isolates (AB016- Accession No. CP040259 & AB017- Accession No. CP050385), but no			
179	disruption of <i>lpxACD</i> observed. Atleast one copy of <i>eptA</i> was identified among 10 and 6			
180	genomes of CR-ColSAB from blood and ETA respectively whereas more than one copy was			
181	present in 12 genomes (7 CR-ColSAB and 4 CR-ColRAB from blood while one CR-ColRAB			
182	from ETA). ISAba1 was found in opposite orientation upstream eptA in two genomes of CR-			
183	ColRAB from blood (AB02- Accession No. CP035672 & AB05- Accession No. CP040047) and			
184	in one CR-ColRAB from ETA (AB03- Accession No. CP050388). ISAba1 was present in direct			
185	orientation upstream eptA in one CR-ColRAB blood isolate (AB04- Accession No. CP040040).			
186	Two CR-ColSAB from blood have IS4 transposase but not upstream eptA (AB010- Accession			
187	No. CP040053 & AB011- Accession No. CP040056) whereas four CR-ColSAB from blood			
188	(AB08- Accession No. CP038500, AB09- Accession No. CP038644, AB025- Accession No.			
189	CP050432 and AB015- Accession No. CP050403) have other family transposases (Fig 2 - 3). In			
190	one CR-ColRAB (AB06- Accession No.CP040050), only amino-acid substitutions, Y131H in			
191	<i>lpxA</i> , C120R and N287D in <i>lpxC</i> , P148S and G315D in <i>lpxD</i> were identified while the other			
192	colistin resistance mechanisms were absent. The overall colistin resistance mechanisms			
193	characterized among the 28 hybrid genomes were described in (Table 2.)			

194 MLST

195 MLST Finder revealed that both CR-ColSAB and CR-ColRAB were classified into

196 International Clones (ICs) - IC1, IC2, IC7, IC8, CC862 and singletons. Majority of the CR-

197 ColSAB isolates (n=90) (69%) belongs to IC2 with diverse sequence types like ST848, ST349,

198 ST451, ST218 and ST195. Whereas IC2 was the only lineage with ST848 among the CR-

199 ColRAB isolates (n=73) (78 %). Lineage specific non-synonymous mutations like Q4K, V63I

and E117K within *lpxD* belongs to IC8, IC7 and IC2 respectively. Single non-synonymous

mutation, M12I in *pmrA*, A138T in *pmrB* and the combination of A138T-A444V within *pmrB*belongs to IC2.

203 **Discussion**

Colistin is considered as one of the few therapeutic options available against CRAB 204 infections and due to increased usage, colistin resistance rate is gradually increasing globally and 205 becoming a healthcare concern [22]. In the current study, 8% to 11% colistin resistance has been 206 observed. Reports from other countries showed increased colistin resistance rates of 16.7% from 207 208 Bulgaria, 19.1% from Spain and 27% from Greece [23 - 25]. Therefore, it is important to explore and understand the mechanisms that contribute to colistin resistance which is an utmost need for 209 routine surveillance [3]. Several mutations and genetic polymorphisms have been reported within 210 211 *lpxACD* and *pmrAB* genes by various studies using WGS which is in concurrence with the current study [9, 10]. 212

In this study, clinical isolates of CR-ColRAB and CR-ColSAB were characterized for multiple colistin resistance mechanisms. Mutation analysis in *lpxACD* identified three non-

synonymous mutations; Q4K, V63I and E117K within *lpxD* in both CR-ColRAB and CR-

216 ColSAB which concurs with previous studies [26, 27]. Recent studies report that mutations in

217 *pmrB* as the major contributor for colistin resistance in *A. baumannii* [24, 26, 28, 29]. The current

study identified a non-synonymous mutation, A138T in *pmrB* while previous studies report other

amino-acid substitutions together with A138T which is contrary to the current study [24, 26, 29].

