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Abstract

A new analysis and classification method of vascular disease based on topological data
analysis (TDA) has been proposed in [1]. The proposed method utilizes the application
of persistent homology to hemodynamic variables. Particularly, 2D homology is
obtained from the velocity field of the flow projected onto the unit sphere, known as
so-called the S2 projection. It was shown that such homology is closely related to the
degree of vascular disease. The original method was developed based on the
computational fluid dynamic (CFD) solutions of the straight stenotic vessels.

In this paper, we develop a preprocessing method that enables the proposed TDA
method to be applied to general stenotic vessels of irregular geometry. The velocity field
is subject to a coordinate transformation correcting for orientation and curved geometry.
The preprocessed data is projected onto S2 and the corresponding homology is
calculated. We show that this preprocessing is necessary for the proposed TDA method
to be successfully applied to general types of stenotic vessels. Validation was performed
on a set of clinical data including reconstructed vascular geometry with corresponding
diagnostic indices.

Introduction 1

Cardiovascular disease is the leading cause of death worldwide. Accurate diagnosis and 2

prediction is crucial. The diagnosis methods today are based on the anatomical 3

approach by investigating the geometry of the diseased vessel using image analysis and 4

the functional approach by measuring the pressure drops across the stenosis. The gold 5

standard diagnostic method uses fractional flow reserve (FFR) values, which are 6

calculated by dividing a distal pressure measurement by a pressure reading proximal to 7

the patient’s stenosis [2, 3]. Newer approaches utilize computational fluid dynamics 8

(CFD). Patient-specific CFD is also a possible analysis tool [4] to estimate FFR based 9

on the simulated data. Recently, machine learning approaches were also proposed as an 10
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alternative diagnosis methodology [5, 6, 7]. For these methods, clinicians need a 11

canonical index that can represent the collective knowledge of the diseased vessel. 12

Especially for the machine learning approach, one needs to extract features of the 13

vascular disease for the given patient’s data. 14

In [1] a new method of providing a measure of vascular disease has been proposed 15

based on topological data analysis (TDA) [8]. In order to apply TDA to vascular flows 16

for the proposed method in [1], the velocity field was projected onto a unit sphere (S2), 17

referred as the S2 projection. It was shown that this simple projection method is highly 18

efficient and powerful for visualizing and quantifying the vascular disease, with which 19

the flow complexity is measured by observing the directional information of the velocity 20

fields. For example, the overall flow pattern is laminar for the healthy vessel and is 21

more turbulent when there is stenosis. On S2, the laminar flow is projected as a point 22

cloud centered around one pole on the sphere while the fully developed turbulent flow 23

provides a point cloud all over the sphere including two poles. Then the proposed TDA 24

method computes the persistent homology of the point cloud on S2. It was shown that 25

the two dimensional homology of S2 projection of vascular flows is closely related to the 26

degree of disease and can be used along with the value of FFR for diagnosis. The 27

original development of the proposed method was based on the 3D spectral 28

computational fluid dynamic (CFD) data of the regular straight stenotic vasculature. 29

In this paper, we verify that the proposed TDA method can be applied effectively to 30

curved vessels with more general irregularity in a similar way to the case of the straight 31

vessel. In order to apply TDA to general vessel type, we develop a projection method 32

which preprocesses the hemodynamic data such that it becomes suitable for TDA. The 33

proposed projection algorithm is based on the singular value decomposition (SVD) and 34

principle component analysis (PCA). After the preprocessing, we decompose each vessel 35

into small segments and TDA is performed to the velocity fields on S2 in all the 36

segments. We use the real patient MRI data provided by Asan Medical Center, Seoul, 37

Korea. The numerical results clearly show that the persistent homology after the 38

preprocessing projection is significantly correlated to the FFR values, hence can be used 39

a meaningful tool for the prediction of cardiovascular disease. 40

Methods and materials 41

Clinical data: Two invasive angiographic images were selected at the end of the diastolic 42

phase of the cardiac cycle, then combined to build three dimensional geometry using 43

CAAS Workstation 7.5 (Pie medical Imaging, Maastricht, NL). This was done in 44

compliance with the Declaration of Helsinki and approval from the IRB of Asan Medical 45

Center was granted by waiver of research consent. 46

CFD simulation The boundaries of the vasculature were assumed rigid and discretized 47

using Ansys ICEM CFD 15.0 (Ansys Inc, Canonsburg, PA, USA). The vascualr flow 48

was modeled as an incompressible fluid with density 1060 kg
m3 and Newtonian 0.0035 kg

m·s . 49

The inflow rate was set at 3ml
s and outflow boundaries on the opposite face of the vessel 50

set. The steady state solution was solved for using Ansys Fluent 15.0. Bifurcated 51

vascular geometry was not included. A first order finite element method was used with 52

a mixed mesh of tetrahedral and hexahedral elements. 53

TDA Software: For the TDA computations JavaPlex [9] was used through its MATLAB 54

interface. The Lazy witness complex was used, with landmark points selected by 55

max-min selector; 75 landmark points were used. Pre-processing was done in Python. 56

