- 1 Determining the pathogenicity of variants of uncertain significance and identification of a
- 2 founder variant in the epilepsy-associated gene, *SZT2*.
- 3
- 4 Jeffrey D Calhoun,¹ Miriam C Aziz,¹ Hannah C Happ,¹ Jonathan Gunti,¹ Colleen Gleason,¹ Najma
- 5 Mohamed,¹ Kristy Zeng,¹ Meredith Hiller,¹ Emily Bryant,² Divakar Mithal,² Irena Bellinski,¹ Lisa
- 6 Kinsley,¹ Mona Grimmel,¹² Eva MC Schwaibold,⁴ Constance Smith-Hicks,^{6,13} Anna Chassevent,⁶
- 7 Marcello Scala,^{7,15} Andrea Accogli,¹⁵ Annalaura Torella,¹⁶ Pasquale Striano,^{7,15} Valeria Capra,^{7,15}
- 8 Lynne M. Bird,⁸ Issam Ben-Sahra,⁹ Nina Ekhilevich,⁵ Tova Hershkovitz,^{5,14} Karin Weiss,^{5,14} John
- 9 Millichap,^{1,2} Elizabeth E Gerard,¹ Gemma L Carvill^{1,10,11}
- 10
- ¹Ken and Ruth Davee Department of Neurology, Northwestern Feinberg School of Medicine,
- 12 Chicago, Illinois
- 13 ² Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children's Hospital of
- 14 Chicago
- 15 ⁴Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- 16 ⁵Genetics Institute, Rambam Medical Center
- ⁶Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland
- 18 ⁷Giannina Gaslini Children's Hospital
- ⁸University of California San Diego, Department of Pediatrics; Rady Children's Hospital San
- 20 Diego, Division of Dysmorphology/Genetics
- ⁹Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of
- 22 Medicine, Chicago, Illinois
- ¹⁰Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, Illinois
- ¹¹Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, Illinois
- ¹²Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen,
- 26 Germany
- ¹³Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- ¹⁴Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa,
 Israel
- ¹⁵Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child
- 31 Health, University of Genova, Genova, Italy
- 32 ¹⁶Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- 33
- 34 Correspondence
- 35
- 36 Gemma L. Carvill, <u>gemma.carvill@northwestern.edu</u>
- 37
- 38 Abstract: 192 words
- 39 Main text: 3620 words
- 40 Display items: 3 figures and 2 table
- 41 Supplementary data consists of 7 figures, 5 tables and supplementary methods
- 42
- 43

44 Abstract

45 46 Biallelic pathogenic variants in SZT2 result in a neurodevelopmental disorder with 47 shared features, including early-onset epilepsy, developmental delay, macrocephaly, and 48 corpus callosum abnormalities. SZT2 is as a critical scaffolding protein in the amino acid sensing 49 arm of the mTOR signaling pathway. Due to its large size (3432 amino acids), lack of crystal 50 structure, and absence of functional domains, it is difficult to determine the pathogenicity of 51 SZT2 missense and in-frame deletions. We report a cohort of twelve individuals with biallelic 52 SZT2 variants and phenotypes consistent with SZT2-related neurodevelopmental disorder. The 53 majority of this cohort contained one or more SZT2 variants of uncertain significance (VUS). We 54 developed a novel individualized platform to functionally characterize SZT2 VUSs. We identified a recurrent in-frame deletion (SZT2 p.Val1984del) which was determined to be a loss-of-55 56 function variant and therefore likely pathogenic. Haplotype analysis determined this single in-57 frame deletion is a founder variant in those of Ashkenazi Jewish ancestry. Overall, we present a 58 FACS-based rapid assay to distinguish pathogenic variants from VUSs in SZT2, using an approach that is widely applicable to other mTORopathies including the most common causes of the focal 59 60 genetic epilepsies, DEPDC5, TSC1/2, MTOR and NPRL2/3.

62 Introduction

64	<i>SZT2 (<u>S</u>ei<u>z</u>ure <u>T</u>hreshold 2)</i> encodes a large (>350 kDa) protein with ubiquitous tissue
65	expression and no homology to known functional domains ¹ . The first association of <i>SZT2</i> with
66	seizure susceptibility emerged from a mutagenesis screen in mice 1 . In this study, homozygous
67	Szt2 knockout mutant mice seized at a lower electrical input relative to wildtype littermates in
68	an acute electroconvulsive model ¹ . Years later, biallelic <i>SZT2</i> pathogenic variants were
69	identified in a small cohort of patients with infantile-onset epilepsy and dysgenesis of the
70	corpus callosum ² . Since then, several small case studies report biallelic <i>SZT2</i> variants in
71	association with a neurodevelopmental disorder (NDD) characterized primarily by early-onset
72	focal epilepsy, developmental delays, macrocephaly and corpus callosum abnormalities ²⁻¹⁶ .
73	For years the function of <i>SZT2</i> remained elusive until 2017 when <i>SZT2</i> was identified as
74	a part of the KICSTOR complex, a required component of the amino acid sensing arm of the
75	mTORC1 pathway ^{17; 18} . The KICSTOR complex, including SZT2, localizes to the lysosomes only in
76	the presence of amino acids in the extracellular environment ¹⁷ . In genome-edited cells lacking
77	endogenous expression of SZT2, mTORC1 activity no longer depended on amino acids, i.e.
78	mTORC1 was constitutively active ¹⁷ . Moreover, cells lacking <i>SZT2</i> exhibited amino acid-
79	insensitive localization of mTOR to the lysosomal surface, suggesting that SZT2 is a key
80	,
80	scaffolding protein ¹⁷ . Based on these two pivotal studies, we hypothesize that biallelic SZT2
81	
	scaffolding protein ¹⁷ . Based on these two pivotal studies, we hypothesize that biallelic <i>SZT2</i>