220 In *pmrA*, a single non-synonymous mutation, M12I was first identified by Arroyo et al who also

reported the association of M12I with colistin hetero-resistance [24, 26, 30]. In contrast, other

studies reported G54E substitution within *pmrA* which was not identified in this study [29, 31].

223 Several studies reported the presence of mutations in *lpxD* along with *pmrB* genes [29]. In this

224	study, both CR-ColRAB and CR-ColSAB has lpxD mutation, E117K in combination with			
225	A138T-A444V mutation in <i>pmrB</i> . This observation indicates that mutations in <i>lpxD</i> alone and			
226	<i>pmrB</i> alone may not be sufficient to induce colistin resistance and support the presence of			
227	synergistic activity of mutations within these genes in promoting colistin resistance [26].			
228	Two MLST schemes, PubMLST (Oxford) and Pasteur MLST are available for A.			
229	baumannii [32]. Earlier studies reported IC2/global clone 2 (GC2) as the predominant lineage			
230	associated with outbreaks [8]. This finding correlates with the current study and identified in			
231	both CR-ColRAB and CR-ColSAB In the present study, IC1/GC1was identified among CR-			
232	ColSAB which is contrast to Snyman et al where GC1 was identified in both CR-ColSAB and			
233	CR-ColRAB [33]. Interestingly, lineage specific non-synonymous mutations, such as Q4K			
234	which belongs to IC8, V63I which belongs to to IC7 and E117K-M12I-A138T which belongs to			
235	IC2 were observed in this study and such findings have not been previously reported.			
236	Moffatt et al was the first to report on the role of ISAba11 which causes insertional			
237	inactivation of <i>lpxA</i> or <i>lpxC</i> and leads to loss of LPS production and colistin resistance [10].			
238	Mutations in <i>lpxC</i> gene due to insertion of ISAba11 and increased colistin resistance were			
239	recently reported by Marta et al [34]. The current study revealed the presence of ISAba11 in two			
240	CR-ColSAB without disruption of <i>lpxA</i> or <i>lpxC</i> which is inconsistent with the previous studies.			
241	eptA is a pmrC homologue with pEtN transferase activity [8]. In this study, eptA was			
242	present in both CR-ColSAB and CR-ColRAB and comparable with previous studies [3, 7 - 8,			
243	35]. However, the presence of ISAba1 upstream eptA was identified only among the CR-			
244	ColRAB which results in overexpression of PetN transferase encoded either by <i>pmrC</i> or <i>eptA</i>			
245	and responsible for colistin resistance. Such findings are comparable with other studies whereas			
246	another study observed in both CR-ColSAB and CR-ColRAB [3, 7 - 8]. Presence of other family			

247	transposases were noticed among the CR-ColSAB which could be novel and further studies are	
248	necessary. Other colistin resistance mechanisms like disruption of eptA by ISAba125and	
249	increased expression of eptA due to the presence of ISAba1 in reverse orientation upstream eptA	
250	were reported recently [3]. Though difference in the orientation of ISAba1 with respect to eptA	
251	was identified in this study, no expression studies were done to confirm the same.	
252	In 2016, plasmid mediated PetN transferase, mcr-1 was identified from China that	
253	contributed to colistin resistance to E. coli [36]. Currently, nine mcr types (mcr 1-9) and	
254	approximately 56 mcr variants are available in the GenBank database [37]. Though recent	
255	studies reported the presence of mcr-4.3 in A. baumannii isolated from pig feces, food sample	
256	and clinical strains, none of the current study isolates harbor mcr genes [37 - 39].	
257	Though colistin-based combinations can be considered for treating CRAB infections,	
258	various controversies have been reported recently with the usage of polymyxins [40]. Two global	
259	organizations, CLSI and EUCAST revised the interpretive criteria for in-vitro polymyxin	
260	susceptibility testing and suggested to prefer non-polymyxin agents for treating Acinetobacter	
261	infections [41]. Such revision would effectively helpful in considering polymyxin as a treatment	
262	option in selected cases [41]. Further clinical trials to determine the efficacy of novel agents like	
263	cefiderocol and eravacycline against BSI and VAP are recommended [42]. None of the newly	
264	available drug combinations have clinical activity against CRAB infections except for the novel	
265	β -lactam- β -lactamase enhancer, cefepime-zidebactam [6, 42].	
266	Conclusion	