Notation: In this paper, we let matrices be denoted in capital letters, and indexed 57

using subscripts, so that Xi,j represents the ijth element of the matrix X. Also we let 58

the subscript ∗ in this context mean an entire row or column, so that X∗,j will denote 59

the jth column and vice-versa. For the given X, let XH denote the Hermitian 60
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(conjugate transpose) of X. 61

For the hemodynamic variables, let ρ = ρ(x, t) be the density, p = p(x, t) the 62

pressure, u = (u, v, w)T the velocity vector for the position vector x = (x0, x1, x2)T ∈ Ω 63

and time t ∈ R+. Here Ω is the closed domain in R3. 64

Preprocessing 65

The preprocessing happens in several steps. First the orientation of the vessel is 66

regularized by PCA on the spatial coordinate point cloud. Then the vessel is segmented 67

along the first principal axis, followed by an iterative process of segmentation and 68

fitting of a cubic spline. This results in a curvilinear coordinate system that reflects the 69

curvature of the vessel, which can be used to project the velocity field and segment the 70

vessel. 71

The process assumes that the geometry of the vessel is contiguous, non-bifurcating, 72

and has high aspect ratio. 73

Let xk be the coordinate vector, xk = (x0k, x
1
k, x

2
k) ∈ R3 where the solutions to the 74

incompressible Navier-Stokes equations are calculated and X ∈ Rn×3 be the set 75

composed of all xk, k = 1, 2, · · · , n, Xk,∗ = (x0k, x
1
k, x

2
k). xk constitute the point cloud 76

we use for the analysis. Here x0k, x
1
k, x

2
k denote the x-, y- and z- coordinate of each point 77

cloud. To each xk, the hemodynamic variables are assigned, e.g. the 3D velocity vector 78

vk = (v0k, v
1
k, v

2
k) ∈ R3 and the pressure pk ∈ R+. vk and pk are all functions of xk and t. 79

We define W ∈ Rn×3 as the velocity field, composed of vk such that Wk,∗ = (v0k, v
1
k, v

2
k). 80

In order to discover this principle axis, effectively regularizing orientation, we employ 81

PCA. The principle axis is the direction of highest aspect ratio, along which the blood 82

flows. Despite the local and global curvatures of the vessel, the principle direction 83

should unidirectional and this direction will be mapped into a straight line along the 84

principle axis. To perform PCA, we first compute the mean coordinate values for each 85

dimension of xk, µ0, µ1 and µ2 such that 86

µi =
1

n

n∑
k=1

xik, i = 0, 1, 2. (1)

Let T1 be the affine transformation that translates X by µ as below 87

T1 : X∗,i −→ (X∗,i − µi), i = 0, 1, 2. (2)

The principle axis can then be found using the SVD. 88

In the following SVD plays a crucial role. Each point in space can be thought of as a 89

sample of a three dimensional random variable in our setting. After centering the data, 90

the matrix T1(X) · T1(X)T is then the covariance matrix of the sampled random 91

variable, which projects a linear combination to a vector of covariances. The 92

eigenvectors of this operator are the linear combinations which give a multiple of 93

themselves as covariances. These eigenvectors can be interpreted as the directions in the 94

space where the sample of the random variable has the most variation. These 95

eigenvectors are the right singular vectors of T1(X). This gives us a basis that we can 96

use to represent the data, the one corresponding to the largest singular value having the 97

largest covariance, and therefore the accounting for the more variation in the data than 98

any other possible choice of basis vector. Since the points are a point cloud defining the 99

geometry of a three dimensional object, this gives us the direction where the object is 100

longest, effectively orienting the geometry in the way that is ideal linear approximation 101

for us to chop it up in the direction of the flow field. 102

Let the following be the SVD of T1(X) 103

U · Σ · V H , (3)

January 3, 2021 3/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2021. ; https://doi.org/10.1101/2021.01.07.425693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425693
http://creativecommons.org/licenses/by/4.0/


where U ∈ Rn×n and V ∈ R3×3 are unitary matrices and Σ ∈ Rn×3 is a rectangular
diagonal matrix with non-negative real values on its diagonal. Since T1(X) is real, U
and V are orthonormal, i.e. UH = U and V H = V . The principle axes/directions are
the columns of V . Let T2 be the linear transformation of X projected onto the right
principle vectors V

T2 : X −→ X · V.
Let X̃ be the following 104

X̃ = T2 ◦ T1(X). (4)

In practice, one can use a sparse sampling of X for the SVD as it also provides a 105

good approximation to V . This is the case particularly because we are dealing with only 106

3 dimensions while there is a large number of points, so the shape of the vessel is well 107

represented by a relatively sparse random samples. Figure 1 shows the schematic images 108

of T2 ◦ T1. The original vessel in finite element mesh domain (left figure) is mapped into 109

the new domain along the principle axes through T2 (right figure). The colored intervals 110

are the segments of the vessel (see below for the domain decomposition). 111

Fig 1. Orienting the vessel. Coordinate transformation T2 ◦ T1 of X. The original
coordinates of the vessel (left) are transformed into the new coordinate along the major
axis (right). The colors show the initial five segments made along the principal axis.