84	and in-frame deletions that are more difficult to classify, driven primarily by our inability to
85	determine the effect of single amino acid alterations on SZT2 function. We focus primarily on
86	these variants of uncertain significance (VUS) and devise a functional assay to identify LoF SZT2
87	alleles. Moreover, we use this approach to demonstrate that a recurrent single amino acid
88	deletion is both likely pathogenic and a founder variant in those of Jewish ancestry.
89	
90	Subjects and Methods
91	Study participants
92	Individuals with candidate causative SZT2 variants were identified by clinical exome
93	sequencing (n=11) or gene panel (n=1). The individuals at Northwestern Memorial Hospital and
94	Lurie Children's Hospital were consented to research under an IRB approved study. We
95	obtained de-identified genetic and clinical data from external colleagues for cases identified
96	through Genematcher ¹⁹ . These individuals were consented for research under IRB approved
97	studies at their local institutions. SZT2 variant classification was performed according to the
98	American College of Medical Genetics (ACMG) criteria ²⁰ .
99	
100	Haplotype analysis in individuals with the recurrent p.Val1984del variant
101	Exome sequencing data from probands and parents with the SZT2 p.Val1984del variant
102	were obtained. Variant call files (vcfs) were generated with standard GATK best practices.
103	Briefly, sequencing reads were aligned to the human genome (hg38) with BWA-MEM followed
104	by calling and genotyping alleles with GATK HaplotypeCaller and GATK GenotypeGVCFs. Then,
105	GATK SelectVariants was used to subset a vcf file containing variants within 20 Mb of SZT2

106	p.Val1984del in the individual homozygous due to uniparental disomy (UPD) of all of
107	chromosome 1 (proband 3). SNVs and indels in this region were filtered by minor allele
108	frequencies in gnomAD (see Web Resources) to generate a list of candidate variants for
109	haplotype analysis. Segregation of alleles in independent trios was used to define haplotype
110	boundaries.
111	
112	Generation of gene-edited cell lines
113	pSpCas9(BB)-2A-Puro (PX459) V2.0 was a gift from Feng Zhang (Addgene plasmid #
114	62988; http://n2t.net/addgene:62988 ; RRID:Addgene_62988). gRNAs targeting SZT2 exons
115	(Table S1) were cloned into PX459 as previously described ²¹ . HEK 293T (ATCC [®] CRL-3216™)
116	cells were seeded into 24-well plates and transfected with pX459 plasmid with cloned gRNAs
117	(500-1000 ng) and ssODN repair oligo (1-2 uL of 10 μM stock) with lipofectamine 3000
118	(Invitrogen# L3000001) according to manufacturer's instructions. Cells were treated with
119	puromycin (2.5 μ g/mL) for 48 hours beginning the day after transfection. Cells were replica
120	plated for cryopreservation and genomic DNA isolation with PureLink™ Genomic DNA Mini Kit
121	(Invitrogen K182002) according to manufacturer's instructions. gRNA targeting of SZT2 exon
122	was confirmed by T7 endonuclease I (NEB# M0302) according to manufacturer's instructions.
123	Homology-directed repair was confirmed by amplicon sequencing. Individual clones were
124	collected by limited dilution cloning in 96 well plates followed by similar replica plating as
125	described above. Genomic DNA from each clone was screened by Sanger sequencing as well as
126	amplicon sequencing to confirm genotype as either (1) homozygous for the homology-directed

indel
ine

- 128 predicted to lead to *SZT2* LoF. All primer sequences provided in Table S1.
- 129

130 Amplicon sequencing

Amplicons with Illumina adaptors were generated by two rounds of PCR including the introduction of unique barcodes and standard Illumina primers. Amplicons were sequenced to a depth of at least 1,000X on an Illumina Miniseq according to manufacturer's recommendation. Alleles were analyzed with CRISPResso2 using the web interface or command line workflow²².

135

136 Immunoblot analysis of mTORC1 activity

Amino acid starvation was performed as previously described ¹⁷. Briefly, cells plated in 137 138 poly-L-lysine coated plates were rinsed in Dulbecco's phosphate-buffered saline (DPBS) (Gibco# 139 14190250) twice before the addition of amino acid-free Dulbecco's minimal essential media (DMEM) containing 10% dialyzed FBS. For the amino acid starved condition, cells were starved 140 of amino acids for 60 min at 37 °C. For cells treated with amino acids, cells were starved of 141 amino acids for 50 min at 37 °C followed by incubation with amino acid containing DMEM for 142 143 10 min at 37 °C. Cells were briefly rinsed with ice-cold DPBS twice. Cells were scraped in icecold DPBS and pelleted at 300 xg for 5 min. The cells were lysed in RIPA Lysis and Extraction 144 145 Buffer (Thermo Scientific 89900) supplemented with EDTA-free protease inhibitors (Roche Complete PI EDTA-free; Sigma 11836170001) and PhosSTOP™ phosphatase inhibitors (Sigma 146 147 4906845001) for 30 min at 4 °C. Insoluble material was removed by pelleting at 12,000 xg for 148 20 min. Protein concentration was determined by BCA assay (Pierce™ BCA Protein Assay Kit;