The current study provides characterization of multiple resistance mechanisms that could be responsible for colistin resistance among clinical isolates of *A. baumannii*. Previously reported non-synonymous mutations as well as other amino-acid substitutions that are not

270 described previously within *lpxD*, *pmrA* and *pmrB* genes were identified. Presence of *lpxD* mutation, E117K along with *pmrB* mutations A138T-A444V indicates the synergistic activity of 271 mutations and results in colistin resistance. Recently, mcr-4.3 on plasmids has been identified 272 among clinical isolates of A. baumannii which is alarming. Two colistin susceptible isolates 273 harbored ISAba11 and studies to understand the role of ISAba11 towards colistin resistance is 274 essential. Though *pmrC* expression and addition of pEtN transferase to lipid A was regulated by 275 pmrAB TCS, that alone doesn't considered as a sole contributor of colistin resistance. The 276 presence of eptA was quite common and insertion of ISAba1 upstream eptA among colistin 277 278 resistant isolates could be associated with colistin resistance. The exact resistance mechanism that contributes to colistin was not elucidated for one isolate and requires further investigation. 279 Overall, the present study highlights the diversity of colistin resistance mechanisms described in 280 A. baumannii and for complete understanding further extensive studies are necessary. 281

282

283 Acknowledgements

284 The authors gratefully acknowledge the Institutional Review Board of the Christian Medical

285 College, Vellore (83-i/11/13) and Indian Council of Medical Research, New Delhi, India (ref. no

AMR/TF/54/13ECDHIII dated 23/10/2013). The study is a part of the PhD. Dissertation under

287 The Tamil Nadu Dr. M.G.R. Medical University.

288 Transparency declarations

289 None to declare

290

291

292 **References**

- 293 1 Casallas JC, Robayo-Amortegui H, Corredor-Rozo Z et al. Bacteremia by colistin-resistant
- Acinetobacter baumannii isolate: a case report. J Med Case Rep 2019;13:141.
- 295 2 Vijayakumar S, Rajenderan S, Laishram S et al. Biofilm formation and motility depend on the
- nature of the Acinetobacter baumannii clinical isolates. Front Public Health 2016; 24:105.
- 297 3 Gerson S, Betts JW, Lucaßen K et al. Investigation of novel pmrB and eptA mutations in
- 298 isogenic Acinetobacter baumannii isolates associated with colistin resistance and increased
- virulence in vivo. Antimicrob Agents Chemother 2019;63:e01586-18.
- 4 Hsu LY, Apisarnthanarak A, Khan E et al. Carbapenem-resistant Acinetobacter baumannii and
- 301 Enterobacteriaceae in south and southeast Asia. Clin Microbiol Rev 2017;30:1-22.
- 5 Wong D, Nielsen TB, Bonomo RA et al. Clinical and pathophysiological overview of
- Acinetobacter infections: a century of challenges. Clin Microbiol Rev 2017;30:409-47.
- 304 6 Piperaki ET, Tzouvelekis LS, Miriagou V et al. Carbapenem-resistant Acinetobacter
- baumannii: in pursuit of an effective treatment. Clin Microbiol Infect 2019;25:951-7.
- 306 7 Trebosc V, Gartenmann S, Tötzl M *et al.* Dissecting Colistin Resistance Mechanisms in
- 307 Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates. mBio. 2019;10:e01083-
- 308 19.
- 8 Potron A, Vuillemenot JB, Puja H *et al.* ISAba1-dependent overexpression of eptA in clinical
 strains of Acinetobacter baumannii resistant to colistin. J Antimicrob Chemother 2019; 74:254450.