Now we want to partition the vessel into m parts along the principal axis. First we 112

find the maximum coordinate and minimum coordinate values in the first principle 113

direction, x− = min(X̃∗,0) and x+ = max(X̃∗,0). We split the vessel into m 114

non-overlapping intervals by diving the total interval L = [x−, x+] =
m⋃
j=1

X̃j . Let Xj be 115

the jth segment corresponding to X̃j in the original coordinate system. Similarly Wj is 116

the corresponding velocity data corresponding to Xj . 117

Center line projection 118

The process above results in a set of initial conditions to a nonlinear parametric fit to 119

the vascular geometry, which will be used to project the velocity field. The next step, is 120

to begin the nonlinear fit by calculating the centroids of the segments Xj : 121

x̄j =
1

nj

∑
x∈Xj

x, (5)

where nj is the number of elements in Xj . Now with m centroids, we can fit a 122

parametric curve through them. The fitting can be done exactly in a collocation sense, 123
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but we choose cubic splines with a small smoothing parameter to keep the derivative 124

continuous. We will denote this as P (t), where t ∈ [0, 1] is the parametric variable. We 125

first use this curve P to re-partition the vessel into a larger number of points M , this is 126

done by nearest neighbors to each of the M points on the curve. 127

The centroids are calculated again, and a new curve is fit to these centroids. This 128

can be done several times to get a better fit. The following Figure 2 shows the resulting 129

bins after several iterations, with a final value of M = 80:

Fig 2. Segmented vessel. Partitioning of the vessel into 80 segments along cubic
spline fit. Each color is a different segment.

130

Now that we have a good curve fit, we proceed to construct the projection operator 131

for each point in X. This is done by sampling both P and ∂P
∂t at a larger number of 132

points Np = 300, ti ∈ T ⊂ [0, 1]. This sampling is the one used to project the velocity 133

field. Then, like the above segmentation process, we solve the nearest neighbor problem 134

for each x ∈ X: 135

tx = arg min
t ∈ T

‖P (t)− x‖. (6)

tx allows us to address the curve P (t) for each point x. The normalized derivative is 136

then calculated: 137

v0(x) = (p̄x, p̄y, p̄z) =
1

‖∂P (tx)
∂t ‖

∂P (tx)

∂t
. (7)

Now, we find the null space of this vector and call them ν1(x) and ν2(x). Then we 138

stack them into a projection matrix 139

Vp(x) = (ν0(x),ν1(x),ν2(x)). (8)

This is used to project the velocity vector coresponding to point x. This is done for all 140

v ∈W . 141

Algorithm 142

In this section, we summarize the preprocessing algorithm and provide the pseudo codes. 143

The algorithm is broken into several functions and several stages for clarity. The first 144

stage finds the longest axis along the geometry and partitions the data along this axis. 145

This is a linear approximation to seed the process. The centroids of each partition are 146

used as points to fit a parametric cubic spline. This cubic spline is then used to 147
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partition the geometry into more segments, again calculating the centroids, and fitting 148

another spline. 149

After several rounds of this, the cubic spline fit is used as the centerline, 150

approximating the first dimensional geometry of the vessel. This is used in a coordinate 151

transform on the velocity field. The result is a velocity field represented in terms of its 152

flow with respect to the geometry of the vessel. Figure 3 shows the velocity fields before 153

(left) and after (right) the curvilinear projection. Notice how the sign of the velocity 154

flips due to the curvature of the vessel in the left image (red area), while this is absent 155

in the right image. 156

157

Fig 3. Transformed velocity field. Left: v0(x− direction) before projection, Right:
v0 after curvilinear projection. 158

159

Fig 4. Parametric cubic spline fit. The least-squares fit parametric spline curve
plotted to the vessel, also referred to as the centerline. 160

Algorithm 1: Initial linear partitioning. This serves serves as the initial condi-
tions for the cubic spline fit..

Data: Spatial coordinates stacked row-wise in matrix X, velocity vectors
stacked row-wise as matrix W , m (∼ 4− 15) Chosen to maintain high
aspect ratio and contiguity of partitions

for i ∈ 0, 1, 2 (each dimension in space) do
� T1: X∗,i −→ (X∗,i −mean(X∗,i)) (Center the domain about 0)

end

� Decompose T1(X) with SVD: T1(X) = U · Σ · V H

� Project onto the right singular vectors T2 : X̃ := T1(X) · V
� Partition along the principal axis into m equal length intervals; sorting X by
X̃∗,0 and binning into partitions, {Xj}mj=1

January 3, 2021 6/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2021. ; https://doi.org/10.1101/2021.01.07.425693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425693
http://creativecommons.org/licenses/by/4.0/


Algorithm 2: Segmentation. Partitioning along nonlinear axis.
.