149	Cat# 23225) and equal amounts (10-50 μg) of protein were loaded for SDS-PAGE (4-12%
150	gradient gel). Proteins were transferred to PVDF membrane and blocked for 60 min at room
151	temperature (RT) with 5% bovine serum albumin (BSA) in PBS-T (PBS + 0.05% Tween20).
152	Primary antibodies (Table S2) were incubated overnight at 4 $^\circ$ C in blocking buffer. Membranes
153	were washed 3x 5 min in PBS-T prior to incubation with secondary antibodies (Table S2) for 60
154	min at RT. After washing 4x 5 min in PBS-T, membranes were incubated in Amersham ECL Prime
155	(GE Healthcare) according to manufacturer's instructions. Membranes were imaged on a Licor
156	Odyssey Fc for 30 sec to 60 min.
157	
158	FACS analysis of mTORC1 activity
159	Amino acid starvation was performed as described above. After starvation, cells were
160	washed twice with DPBS supplemented with 1% v/v Phosphatase Inhibitor Cocktail 3 (Sigma;
161	P0044). Cell were trypsinized using trypLE (Gibco) supplemented with 1% v/v Phosphatase
162	Inhibitor Cocktail 3. Cells were pelleted (300 x g for 5 min at RT) and resuspended in BD
163	Fixation/Permeabilization solution (BD Biosciences 554714). After incubation on ice for 20 min,
164	cells were pelleted and washed twice with BD Permeabilization/Wash buffer. Phosphorylated
165	S6 (p-S6) was labeled with Alexa488 conjugated antibody (Table S2) for 30 min on ice followed
166	by two washes with BD Permeabilization/Wash buffer. Cells were flow sorted on the BD
167	FACSMelody 3-laser cell sorter. At least 200,000 cells were collected for cells with dim
168	Alexa488-signal (P-S6 ^{LOW}) and those with bright Alexa488-signal (P-S6 ^{HIGH}). Genomic DNA was
169	prepared by manufacturer's recommendation using PureLink™ Genomic DNA Mini Kit
170	(Invitrogen K182002) with slight modification to include a 40 min incubation at 90 $^\circ$ C to reverse

171	crosslinks. Amplicon sequencing and Sanger sequencing were performed on unsorted and											
172	sorted cells to determine the <u>constitutive m</u> TORC1 <u>a</u> ctivity <u>s</u> core (CMAS). CMAS is calculated for											
173	each allele present in the amplicon sequencing dataset. CMAS = % alleles in P-S6 ^{HIGH} / % alleles											
174	in unsorted cells. CMAS represents an enrichment score to determine whether cells with high											
175	mTORC1 activity are enriched for proband-derived SZT2 missense alleles (HDR-mediated). Allele											
176	percentage derived from amplicon sequencing and used to calculate CMAS are reported in											
177	Table S3.											
178												
179	Results											
180	Genetic characterization of individuals with bi-allelic SZT2 variants											
181	We describe 12 individuals with bi-allelic SZT2 variants and of these 24 alleles,											
182	truncating variants were identified in a quarter (6/24) of the cohort (Figure S1; Table 1). This											
183	included one individual (Individual 2) who had bi-allelic <i>SZT2</i> truncating variants ⁴ , and five											
184	individuals carrying a truncating variant on one allele and a single amino acid change on the											
185	other (Individuals 1, 5, 6, 7, 8). Most individuals carried at least one SZT2 VUS, and these											
186	variants accounted for the majority of the variants present in the cohort (missense: 12/24, 50%;											
187	in-frame del: 5/24, 21%). One variant (p.Val1984del) was identified in multiple individuals in our											
188	cohort and has been previously reported in a single individual ¹¹ .											
189												
190	Effect of patient-specific SZT2 variants on mTORC1 activity											
191	We designed a functional assay to measure the effect of these SZT2 VUSs. We utilized											
192	CRISPR/Cas9 to edit HEK293T cells at the endogenous SZT2 locus and then quantified mTORC1											

signaling in cells starved or starved and subsequently treated with amino acids (Figure 1A).
Notably HEK293T are diploid for chromosome 1 on which *SZT2* is located. First, we created a
HEK293T *SZT2* null cell line (*SZT2^{KO/KO}*) and recapitulated the constitutive mTORC1 activity and
insensitivity to the presence of amino acids previously observed in *SZT2* null cell lines ^{17; 18}
(Figure S2).

198 We examined one previously published likely pathogenic SZT2 variant (c.1496G>T) and 199 the recurrent p.Val1984del VUS identified in three patients in our cohort (Probands 1,3,4) along with one individual described previously ^{2; 11}. c. 1496G is the last nucleotide of exon 10 and 200 201 c.1496G>T yields two possible transcripts: (1) exon skipping resulting in SZT2 p.Gly412Alafs*86 202 or (2) missense variant SZT2 p.Ser499lle. RT-PCR from patient fibroblasts suggested exon 10 203 skipping, though it was unclear whether any of the predicted missense allele p.Ser499lle 204 transcript was generated, and if so, whether this missense VUS impacted SZT2 function². We generated a compound heterozygous SZT2 cell line (HEK.SZT2^{c.1496G>T/KO}) and by analysis of RNA 205 206 transcripts determined that exon 10 is skipped, producing a truncated protein (p.Gly412Alafs*86) (Figure S3). Furthermore, HEK.*SZT2*^{c.1496G>T/KO} cells displayed constitutive 207 mTORC1 activity (Figure 1C and Figure S4). We generated homozygous SZT2 p.Val1984del HEK 208 cells (HEK.SZT2^{p.Val1984del/p.Val1984del}) and determined that this VUS also resulted in constitutively 209 210 active mTORC1 (Figure 1B-C). Collectively, these results demonstrate that complete SZT2 LoF 211 and both the previously published c.1496G>T and the recurrent p.Val1984del lead to 212 constitutive mTORC1 signaling also suggesting SZT2 LoF. 213