• .

· • • • 1 • 1

.. .

312	9 Moltatt JH, Harper M, Harrison P et al. Collstin resistance in Acinetobacter baumannil is
313	mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother
314	2010 ;54:4971-7.

- 10 Moffatt JH, Harper M, Adler B *et al.* Insertion sequence ISAba11 is involved in colistin
- 316 resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents
- 317 Chemother 2011;55:3022-4.

~ - -

- 318 11 Cai Y, Chai D, Wang R et al. Colistin resistance of Acinetobacter baumannii: clinical reports,
- mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012;67:1607-15.
- 12 Liu YY, Wang Y, Walsh TR et al. Emergence of plasmid-mediated colistin resistance
- 321 mechanism MCR-1 in animals and human beings in China: a microbiological and molecular
- biological study. Lancet Infect Dis 2016;16:161-8.

.

- 13 Vijayakumar S, Biswas I, Veeraraghavan B et al. Accurate identification of clinically
- important Acinetobacter spp.: an update. Future Sci OA 2019;5:FSO395.
- 325 14 Turton JF, Woodford N, Glover J et al. Identification of Acinetobacter baumannii by
- detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol
 2006;44:2974-6.
- 328 15 Clinical and Laboratory Standards Institute. (2019) Performance Standards for Antimicrobial
- 329 Susceptibility Testing: Twenty nine Informational Supplement M100-S29. CLSI, Wayne, PA,
- 330 USA

- 16 Clinical and Laboratory Standards Institute. (2017) Performance Standards for Antimicrobial
 Susceptibility Testing: Twenty seven Informational Supplement M100-S27. CLSI, Wayne, PA,
 USA
- 17 Vasudevan K, Ragupathi NK, Jacob JJ *et al.* Highly accurate-single chromosomal complete
- 335 genomes using IonTorrent and MinION sequencing of clinical pathogens. Genomics.

336 2020;112:545-51.

- 18 Zankari E, Hasman H, Cosentino S *et al.* Identification of acquired antimicrobial resistance
- 338 genes. J Antimicrob Chemother 2012;67:2640-44.
- 19 Larsen M.V, Cosentino S, Rasmussen S et al. Multilocus sequence typing of total-genome-
- sequenced bacteria. J Clin Microbiol 2012;50: 1355-61.
- 20 Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and
- annotation of phylogenetic and other trees. Nucleic acids research. 2016;44:W242-5.
- 21 Partridge SR, Di Pilato V, Doi Y *et al*. Proposal for assignment of allele numbers for mobile
- colistin resistance (mcr) genes. J Antimicrob Chemother 2018;73:2625-30.
- 22 Cafiso V, Stracquadanio S, Lo Verde F *et al.* Colistin resistant A. baumannii: genomic and
 transcriptomic traits acquired under colistin therapy. Front Microbiol 2019;9:3195.
- 347 23 Nowak J, Zander E, Stefanik D et al. High incidence of pandrug-resistant Acinetobacter
- baumannii isolates collected from patients with ventilator-associated pneumonia in Greece, Italy
- and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother 2017;72:3277-82.
- 24 Mustapha MM, Li B, Pacey MP, Mettus RT et al. Phylogenomics of colistin-susceptible and
- resistant XDR Acinetobacter baumannii J Antimicrob Chemother 2018;73:2952-9.