Data: Spatial coordinates stacked row-wise in matrix X, M(about 10 – 100),
partitions {Xj}mj=1 from Algorithm 1

� Calculate the centroids for each partition x̄k = 1
nk

∑
x∈Xk

x

� Fit a parametric curve P (t) = (px(t), py(t), pz(t)) through the set of centroids
{x̄j}mj=1. Cubic splines is a good choice.

� Sample P (t) on a large number of points T = {ti}Mi=1

for each x ∈ X do
� Find the nearest point on the sample of P : P (t)|mint∈T ‖P (t)− x‖

end
� Partition X in this manner, so that each point in the partition belongs to a
point P (ti). Call each partition {Xi}Mi=1.

161

Algorithm 3: Projection of velocity field. Transform of velocity field onto
curvilinear co-ordinates..

input : Spatial coordinates stacked row-wise in matrix X, Velocity vectors
stacked row-wise as matrix W , Np(larger, 300+). Partitions from
Algorithm 2 {Xk}Mk=1

output : W̃
� Fit a parametric curve P (t) = (px(t), py(t), pz(t)) through the set of centroids
{xk}Mk=1. Cubic splines is a good choice.

� Sample ∂P
∂t and P (t) on a large number of points T = {ti}

Np

i=1.
for each t ∈ T do

� Normalize the derivative ν0(t) = 1

‖ ∂P (t
∂t ‖

∂P (t)
∂t .

� Find two orthonormal complements to ν0(t) and stack into a matrix
V (t) = (ν0(t),ν1(t),ν2(t)) (column-wise).

end
for each row x in X do

� Find the nearest neighbor on P (t): tx = arg mint∈T ‖P (t)− x‖ and its
associated projection operator V (tx).
� Project v, the element of W , corresponding to x onto basis V :
ṽ = v ∗ V (tx). Append to W̃ .

end
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Algorithm 4: Main loop. Main loop connecting all previous components.
.

Data: Spatial coordinates stacked row-wise in matrix X, velocity vectors
stacked row-wise as matrix W , m = 5(or similar, depending on aspect
ratio), Np = 300 (or similar)

� Do the initial linear guess on m points.
for M ∈ 10, 20, 30, 80 do

� Do the curve partitioning Algorithm 2 with M points.
end
� Do the curve projecting routine with Np points Algorithm 3 to transform W to

W̃ .

Topological data analysis 162

Once all the necessary preprocessing and transformations are carried out, we apply 163

TDA to the transformed velocity field. As mentioned in Introduction, the main purpose 164

of this paper is to show the applicability of the TDA analysis method proposed in [1] to 165

clinical data of general type of vasculature and to show that the proposed method is 166

efficient in describing stenotic disease. First we must briefly explain the key element of 167

TDA that we apply to the flow field. For more details, we refer readers to [1, 10]. 168

Let X be the topological space. The topological space X that we consider in this 169

paper is the space constructed by the velocity field. Note that, however, it is possible to 170

construct X from more hemodynamic variables than the velocity field such as the 171

pressure variable. Although more general space is interesting, such cases are not 172

considered in this paper. In order to construct a meaningful topological structure given 173

the point cloud, we first explain singular homology. Homology is a topological invariant 174

that describes the holes of various dimensions of X . 175

The assumption is that there exists X and the point cloud is a set of sampling out of 176

X . Singular homology is on X rather than the point cloud. An n-simplex is a convex 177

set composed of n+ 1 vertices (e.g. points in velocity field in our case). For example, 178

0-simplex is a point, 1-simplex is an edge, 2-simplex is a filled triangle and 3-simplex is 179

a filled tetrahedron. The n-simplex is the n-dimensional version of the triangle. The 180

standard n-simplex is the convex hull of the standard basis in Rn+1. Singular n-simplex 181

in X is a continuous map σ from the standard n-simplex to X . Let Cn(X ) be the free 182

abelian group whose basis is the set of singular n-simplices in X . Then we can define the 183

boundary map, δn from Cn(X ) to Cn−1(X ) where Cn−1(X ) is constructed from Cn(X ) 184

by removing the vertices of Cn(X ) one at a time. Then the n-dimensional homology 185

group Hn is defined by Hn(X ) = Ker δn/Im δn+1 where Ker and Im are the kernel 186

and image groups, respectively. Roughly we interpret the rank of Hn as the number of 187

holes residing in the n-dimension of X . Thus if we can find Hn for n = 0, 1, 2, · · · , we 188

can obtain a rough idea of the structure of X in terms of holes in it. However, it is 189

difficult to find Hn of X because X is arbitrary in general. Thus, instead of dealing with 190

the homology of X , we use rather the homology of the roughly imitated space of X . 191