215 A medium-throughput assay for functional characterization of SZT2 VUS

216 The time-consuming process of limited dilution cloning and identification of clones with 217 desired genotypes led us to investigate methods to increase throughput of our approach. Based 218 on high rates of indel formation (60+%) due to nonhomologous end-joining (NHEJ) as well as 219 high HDR efficiency (up to 30%) in HEK293T, we considered the possibility of performing 220 functional testing directly after gene editing. Though immunoblot analysis from a pool of cells 221 with different SZT2 alleles would be challenging to interpret, we hypothesized that 222 immunolabeling for phospho-S6 (P-S6) followed by flow cytometry would be a viable 223 alternative. Amino acid starved SZT2 null cells were shown to have both elevated P-S6K and P-S6 levels due to constitutive mTORC1 activity ¹⁸. The conceptual framework is as follows: if a 224 225 variant is LoF variant, then cells homozygous for that variant or compound heterozygous for the 226 variant and a truncating variant induced by NHEJ would lack any functional SZT2 and therefore exhibit constitutive mTORC1 activation. Alternatively, if a variant did not cause SZT2 LoF, cells 227 228 with one or two copies would express sufficient levels of functional SZT2 for physiological 229 regulation of mTORC1 by amino acid deprivation (Figure 2A). Visually, a single right-shifted peak (P-S6^{HIGH}) would be indicative of a LoF variant, while observation of two peaks (i.e. P-S6^{HIGH} and 230 P-S6^{LOW}) would indicate the variant did not cause LoF. Subsequent genotyping of unsorted cells 231 as well as the sorted pools of high and low phosphorylated-S6 (i.e. P-S6^{HIGH} and P-S6^{LOW}) 232 233 allowed us to determine the CMAS for each allele.

As a proof-of-principle, we first performed phospho-S6 FACS sorting on amino acid starved wildtype HEK and HEK *SZT2*^{KO/KO} cells. Wildtype HEK cells exhibited a single left-shifted peak (P-S6^{LOW}), while the *SZT2*^{KO/KO} cells exhibited a single right-shifted peak (P-S6^{HIGH}),

237	indicating constitutive mTORC1 activity (Figure S5). We then used the assay to investigate a
238	number of the <i>SZT2</i> VUSs present in the cohort: p.Val1984del, p.Glu1447Ala, p.Arg1948Gln, and
239	p.Arg2589Trp (Figure 2B). As an additional negative control, we assayed a common variant in
240	the general population, SZT2 p.Pro446Ser (MAF=0.3 in gnomAD), and present in a homozygous
241	state in multiple individuals (n=15,475). All LoF alleles had high CMAS scores (mean CMAS=1.41
242	\pm 0.2; n=13) consistent with constitutively active mTORC1, while CMAS for SZT2 p.Pro446Ser
243	was low (0.26 \pm 0.07; n=2), consistent with the protein retaining physiological scaffolding
244	function and amino acid sensitive mTORC1 (Figure 2C and S6). As with the western blot analysis
245	above, p.Val1984del was significantly enriched in the P-S6 ^{HIGH} (mean CMAS = 0.91 \pm 0.06; n=3)
246	pool, indicative of constitutive mTORC1 activity. Conversely, p.Glu1447Ala (mean CMAS = 0.38
247	\pm 0.08), <code>p.Arg1948Gln</code> (mean CMAS = 0.17 \pm 0.03; n=2), and <code>p.Arg2589Trp</code> (mean CMAS = 0.48 \pm
248	0.15) were not enriched in the P-S6 ^{HIGH} pool, (Figure 2 B-C) and CMAS were not significantly
249	different to p.Pro446Ser, but rather were consistent with the CMAS of the benign variant,
250	suggesting these variants do not cause SZT2 LoF.
251	
252	Haplotype analysis of recurrent SZT2 in-frame deletion p.Val1984del
253	Based on our observation of p.Val1984del in multiple individuals, we hypothesized this
254	variant may be derived from a common ancestor. In support of this observation, SZT2
255	p.Val1984del is observed at low allele frequency in two populations in gnomAD, specifically in
256	non-Finnish Europeans (MAF=0.00005420) and Ashkenazi Jewish (MAF=0.0008679), though no
257	homozygous individuals are reported. Using exome sequencing data we identified a shared

haplotype spanning ~4 Mb including the SZT2 p.Val1984del in all three individuals in our cohort
(Figure 3), suggesting this variant is a founder variant in those of Jewish ancestry.

260

261 Clinical characterization of individuals with bi-allelic SZT2 variants

The functional assays allowed us to tentatively reclassify 8/16 (50%) VUS in our cohort 262 263 of 12 individuals. We acknowledge that reclassification of variants based on functional data is 264 relevant in a clinical setting when classification is based on a 'well-established assay', which our approach has not yet achieved ²⁰. However, for simplicity sake in this research study we 265 266 reclassified VUS with CMAS similar to p.Pro446Ser (GnomAD MAF=0.3, numerous 267 homozygotes) as likely benign (LB) and VUS with CMAS consistent with SZT2 LoF as likely 268 pathogenic (LP). We then grouped these individuals into four groups (P or LP/P or LP, P or 269 LP/VUS, VUS/VUS, LB/LB) and assessed the prevalence of the most common clinical features 270 associated with pathogenic SZT2 variants i.e. early-onset epilepsy, developmental delays, intractable focal seizures, macrocephaly and corpus callosum abnormalities (Table 1 and 2)²⁻¹⁶. 271 272 Individual 2 with bi-allelic SZT2 truncating variants did not require reclassification but was 273 included in the cohort as a representative of the P/P group for the purpose of phenotypic 274 comparison. While sub-grouping the cohort in this manner meant we were unable to perform 275 statistical analysis due to small group sizes, we could make a number of observations. The 276 median seizure onset was 24 months and relatively consistent, with the exception of the LB/LB 277 group where seizure onset was much later (median 13 years) and a number of the core features 278 of *SZT2*-associated epilepsy were present in only one of the two individuals with these variants. 279 Conversely, most individuals with either PLP/PLP or PLP/VUS did present with focal seizures,