- 352 25 Abdulzahra AT, Khalil MA, Elkhatib WF. First report of colistin resistance among
- 353 carbapenem-resistant Acinetobacter baumannii isolates recovered from hospitalized patients in
- Egypt. New Microbes New Infect 2018;26:53-8.
- 26 Nurtop E, Bayındır Bilman F, Menekse S *et al*. Promoters of Colistin Resistance in
- Acinetobacter baumannii Infections Microb Drug Resist 2019;25:997-1002.
- 357 27 Haeili M, Kafshdouz M, Feizabadi MM. Molecular mechanisms of colistin resistance among
- 358 pandrug-resistant isolates of Acinetobacter baumannii with high case-fatality rate in intensive
- care unit patients Microb Drug Resist 2018;24:1271-6.
- 28 Charretier Y, Diene SM, Baud D et al. Colistin heteroresistance and involvement of the
- 361 PmrAB regulatory system in Acinetobacter baumannii. Antimicrob Agents Chemother
 362 2018;62:e00788-18.
- 29 Gerson S, Lucaßen K, Wille J et al. Diversity of amino acid substitutions in PmrCAB
- 364 associated with colistin resistance in clinical isolates of Acinetobacter baumannii. Int J
- 365 Antimicrob Agents 2020;55:105862.
- 366 30 Arroyo LA, Herrera CM, Fernandez L et al. The pmrCAB operon mediates polymyxin
- resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through
- 368 phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother 2011;55:3743-51.
- 369 31 Oikonomou O, Sarrou S, Papagiannitsis CC et al. Rapid dissemination of colistin and
- 370 carbapenem resistant Acinetobacter baumannii in Central Greece: mechanisms of resistance,
- molecular identification and epidemiological data. BMC Infect Dis 2015;15:559.

372	32 Vijayakumar S, Mathur P, Kapil A et al. Molecular characterization & epidemiology of
373	carbapenem-resistant Acinetobacter baumannii collected across India. Indian J Med Res
374	2019;149:240.

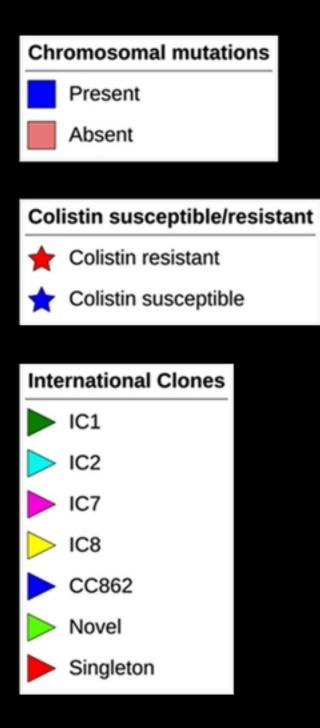
375 33 Snyman Y, Whitelaw AC, Reuter S et al. Clonal expansion of colistin-resistant Acinetobacter

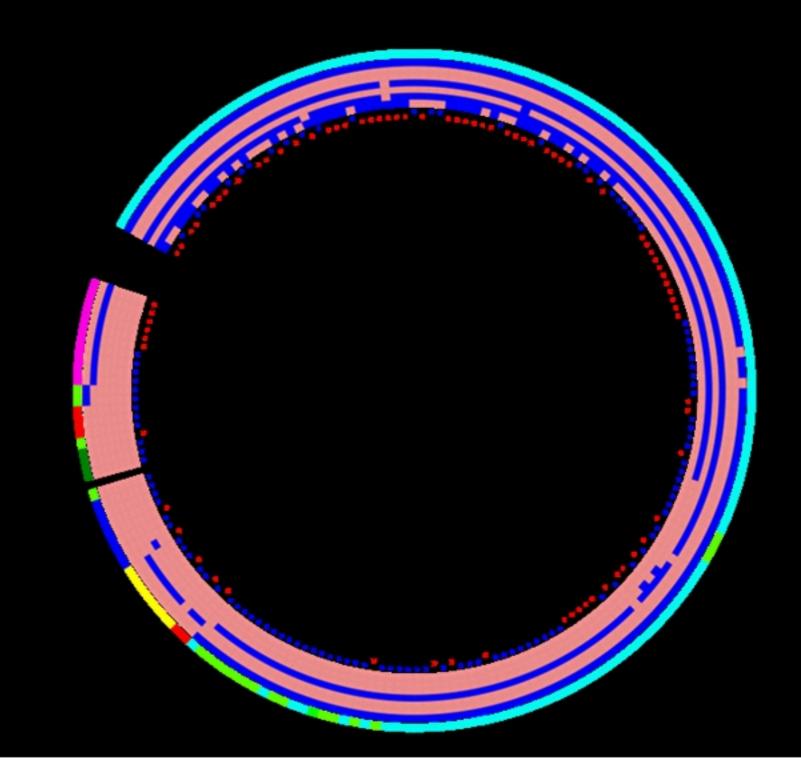
- baumannii isolates in Cape Town, South Africa. Int J Infect Dis 2020;91:94-100. 376
- 34 Carretero-Ledesma M, García-Quintanilla M, Martín-Peña R et al. Phenotypic changes 377
- associated with Colistin resistance due to Lipopolysaccharide loss in Acinetobacter baumannii. 378
- 379 Virulence 2018;9:930-42.
- 35 Lesho E, Yoon EJ, McGann P et al. Emergence of colistin-resistance in extremely drug-380