To imitate the original space X algorithmically, we consider a simplicial complex K 192

which is a collection of simplices. The collection satisfies the conditions that K contains 193

all lower-dimensional simplices of σ if σ is a simplex of K and that the intersection of 194

two simplices in K is a simplex in K if the intersection exists. Then in the similar way, 195

the homology group of K, Hn(K) is defined as Hn(K) = Ker δn/Im δn+1 where δn is 196

defined similarly as above. K is a collection of simplicies, so given the point cloud, we 197

basically connect simplices hierarchically. The number of generators of Hn(K) is known 198

as the Betti number, βn. Roughly speaking, β0 is the number of the connected 199
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components of the resulting K, β1 is the number of the one-dimensional holes of K, e.g. 200

the loop or cycle structures of K, β2 is the number of the two-dimensional holes of K, 201

and so on. 202

In this work, we use the Vietoris-Rips simplicial complex, for which we consider the 203

metric space (X , d) where d is a usual Euclidean metric in this paper. Then the 204

Vietoris-Rips complex, V (τ) is built on the point cloud out of X having a k-simplex for 205

every collection of k + 1 vertices within in a distance τ of each other in the Euclidean 206

metric. Here, τ is known as the filtration parameter. Thus the Vietoris-Rips complex is 207

constructed with the scale of τ . Once constructed, we can compute Hn of V (τ). 208

However, it is difficult to know which value of τ can generate the most similar simplex 209

to X . Thus, instead of finding Hn for a fixed value of τ , we construct V (τ) for various 210

values of τ in ascending order, say, V (τi), i = 0, 1, 2, · · · and τi < τj for i < j. Then we 211

have various Hn(V (τi)) for various τi. Clearly given N number of vertices, if τ = 0, 212

there are N vertices isolated and not-connected and obviously β0 = N , β1 = 0, β2 = 0, 213

and so on. 214

Persistence Barcode: The variation of homology with respect to τ yields the concept 215

of persistent homology. The collection of such homology versus τ is known as the 216

barcode. The barcode provides the information of the Betti number and the information 217

of the persistence, the length of the generating barcode, across τ . The persistence tells 218

how long the given geometric hole structure maintains with τ . The persistence, the 219

interval of each barcode, plays an important role in our method. Particularly, the 220

persistence of the 1D and 2D barcodes are closely related to the degree of flow 221

complexity when the velocity field is mapped onto the unit sphere. The zero-dimensional 222

barcode of H0 is the graph of β0 versus τ . For the given N vertices, β0 = N for τ = 0. 223

Thus all the 0-dimensional barcodes of H0 starts from τ = 0 while those barcodes of 224

higher dimension than 0 starts from τ where the corresponding hole forms. 225

The following diagram shows the barcodes for H0 (left) and H1 (right), respectively, 226

for the point cloud which is composed of the four vertices of the unit square. From the 227

left barcode we know that there are four vertices given (4 bars in y-axis) when τ = 0. 228

We also know that when τ = 1 all the four vertices are connected and there remains 229

only one connected component afterwards, which is visualized as the single barcode 230

labeled 4 in y-axis. As all the four points are connected while no vertices are connected 231

diagonally because τ = 1 is smaller than the diagonal distance of two vertices. Thus we 232

know that one hole forms at τ = 1 and it lasts until τ =
√

2 where two vertices are 233

connected diagonally and two triangles form. Note that once triangle is formed, inside is 234

filled as a 2-simplex. Then the hole also disappears, which is the end point of the 235

one-dimensional barcode in the right figure. 236

τ = 1
H0 Barcode

1

2

3

4

τ =1
√

2

1

H1 Barcode
237

Persistent homology of vascular flows: TDA of vascular disease is to construct a 238

simplicial complex based on the velocity fields. For the given point cloud (velocity fields 239

in our case), a simplicial complex is created by gluing a finite number of simplices 240

together, for which a gluing condition is needed. For the condition, the topology is 241
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described with a metric with the parameter τ explained above. The distance between 242

two simplices is determined using the Euclidean metric d. For example, two 0-simplices 243

must be connected forming an edge if their Euclidean distance is less than or equal to 244

the value of τ . Here we note that it is hard to use the raw data of vascular flows for 245

TDA. In [1] it was shown that the raw data needs to be transformed into a point cloud 246

that is suitable for a meaningful TDA. We use the S2 projection proposed in [1] also 247

described in the following, but we also note that this is not a unique transform. There 248

could be a better transform for the construction of the simplicial complex. 249

Figures 5 and 6 show the sample S2 projection of the curved vessel obtained from 250

the patients’ data. The color represents the pressure value, which is absent from our 251

analysis but helpful in this image. As shown in the figures, the S2 projection shows how 252

the velocity fields are distributed. It is interesting to observe the existence of the 253

circular pattern on S2. We hypothesize that those circular patterns are related to the 254

prediction of the disease development, which we do not aim to investigate but will be 255

considered in our future work. In TDA such circular patterns are summarized in 1D 256

homology H1, while existence of voids due to multidirectional flow are described by H2. 257

258

Fig 5. Sphereical projection Sample spherical projection with pressure as color
variable(middle, right), and pseudocolor plot of pressure (left) on the actual morphology
of the stenotic vessel. 259