280	developmental delay and macrocephaly. Notably, where this information was available, the
281	majority of individuals achieved seizure control, most with anti-seizure medications, but some
282	were self-limiting (Table S4). Moreover, very few individuals, except individuals 9 and 11, had
283	corpus callosum abnormalities (Table S5 and Figure S6).
284	
285	Discussion
286	The identification of VUS is one of the most challenging bottlenecks in clinical genetic
287	diagnostics of the modern era. We developed a novel individualized platform that allowed us to
288	recategorize 8/16 (50%) of SZT2 VUS. Of note, we identify a recurrent in-frame deletion
289	(p.Val1984del) in four individuals, including two in a homozygous state (one instance of
290	chromosome 1 UPD), and one heterozygous in trans with a truncating variant. Two of the
291	individuals (1 and 3) were identified at Lurie Children's hospital over two years. We determined
292	that this variant is a founder variant in individuals with Jewish ancestry. A carrier frequency of
293	1:576 is estimated based on gnomAD data, but may differ on local ancestry, and inclusion of
294	this variant in genetic testing panels for those with Jewish ancestry requires further
295	investigation.
296	Based on the necessity for a functional assay to reclassify SZT2 VUSs, we developed a
297	strategy to functionally characterize SZT2 VUSs by knock-in of SZT2 variants into HEK 293T cells.
298	The molecular function of SZT2 as a critical regulatory scaffolding protein in the amino acid
299	sensing arm of the mTOR signaling pathway had previously been elucidated in HEK 293T ^{17; 18} .

300 Advantages of using HEK 293T cells are the high transfection and gene editing efficiencies, both

301 for knockout (NHEJ) and knock-in (HDR) strategies. We successfully developed this strategy as a

302 medium-throughput assay that revealed a recurrent inframe deletion SZT2 p.Val1984del to be a 303 LOF variant (Figure 2B-C and Figure 3B-C). Using this FACS-based assay we also functionally 304 characterized an additional set of 3 SZT2 VUSs (p.Glu1447Ala, p.Arg1948Gln, and p.Arg2589Trp) 305 as unlikely to be LoF as these variants retained amino-acid sensitive mTORC1 activity as 306 observed for a common population variant (p.Pro446Ser) and suggest these variants are likely 307 benign. However, while our approach can robustly detect complete LoF alleles, it may not 308 detect more subtle effects on protein function, including partial LoF. Moreover, we know that 309 the clinical features of individuals with pathogenic SZT2 variants are neuronally restricted, even 310 though SZT2 is ubiquitously expressed, thus perturbation of the mTOR pathway is more likely to 311 have a detrimental impact during neuronal development and/or function. For instance, it has 312 recently been shown that mTOR regulation is essential for outer radial glia migration during human neuronal development ²³. In the future, development of high-throughput functional 313 314 assays in cells of a neuronal lineage, for instance, immortalized ReNcells, may improve on the 315 discriminatory power of the novel assay we present here.

316 Nakamura Y et al. recently examined mTORC1 activity in lymphoblastoid cell lines (LCLs) from affected individuals²⁴. They report elevated mTORC1 activity in cell lines derived from 317 318 individuals with biallelic SZT2 variants relative to cell lines generated from healthy individuals. 319 There are a few important caveats to their study. First, the developed assay requires generating 320 LCLs from individuals, which is not always possible and decreases throughput. Further, both cell 321 lines generated from individuals with biallelic SZT2 LoF variants show significant response to 322 amino acid treatment after starvation. One of the key findings from the initial studies, and our 323 studies here in HEK293T cells, was that SZT2 gene knockout rendered cells completely

insensitive to amino acids ^{17; 18}. Although difficult to explain, the finding could be a technical
issue with the LCL model.

Similar to previously published biallelic SZT2 cases, most individuals carrying either P/LP 326 327 or VUS presented with pediatric-onset epilepsy and expressed common features including focal 328 seizures, developmental delay and macrocephaly. However, none of the individuals in these 329 groups had corpus callosum abnormalities, including those with P/LP variants, suggesting that 330 this is not a cardinal feature of SZT2-associated epilepsy. Moreover, a genotype-phenotype 331 correlation has been suggested; individuals bearing truncating mutations may be more likely to have intractable seizures than individuals with missense variants ¹². In this cohort, we observed 332 333 more variability, with individual 2 (bi-allelic truncations) having seizure onset at two months 334 with intractable seizures, while the other individual with intractable seizures (with seizure onset 335 at two days of life) carried a multi-exon in-frame deletion and a VUS (Table S4, S5). Moreover, 336 the individuals with homozygous p.Val1984del (individuals 3, 4) had divergent presentations, 337 with individual 3 presenting with DEE and intractable seizures while individual 4 had a 338 suspected neonatal seizures that resolved without medication. Despite these differing seizure 339 patterns, both individuals have developmental delays and cognitive impairment. Finally, one 340 individual had adult-onset epilepsy with seizures eventually being well-controlled on anti-341 convulsant medication. This individual had dysgenesis of the corpus callosum (Figure S6) and 342 was found to have inherited SZT2 missense VUS from each parent. This case is rather intriguing, 343 as it potentially suggests the phenotypic spectrum for biallelic SZT2 variants is significantly 344 broader than previously thought. However, testing of these variants utilizing our assay suggests 345 they do not cause SZT2 LoF, although we cannot rule out the possibility of partial LoF variants,