381 resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of

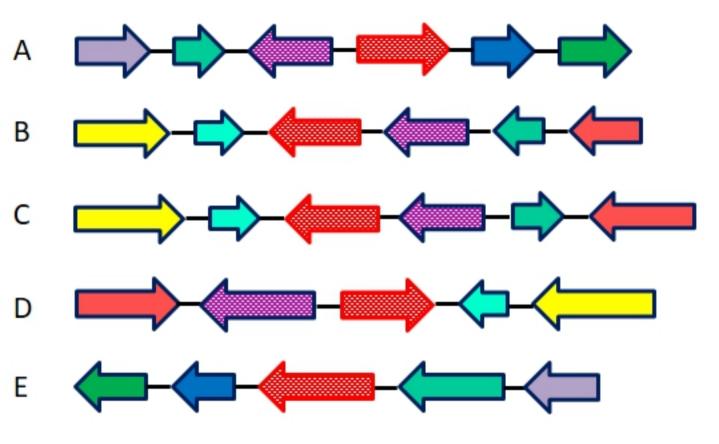
wound infections. J Infect Dis 2013;208:1142-51. 382

- 36 Nhu NT, Riordan DW, Nhu TD et al. The induction and identification of novel Colistin 383
- 384 resistance mutations in Acinetobacter baumannii and their implications. Sci Rep 2016;6:1-8.
- 37 Ma F, Shen C, Zheng X et al. Identification of a novel plasmid carrying mcr-4.3 in an 385
- Acinetobacter baumannii strain in China. Antimicrob Agents Chemother 2019;63:e00133-19. 386
- 38 Martins-Sorenson N. Snesrud E. Xavier DE et al. A novel plasmid-encoded mcr-4.3 gene in a 387
- colistin-resistant Acinetobacter baumannii clinical strain. J Antimicrob Chemother 2020;75:60-4. 388
- 389 39 Bitar I, Medvecky M, Gelbicova T et al. Complete Nucleotide Sequences of mcr-4.3-
- 390 Carrying Plasmids in Acinetobacter baumannii Sequence Type 345 of Human and Food Origin
- 391 from the Czech Republic, the First Case in Europe. Antimicrob Agents Chemother
- 2019;63:e01166-19. 392