260

Fig 6. Sphereical projection Sample spherical projection with pressure as color
variable(middle, right), and pseudocolor plot of pressure (left) on the actual morphology
of the stenotic vessel. 261

Application to the preprocessed vessel 262

Calculating the persistent homology on the entire vessel is prohibitively expensive, so 263

we perform out TDA on small segments of each vessel, as depicted in Figure 2. Even 264

with the centerline projection, there is a large amount of noise in the boundary regions 265

of the vessel. Due to the spherical projection, this noise appears as any other velocity 266

vector to the TDA steps. Operating on small segments of the vessel helps alleviate 267

inaccuracies caused by this noise. 268

According to [1], the 2D persistence homology of the velocity fields projected on S2
269

can be used to determine whether there is a stenosis. Therefore, by decomposing the 270
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whole vessel into smaller segments and calculating the 2D persistences homology within 271

each one, we can get the identity of the segment where stenosis occurs. With the 272

centerline projection methodology described previously, the segmentation of vessels is 273

obtained by chopping up the 3D space of vessels into M small segments along with the 274

parametric curve fit. One can see that the size of each segment is not necessarily the 275

same since it depends on the slope of the centerline in the segment region. 276

We work with the maximum persistence in both H1 and H2. This is the length of 277

the longest interval in the persistence diagram, which can be visually understood as the 278

longest line in the bar code. The maximum H2 persistence is used to determine the 279

segment closest to the stenosis. 280

Results 281

Here we validate the proposed method using clinical data, which is the primary result of 282

this paper. We show a statistically significant correlation between the FFR and the 283

topological persistence calculated in the manner described in the previous sections. To 284

be specific, after segmentation of vessels with preprocessing, we consider the maximum 285

H1 and H2 persistences in each segment of vessels, which are the maximal length of the 286

generated 1D and 2D barcodes of the given point cloud, i.e. the velocity field projected 287

on S2 in this work. We find that there is highly weak correlation in the case where the 288

preprocessing steps are omitted. This is due to the confounding factor introduced by 289

the arbitrary orientation of the vessel in the spatial domain, which results in a 290

misrepresentation of the velocity field, where the direction of the flow changes with 291

respect to the coordinate system, but not with respect to the vessel. Preprocessing with 292

centerline projection alleviates this unwanted factor, and provides an appropriate 293

segmentation of the vessel along its natural curvature. 294

The results are given in Table 1. The column labeled Segment number is the number 295

of the segment in the vessel where the largest maximum H2 persistence occurs, which is 296

presumably the location of the stenosis. The column labeled FFR is the FFR value, 297

which is estimated by dividing a distal pressure by proximal pressure, both of which are 298

measured after a probable lesion is located using X-ray angiography. And the column 299

labeled H1 Persistence is the maximum H1 persistence in the segment where the largest 300

maximum H2 persistence occurs. And the column labeled H2 Persistence is the value of 301

the largest maximum H2 persistence, i.e., the maximum H2 persistence in the 302

corresponding Segment. The first column is the vessel id. 303
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Vessel Id. FFR H1 Persistence H2 Persistence Segment number

CBN0759 0.62 1.01179 0.22 54
CBN2122 0.66 0.41905 0.3 21
CBN0012 0.69 0.82216 0.16 17
CBN3355 0.69 0.53659 0.18 18
CBN0006 0.7 1.05928 0.14 21
CBN1290 0.7 0.52892 0.12 21
CBN3222 0.7 0.71805 0.18 52
CBN0047 0.72 0.49718 0.18 34
CBN3366 0.72 0.67079 0.28 22
CBN0045 0.73 0.46359 0.42 45
CBN0018 0.74 0.75791 0.3 38
CBN1255 0.74 0.55535 0.22 36
CBN1353 0.75 0.64994 0.22 8
CBN1711 0.76 0.79459 0.16 32
CBN3265 0.77 0.4601 0.14 12
CBN1960 0.78 0.77871 0.32 7
CBN1492 0.78 0.65907 0.12 61
CBN3284 0.78 0.32153 0.56 33
CBN2034 0.79 0.90161 0.18 49
CBN0754 0.79 0.64229 0.14 33
CBN1368 0.8 0.87848 0.1 37
CBN1203 0.8 0.33451 0.16 71
CBN0874 0.8 0.39672 0.52 27
CBN1741 0.8 0.79987 0.2 50
CBN0569 0.8 0.60789 0.36 39
CBN1088 0.81 0.60526 0.14 18
CBN2043 0.81 0.72963 0.24 53
CBN3254 0.81 1.1454 0.12 36
CBN0022 0.81 0.2421 0.5 30
CBN1185 0.81 0.45952 0.2 70
CBN1345 0.82 0.49201 0.38 32
CBN1510 0.82 0.34708 0.44 3
CBN3400 0.82 0.35935 0.14 42
CBN1103 0.83 0.60585 0.12 39
CBN1484 0.83 1.01112 0.1 50
CBN0252 0.83 0.38384 0.38 51
CBN1084 0.84 1.24371 0.12 41
CBN1089 0.84 0.38813 0.26 48
CBN1868 0.85 0.35258 0.38 44
CBN0003 0.85 0.46665 0.12 49
CBN0540 0.85 0.719 0.24 41
CBN0014 0.85 0.30592 0.44 41
CBN1419 0.86 0.34468 0.26 28
CBN0918 0.86 0.41882 0.2 65
CBN1731 0.86 0.59057 0.16 79
CBN0460 0.86 0.43247 0.44 45
CBN1245 0.87 0.34222 0.52 39
CBN0011 0.87 0.37225 0.2 41
CBN0046 0.87 0.39283 0.48 59
CBN0048 0.87 0.78032 0.16 12
CBN0520 0.87 0.36278 0.18 42
CBN1404 0.88 0.61015 0.22 62
CBN0559 0.88 0.8052 0.16 44
CBN1379 0.89 0.39916 0.42 49
CBN1594 0.89 0.26515 0.54 5
CBN3446 0.9 0.71575 0.18 46
CBN0582 0.91 0.05394 0.0 64
CBN1602 0.91 0.55928 0.18 39
CBN0443 0.92 0.3045 0.56 34
CBN1096 0.92 0.07802 0.0 24
CBN0013 0.93 0.01654 0.0 5
CBN0051 0.94 0.40696 0.38 21
CBN0038 0.95 0.33592 0.06 55
CBN1258 0.96 0.91225 0.18 64