346	as described above, which could account for the milder phenotypic presentation. Collectively,											
347	these results suggest a straightforward genotype-phenotype relationship is unlikely and further											
348	studies are needed to characterize the phenotypic spectrum and the impact of genetic variation											
349	on protein function.											
350	In summary, here we demonstrate the utility of an individualized platform to											
351	recharacterize SZT2 VUS. Importantly, this included a p.Val1984del variant that has a carrier											
352	allele frequency of at least 1:576 in those of Jewish ancestry and is a founder variant in this											
353	population. While additional modifications are still required to increase throughput, perhaps											
354	using saturation mutagenesis or multiplex assays of variant effect (MAVE) ^{25; 26} , our approach											
355	can be applied to characterize VUS in other mTORopathies, including TSC1, TSC2, DEPDC5,											
356	NPRL2 and NPRL3, which are the most common causes of focal epilepsies. As the											
357	mTORopathies are the targets of multiple new clinical trials for mTORC inhibitors, resolution of											
358	VUSs could qualify more individuals with intractable epilepsies for inclusion in these studies ²⁷ .											
359												
360	Supplemental Data											
361	Supplemental data includes seven figures and five tables.											
362 363 364	Acknowledgments											
365	This work was sponsored by NIH NINDS ROONS089858 (GLC). We thank the NUCATS TL1 award											
366	for support (TR001423 to JDC). We thank Dr. Suchitra Swaminathan and Paul Mehl for											
367	assistance with flow cytometry. This work was supported by the Northwestern University –											
368	Flow Cytometry Core Facility supported by Cancer Center Support Grant (NCI CA060553). Flow											

369	Cytometry Cell Sorting was performed on a BD FACSAria SORP system and BD FACSymphony S6
370	SORP system, purchased through the support of NIH 1S10OD011996-01 and 1S10OD026814-01.
371	
372	Declaration of Interests
373	Dr. Carvill holds a collaborative research grant with Stoke Therapeutics for research unrelated
374	to this manuscript, all other authors have nothing to declare.
375	
376	Web Resources
377	
378	gnomAD v2.1.1 (https://gnomad.broadinstitute.org) - last accessed 23 Oct 2020
379	
380	SeattleSeq (<u>https://snp.gs.washington.edu/SeattleSeqAnnotation138/</u>) – last accessed 22 Oct
381	2020
382	
383	Clinvar (https://www.ncbi.nlm.nih.gov/clinvar/) - last accessed 22 Oct 2020
384	
385	
386	
387	

388 References

389	1. Frankel, W.N., Yang, Y., Mahaffey, C.L., Beyer, B.J., and O'Brien, T.P. (2009). Szt2, a novel
390	gene for seizure threshold in mice. Genes Brain Behav 8, 568-576.

- 391 2. Basel-Vanagaite, L., Hershkovitz, T., Heyman, E., Raspall-Chaure, M., Kakar, N., Smirin-Yosef,
- P., Vila-Pueyo, M., Kornreich, L., Thiele, H., Bode, H., et al. (2013). Biallelic SZT2
- 393 mutations cause infantile encephalopathy with epilepsy and dysmorphic corpus
 394 callosum. Am J Hum Genet 93, 524-529.
- 395 3. Falcone, M., Yariz, K.O., Ross, D.B., Foster, J., 2nd, Menendez, I., and Tekin, M. (2013). An
- amino acid deletion inSZT2 in a family with non-syndromic intellectual disability. PLoS
 One 8, e82810.
- 4. Venkatesan, C., Angle, B., and Millichap, J.J. (2016). Early-life epileptic encephalopathy
 secondary to SZT2 pathogenic recessive variants. Epileptic Disord 18, 195-200.
- 400 5. Tsuchida, N., Nakashima, M., Miyauchi, A., Yoshitomi, S., Kimizu, T., Ganesan, V., Teik, K.W.,
- 401 Ch'ng, G.S., Kato, M., Mizuguchi, T., et al. (2018). Novel biallelic SZT2 mutations in 3
- 402 cases of early-onset epileptic encephalopathy. Clin Genet 93, 266-274.
- 403 6. Nakamura, Y., Togawa, Y., Okuno, Y., Muramatsu, H., Nakabayashi, K., Kuroki, Y., leda, D.,
- 404 Hori, I., Negishi, Y., Togawa, T., et al. (2018). Biallelic mutations in SZT2 cause a
- 405 discernible clinical entity with epilepsy, developmental delay, macrocephaly and a 406 dysmorphic corpus callosum. Brain Dev 40, 134-139.
- 407 7. Pizzino, A., Whitehead, M., Sabet Rasekh, P., Murphy, J., Helman, G., Bloom, M., Evans, S.H.,
- 408 Murnick, J.G., Conry, J., Taft, R.J., et al. (2018). Mutations in SZT2 result in early-onset
- 409 epileptic encephalopathy and leukoencephalopathy. Am J Med Genet A 176, 1443-1448.

410	8. Naseer	, M.I.,	Alwasiya	h, M.K.	, Abdulkareem	A.A.,	Bajammal	, R.A.	, Trujill	o, C.	., Abu-l	Elmagd	,
-----	-----------	---------	----------	---------	---------------	-------	----------	--------	-----------	-------	----------	--------	---