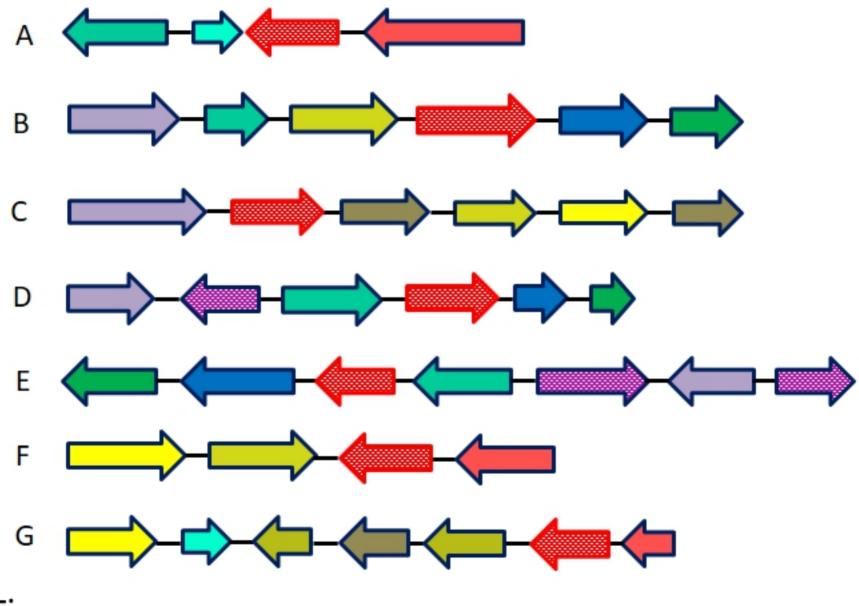

393 40 Gurjar M. Colistin	for lung infection: an update. J	Intensive Care 2015;3:3.
----------------------------------	----------------------------------	--------------------------


394	41 Satlin MJ, Lewis JS, Weinstein MP et al. Clinical and Laboratory Standards Institute (CLSI)
395	and European Committee on Antimicrobial Susceptibility Testing (EUCAST) position
396	statements on polymyxin B and colistin clinical breakpoints. Clin Infect Dis 2020 Feb 13.
397	42 Bhagwat SS, Periasamy H, Takalkar SS <i>et al</i> . The novel β -lactam enhancer zidebactam
398	augments the in vivo pharmacodynamic activity of cefepime in a neutropenic mouse lung
399	Acinetobacter baumannii infection model. Antimicrob Agents Chemother 2019;63:e02146-18.
400	
401	Figure Legends
402	Fig 1. Phylogenetic tree of clinical isolates of colistin resistant and colistin susceptible A.
403	baumannii. The outer ring shows isolates belonging to different International Clones (ICs), the
404	middle rings depicts chromosomal mutations in both colistin resistant and susceptible isolates
405	and the stars in the inner ring represents the colistin susceptibility of the clinical isolates of A .
406	baumannii
407	Fig 2: Graphical representation of genetic arrangement of <i>pmrC</i> homologue, <i>eptA</i> with upstream
408	presence of ISAba1 among complete genomes of colistin resistant A. baumannii (A, B, C and D).
400	
409	The direction of arrow represents the orientation, <i>eptA</i> are shown as red-dotted arrow, ISAba1 as

411 isolate E has *eptA* without ISAba1


412

- 413 **Fig 3:** Graphical representation of genetic arrangement of *pmrC* homologue, *eptA* among
- 414 complete genomes of colistin susceptible A. baumannii. The genetic arrangement of: A. eptA
- 415 without insertion element, B. *eptA* with IS26 transposase, C. *eptA* with IS6 like element, D & E.
- 416 *eptA* with IS4 transposase, F. *eptA* with IS256 transposase and G. *eptA* with IS66 transposase.
- 417 The direction of arrow represents the orientation. *eptA* are shown by red-dotted arrow, IS26, IS6,
- 418 IS256 and IS66 transposases as light green arrow, *pmrA* as blue arrows and *pmrB* as green arrow



Figure

Figure

Figure

Colistin MIC (µg/ml)	Blood (n=314)	Respiratory (n=900)		
MIC range	0.12 - 64	0.12 - 64		
MIC ₅₀	0.5	1		
MIC ₉₀	2	2		

Table 1. MIC range, MIC₅₀ and MIC₉₀ of colistin for clinical isolates of A. baumannii