Table 1. Results: For each vessel, the FFR value, maximum H1 and maximum H2

persistences in the segment where the largest maximum H2 persistence occurs.

We observe that for each vessel, the maximum H2 persistences are close to zero in 304

most segments. When a segment is not near the stenosis, the variation of the flow 305

directions in this segment after preprocessing is reduced, i.e., the point cloud on S2
306

concentrates near one point, hence no significant two-dimensional topological structure 307

in it. Figures 7 and 8 show the maximum H1 and H2 persistences in each segment for a 308

few vessels as an example. The y-axis of all top images is the maximum H1 persistence, 309

the y-axis of all images on the bottom is the maximum H2 persistence, and the x-axis of 310

all images is the segment number. We can see that the vessels with ID CBN0013, 311

CBN0582 and CBN1096 in Figure 7, which have FFR values 0.93, 0.91 and 0.92, 312

respectively, implying a healthy state, have close-to-zero maximum H2 persistences in 313

all segments. However, for the vessels with ID CBN0018, CBN0045 and CBN2122, 314

which have FFR values 0.74, 0.73 and 0.66 in Figure 8, there are segments in which the 315

maximum H2 persistences are larger than 0.3. 316
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Fig 7. Maximum H1 (Top) and H2 (Bottom) persistences in each segment for vessels
CBN0013, CBN0582, CBN1096 318
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Fig 8. Maximum H1 (Top) and H2 (Bottom) persistences in each segment for vessels
CBN0018, CBN0045, CBN2122 320

Figures 9 and 10 show the H0 (top figure), H1 (middle) and H2 (bottom) barcodes 321

for the corresponding vessels in Figures 7 and 8, respectively. The barcodes are 322

calculated using the point cloud collected from the whole vessel domains after the 323

preprocessing. As shown in the figure, the H2 persistences for the vessels of CBN0013, 324

CBN0582 and CBN1096 are non-existent as shown in Figure 7 while the H2 persistences 325

for the vessels of CBN0018, CBN0045 and CBN2122 are significant as shown in Figure 326

8. We also observe that the H1 persistences of the vessels of CBN0013, CBN0582 and 327

CBN1096 are smaller than those of the vessels of CBN0018, CBN0045 and CBN2122. 328

Note that H1 persistences in Figure 9 are existent while those in Figure 7 are not. This 329

is due the fact that the H1 in Figure 7 is only from a segment of the given vessel but 330

the H1 in Figure 9 is calculated using the point cloud from the whole vessel. 331
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Fig 9. Barcodes for CBN0013, CBN0582, CBN1096 for H0 (top), H1 (middle) and H2

(bottom). 333
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Fig 10. Barcodes for CBN0018, CBN0045, CBN2122 for H0 (top), H1 (middle) and
H2 (bottom). 335

In Figure 11 , we show the correlation between the FFR values and the maximum 336

H1 persistences from Table 1. In both images, the x-axis is the FFR value and the 337

y-axis is the maximum H1 persistence in the segment where the largest maximum H2 338

persistence occurs for each vessel. The straight lines are fitting lines after applying 339

linear regression with least squares method to the corresponding points in each image. 340

We can see that the p-values for the linear fit are 0.138 and 0.00248 for the 341

non-preprocessed and preprocessed data, respectively. This demonstrates that we do not 342

have a statistically significant correlation between FFR and our potential diagnostic 343

index without the preprocessing scheme, but have a potentially useful diagnostic index 344

with TDA if the proper preprocessing is applied. 345
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346

Fig 11. Correlation with FFR. Correlation between maximum H1 persistence in
the segment where the largest maximum H2 persistence occurs and the FFR values for
both before (Left) and after (Right) preprocessing with the centerline projection scheme. 347