- 411 M., Jafri, M.A., Chaudhary, A.G., and Al-Qahtani, M.H. (2018). A novel homozygous
- 412 mutation in SZT2 gene in Saudi family with developmental delay, macrocephaly and
- 413 epilepsy. Genes Genomics 40, 1149-1155.
- 414 9. Kariminejad, A., Yazdan, H., Rahimian, E., Kalhor, Z., Fattahi, Z., Zonooz, M.F., Najmabadi, H.,
- and Ashrafi, M. (2019). SZT2 mutation in a boy with intellectual disability, seizures and
- 416 autistic features. Eur J Med Genet 62, 103556.
- 417 10. Imaizumi, T., Kumakura, A., Yamamoto-Shimojima, K., Ondo, Y., and Yamamoto, T. (2018).
- 418 Identification of a rare homozygous SZT2 variant due to uniparental disomy in a patient
- 419 with a neurodevelopmental disorder. Intractable Rare Dis Res 7, 245-250.
- 420 11. Uittenbogaard, M., Gropman, A., Brantner, C.A., and Chiaramello, A. (2018). Novel
- 421 metabolic signatures of compound heterozygous Szt2 variants in a case of early-onset of
- 422 epileptic encephalopathy. Clin Case Rep 6, 2376-2384.
- 423 12. Domingues, F.S., Konig, E., Schwienbacher, C., Volpato, C.B., Picard, A., Cantaloni, C.,
- 424 Mascalzoni, D., Lackner, P., Heimbach, A., Hoffmann, P., et al. (2019). Compound
- 425 heterozygous SZT2 mutations in two siblings with early-onset epilepsy, intellectual
- 426 disability and macrocephaly. Seizure 66, 81-85.
- 427 13. lodice, A., Spagnoli, C., Frattini, D., Salerno, G.G., Rizzi, S., and Fusco, C. (2019). Biallelic SZT2
- 428 mutation with early onset of focal status epilepticus: Useful diagnostic clues other than
- 429 epilepsy, intellectual disability and macrocephaly. Seizure 69, 296-297.
- 430 14. Sun, X., Zhong, X., and Li, T. (2019). Novel SZT2 mutations in three patients with
- 431 developmental and epileptic encephalopathies. Mol Genet Genomic Med 7, e926.

432	15. Trivisano, M., Rivera, M., Terracciano, A., Ciolfi, A., Napolitano, A., Pepi, C., Calabrese, C.,
433	Digilio, M.C., Tartaglia, M., Curatolo, P., et al. (2020). Developmental and epileptic
434	encephalopathy due to SZT2 genomic variants: Emerging features of a syndromic
435	condition. Epilepsy Behav 108, 107097.
436	16. Tanaka, R., Takahashi, S., Kuroda, M., Takeguchi, R., Suzuki, N., Makita, Y., Narumi-
437	Kishimoto, Y., and Kaname, T. (2020). Biallelic SZT2 variants in a child with
438	developmental and epileptic encephalopathy. Epileptic Disord 22, 501-505.
439	17. Wolfson, R.L., Chantranupong, L., Wyant, G.A., Gu, X., Orozco, J.M., Shen, K., Condon, K.J.,
440	Petri, S., Kedir, J., Scaria, S.M., et al. (2017). KICSTOR recruits GATOR1 to the lysosome
441	and is necessary for nutrients to regulate mTORC1. Nature 543, 438-442.
442	18. Peng, M., Yin, N., and Li, M.O. (2017). SZT2 dictates GATOR control of mTORC1 signalling.
443	Nature 543, 433-437.
444	19. Sobreira, N., Schiettecatte, F., Valle, D., and Hamosh, A. (2015). GeneMatcher: a matching
445	tool for connecting investigators with an interest in the same gene. Hum Mutat 36, 928-
446	930.
447	20. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M.,
448	Lyon, E., Spector, E., et al. (2015). Standards and guidelines for the interpretation of
449	sequence variants: a joint consensus recommendation of the American College of
450	Medical Genetics and Genomics and the Association for Molecular Pathology. Genet
451	Med 17, 405-424.
452	21. Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome
453	engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281-2308.

454	22. Clement, K., Rees, H., Canver, M.C., Gehrke, J.M., Farouni, R., Hsu, J.Y., Cole, M.A., Liu, D.R.,
455	Joung, J.K., Bauer, D.E., et al. (2019). CRISPResso2 provides accurate and rapid genome
456	editing sequence analysis. Nat Biotechnol 37, 224-226.
457	23. Andrews, M.G., Subramanian, L., and Kriegstein, A.R. (2020). mTOR signaling regulates the
458	morphology and migration of outer radial glia in developing human cortex. Elife 9.
459	24. Nakamura, Y., Kato, K., Tsuchida, N., Matsumoto, N., Takahashi, Y., and Saitoh, S. (2019).
460	Constitutive activation of mTORC1 signaling induced by biallelic loss-of-function
461	mutations in SZT2 underlies a discernible neurodevelopmental disease. PLoS One 14,
462	e0221482.
463	25. Findlay, G.M., Boyle, E.A., Hause, R.J., Klein, J.C., and Shendure, J. (2014). Saturation editing
464	of genomic regions by multiplex homology-directed repair. Nature 513, 120-123.
465	26. Starita, L.M., Ahituv, N., Dunham, M.J., Kitzman, J.O., Roth, F.P., Seelig, G., Shendure, J., and
466	Fowler, D.M. (2017). Variant Interpretation: Functional Assays to the Rescue. Am J Hum
467	Genet 101, 315-325.
468	27. Theilmann, W., Gericke, B., Schidlitzki, A., Muneeb Anjum, S.M., Borsdorf, S., Harries, T.,
469	Roberds, S.L., Aguiar, D.J., Brunner, D., Leiser, S.C., et al. (2020). Novel brain permeant
470	mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of
471	acquired partial epilepsy and tuberous sclerosis complex. Neuropharmacology 180,
472	108297.
473	
474	
475	

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.06.425612; this version posted January 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