Isolate ID	Colistin susceptibility	Mutation profile					ISAba1-eptA	Insertional inactivation of <i>lpxACD</i> by ISAbal1	Complete lpxACD genes	Accession number
		lpxA	lpxC	lpxD	pmrA	pmrB				
AB01	Pan- susceptible	Y131H	C120R, N287D	Absent	Absent	Absent	Absent	Absent	Present	CP040080
AB02	Resistant	Y131H	C120R, N287D	E117K	Absent	A444V	Present	Absent	lpxA absent	CP035672
AB03	Resistant	Y131H	C120R, N287D, D159N	Q4K	Absent	Absent	Present	Absent	Present	CP050388
AB04	Resistant	Y131H	Absent	E117K	M12I	A138T, A444V	Present	Absent	lpxC absent	CP040040
AB05	Resistant	Y131H	C120R, N287D	E117K	M12I	A138T, A444V	Present	Absent	Present	CP040047
AB06	Resistant	Y131H	C120R, N287D, P148S	Absent	Absent	G315D	Absent	Absent	Present	CP040050
AB07	Susceptible	Y131H	C120R, N287D, P148S	E117K	Absent	A444V	Absent	Absent	lpxA absent	CP035930
AB08	Susceptible	Y131H	C120R, N287D	Q4K	Absent	Absent	Absent	Absent	Present	CP038500
AB09	Susceptible	Y131H	C120R, N287D	Absent	Absent	Absent	Absent	Absent	Present	CP038644
AB10	Susceptible	Y131H	C120R, N287D	Q4K	Absent	Absent	Absent	Absent	Present	CP040053
AB11	Susceptible	Y131H	C120R, N287D, D159N	Q4K	Absent	Absent	Absent	Absent	Present	CP040056
AB12	Susceptible	Y131H	C120R, N287D	E117K	Absent	A444V	Absent	Absent	Present	CP040084
AB13	Susceptible	Y131H	C120R, N287D, P148S	E117K	Absent	A444V	Absent	Absent	Present	CP040087
AB14	Susceptible	Y131H	C120R, N287D	Absent	Absent	Absent	Absent	Absent	Present	CP040259
AB05	Susceptible	Y131H	C120R, N287D	E117K	Absent	A444V	Absent	Absent	Present	CP050385
AB16	Susceptible	Y131H	C120R, N287D	V63I, G166S	Absent	Absent	Absent	ISAbal1 present without disruption	Present	CP050523

Table 2. Cumulative findings of various colistin resistance mechanisms among complete genomes of A. baumannii (n=28)

AB17	Susceptible	Y131H	C120R, N287D	Absent	Absent	Absent	Absent	ISAbal1 present without disruption	Present	CP050400
AB18	Susceptible	Y131H	C120R, N287D	E117K	Absent	A444V	Absent	Absent	Present	CP050390
AB19	Susceptible	Y131H	C120R, N287D, P148S	E117K	Absent	A444V	Absent	Absent	Present	CP050410
AB20	Susceptible	Y131H	Absent	E117K	M12I	A138T, A444V	Absent	Absent	Present	CP050412
AB21	Susceptible	Y131H	C120R, N287D	E117K	M12I	A138T, A444V	Absent	Absent	Present	CP050415
AB22	Susceptible	Y131H	C120R, N287D, P148S	Absent	Absent	G315D	Absent	Absent	Present	CP050425
AB23	Susceptible	Y131H	C120R, N287D	Q4K	Absent	Absent	Absent	Absent	Present	CP050432
AB24	Susceptible	Y131H	C120R, N287D	Absent	Absent	Absent	Absent	Absent	Present	CP051474
AB25	Susceptible	Y131H	C120R, N287D	Q4K	Absent	Absent	Absent	Absent	Present	CP050526
AB26	Susceptible	Y131H	C120R, N287D	E117K	Absent	A444V	Absent	Absent	Present	CP050401
AB27	Susceptible	Y131H	C120R, N287D, P148S	E117K	Absent	A444V	Absent	Absent	Present	CP050421
AB28	Susceptible	Y131H	C120R, N287D	V63I, G166S	Absent	Absent	Absent	Absent	Present	CP050403