Conclusion 348

Vascular disease is the leading cause of death worldwide. Accurate measurement of the 349

degree of vascular disease is crucial for diagnosis and treatment. In [1] a new method 350

based on TDA has been proposed, employing topological features as a potential 351

diagnostic index. The proposed method was tested with the CFD solutions calculated in 352

the straight stenotic vessels without curvatures in [1]. In this paper, we developed a 353

preprocessing method that enables the TDA method to be applied to the curved 354

stenotic vessel. We applied the proposed method to clinically sourced data, showing a 355

statistically significant correlation to the gold standard diagnostic index, the FFR. It 356

was also shown that the preprocessing method was necessary to achieve a statistically 357

significant correlation. This validates the proposed method as a potentially powerful 358

diagnostic tool. 359

In future work we plan to refine the preprocessing method and make adaptations for 360

application to more general vascular geometries such as bifurcated vessels, multiple 361

stenoses. There is also potential for improvement of computational efficiency, parameter 362

selection and other methodologies in the preprocessing scheme. 363

S1 Appendix. 364

S1 Figures: Maximum H1 and H2 versus segment number In this appendix, 365

we provide the maximum H1 and H2 persistences calculated in each vessel segment used 366

in preprocessing steps versus the segment number for those vessels in Table 1. These 367

figures show not only the flow complexity but also the possible locations of stenosis. 368
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Fig 12. Maximum persistences for CBN0003, CBN0006, CBN0011 370

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.5

1.0

1.5

2.0

M
ax

 p
er

sis
te

nc
e 

of
 H

1

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.2

0.4

0.6

M
ax

 p
er

sis
te

nc
e 

of
 H

2

CBN0012

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.5

1.0

1.5

2.0

M
ax

 p
er

sis
te

nc
e 

of
 H

1

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.2

0.4

0.6

M
ax

 p
er

sis
te

nc
e 

of
 H

2

CBN0013

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.5

1.0

1.5

2.0

M
ax

 p
er

sis
te

nc
e 

of
 H

1

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.2

0.4

0.6

M
ax

 p
er

sis
te

nc
e 

of
 H

2

CBN0014

371

Fig 13. Maximum persistences for CBN0012, CBN0013, CBN0014 372
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Fig 14. Maximum persistences for CBN0018, CBN0022, CBN0038 374
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Fig 15. Maximum persistences for CBN0045, CBN0046, CBN0047 376
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Fig 16. Maximum persistences for CBN0048, CBN0051, CBN0252 378
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Fig 17. Maximum persistences for CBN0443, CBN0460, CBN0520 380
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Fig 18. Maximum persistences for CBN0540, CBN0559, CBN0569 382
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Fig 19. Maximum persistences for CBN0582, CBN0754, CBN0759 384
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Fig 20. Maximum persistences for CBN0874, CBN0918, CBN1084 386
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Fig 21. Maximum persistences for CBN1088, CBN1089, CBN1096 388

January 3, 2021 16/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2021. ; https://doi.org/10.1101/2021.01.07.425693doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425693
http://creativecommons.org/licenses/by/4.0/


0 10 20 30 40 50 60 70 80
Chunk

0.0

0.5

1.0

1.5

2.0

M
ax

 p
er

sis
te

nc
e 

of
 H

1

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.2

0.4

0.6

M
ax

 p
er

sis
te

nc
e 

of
 H

2

CBN1103

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.5

1.0

1.5

2.0

M
ax

 p
er

sis
te

nc
e 

of
 H

1

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.2

0.4

0.6

M
ax

 p
er

sis
te

nc
e 

of
 H

2

CBN1185

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.5

1.0

1.5

2.0

M
ax

 p
er

sis
te

nc
e 

of
 H

1

0 10 20 30 40 50 60 70 80
Chunk

0.0

0.2

0.4

0.6

M
ax

 p
er

sis
te

nc
e 

of
 H

2

CBN1203

389

Fig 22. Maximum persistences for CBN1103, CBN1185, CBN1203 390
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Fig 23. Maximum persistences for CBN1245, CBN1255, CBN1258 392
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Fig 24. Maximum persistences for CBN1290, CBN1345, CBN1353 394
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Fig 25. Maximum persistences for CBN1368, CBN1379, CBN1404 396
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Fig 26. Maximum persistences for CBN1419, CBN1484, CBN1492 398
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Fig 27. Maximum persistences for CBN1510, CBN1594, CBN1602 400
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Fig 28. Maximum persistences for CBN1711, CBN1731, CBN1741 402
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Fig 29. Maximum persistences for CBN1868, CBN1960, CBN2034 404
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Fig 30. Maximum persistences for CBN2043, CBN2122, CBN3222 406
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Fig 31. Maximum persistences for CBN3254, CBN3265, CBN3284 408
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Fig 32. Maximum persistences for CBN3355, CBN3366, CBN3400 410
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Fig 33. Maximum persistences for CBN3446 412
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