476 Figure Legends

478	Figure 1 Development of gene editing approach for functional characterization of <i>SZT2</i> VUSs.
479	(A) Individual cell clones either homozygous or heterozygous (+ LoF on other allele) for an
480	individual SZT2 variant were generated by gene editing followed by limiting dilution cloning.
481	Immunoblot for amino acid sensitive mTORC1 activity by P-S6K levels was used to determine
482	whether individual variants caused SZT2 loss of function. Homology-directed repair rate of cells
483	generated by transfection of px459 encoding targeting gRNAs was analyzed using amplicon
484	sequencing and varied between 12-25%. (B) Immunoblot of mTORC1 activity in control HEK
485	cells and homozygous HEK SZT2 ^{p.Val1984del/p.Val1984del} clone. (C) Densitometric quantification of (B).
486	At least 3 individual replicates were performed. $* = p < 0.05$ (T-test).
487	
487 488	Figure 2
	Figure 2 Development of medium throughput assay for functional characterization of <i>SZT2</i> VUSs. (A)
488	
488 489	Development of medium throughput assay for functional characterization of <i>SZT2</i> VUSs. (A)
488 489 490	Development of medium throughput assay for functional characterization of SZT2 VUSs. (A) HEK cells were co-transfected with px459 encoding targeting gRNAs and repair
488 489 490 491	Development of medium throughput assay for functional characterization of SZT2 VUSs. (A) HEK cells were co-transfected with px459 encoding targeting gRNAs and repair oligonucleotides, followed by puromycin selection. Cells were starved of amino acids and then
488 489 490 491 492	Development of medium throughput assay for functional characterization of SZT2 VUSs. (A) HEK cells were co-transfected with px459 encoding targeting gRNAs and repair oligonucleotides, followed by puromycin selection. Cells were starved of amino acids and then fixed for immunolabeling of phosphorylated S6 and FACS sorting. gDNA was isolated from
488 489 490 491 492 493	Development of medium throughput assay for functional characterization of SZT2 VUSs. (A) HEK cells were co-transfected with px459 encoding targeting gRNAs and repair oligonucleotides, followed by puromycin selection. Cells were starved of amino acids and then fixed for immunolabeling of phosphorylated S6 and FACS sorting. gDNA was isolated from unsorted and sorted cells followed by amplicon sequencing to confirm CRISPR/Cas9 targeting

- 497 at least 3 individual replicates were performed. * = p < 0.05 (One-way ANOVA with Tukey's
- 498 posthoc test).
- 499
- 500 Figure 3
- 501 Shared haplotype suggests SZT2 p.Val1984del is a founder variant in those of Ashkenazi
- 502 Jewish ancestry. Using exome sequencing data from three study trios in combination with
- allelic frequencies in the gnomAD population database, all individuals carry the same rare (MAF
- ranging from 0.00007-0.2) variants spanning a 4Mb interval. Ref|Alt alleles for SNVs (1 & 5
- 505 flanking; 2-4 in haplotype block): (1) rs12406524=G|A; (2) rs142849148=G|C; (3)
- 506 rs1126742=A|G; (4) rs13376679=T|C; (5) rs75538709=G|A.
- 507

Table 1 Genetic details of biallelic SZT2 variants 508

Individu	1	2	3	4	5	6	7	8	9	10	11	12
al												
Testing	Exome	Exome	Exome	Exome	Exome	Exome	Exome	Panel	Exome	Exome	Exome	Exome
Inherita nce	Cmp Het	Cmp Het	Hmz	Hmz	Cmp Het	Cmp Het	Cmp Het	Cmp Het ^{\$}	Hmz	Cmp Het	Cmp Het	Hmz ^{&}
	1	L	I	1	Maternally inher	rited allele	l.					
Variant (NM 015284, NP_056 099)	c.9407_9408 dupTG p.Val3137Tr pfs*48	c.9703C>T p.Arg3235*	None [%] [%] UPD of all of chromosome 1	c.5949_5951 delTGT p.Val1984de I	c.2384_5680 del p.His795_His 1893del (exon16-40 deletion)	c.841delC p.Gln281S erfs*32	c.1173_11 74del p.Lys393G lyfs*47	c.1091- 1G>A ^{\$}	c.7448C >T p.Ser24 83Leu	c.7346G >A p.Arg24 49GIn	c.5843G >A p.Arg19 48GIn	c.7765C >T p.Arg25 89Trp
GnomA D MAF	4.16e-6	5.63e-6	Unk	6.36e-5	Unk	4.37e-6	NP	NP	7.95e-6	3.99e-5	7.96e-6	1.59e-5
CADD Polyphe n	50 N/A	50 N/A	N/A N/A	N/A N/A	50 N/A	50 N/A	50 N/A	50 N/A	18.74 1	15.37 0.897	16.93 0.976	19.83 1
ACMG Classific ation	Р	Р	N/A	VUS	Р	Р	Р	Р	VUS	VUS	VUS	VUS
Reclassi fied *	P (NT)	P (NT)	N/A	LP	P (NT)	P (NT)	P (NT)	P (NT)	VUS (NT)	VUS	LB	LB
					Paternally inher	rited allele						
Variant	c.5949_5951 delTGT p.Val1984de I	c.3509_3512 delCAGA p.Thr1170Arg fs*22	c.5949_5951 delTGT p.Val1984de I	c.5949_5951 delTGT p.Val1984de I	c.1678G>T, p.Ala560Ser	c.6553C>T p.Arg2185 Trp	c.4040G> A p.Arg1347 His	c.7588A >C p.Ile253 0Leu ^{\$}	c.7448C >T p.Ser24 83Leu	c.3757C >T p.Arg12 53Cys	c.4340A >C p.Glu14 47Ala	c.7765C >T p.Arg25 89Trp
GnomA D MAF	6.36e-5	NP	6.36e-5	6.36e-5	NP	2.39e-5	1.13e-4	6.36e-5	NP	6.36e-5	6.36e-5	NP
CADD Polyphe n	N/A N/A	50 N/A	N/A N/A	N/A N/A	15.9 0.007	16.55 1	16.7 0.004	8.82 0	18.74 1	16.72 1	17.62 1	19.83 1
ACMG Classific ation	VUS	Р	VUS	VUS	VUS	VUS	VUS	VUS	VUS	VUS	VUS	VUS
Reclassi fied *	LP	P (NT)	LP	LP	VUS (NT)	VUS (NT)	VUS (NT)	VUS (NT)	VUS (NT)	VUS	LB	LB

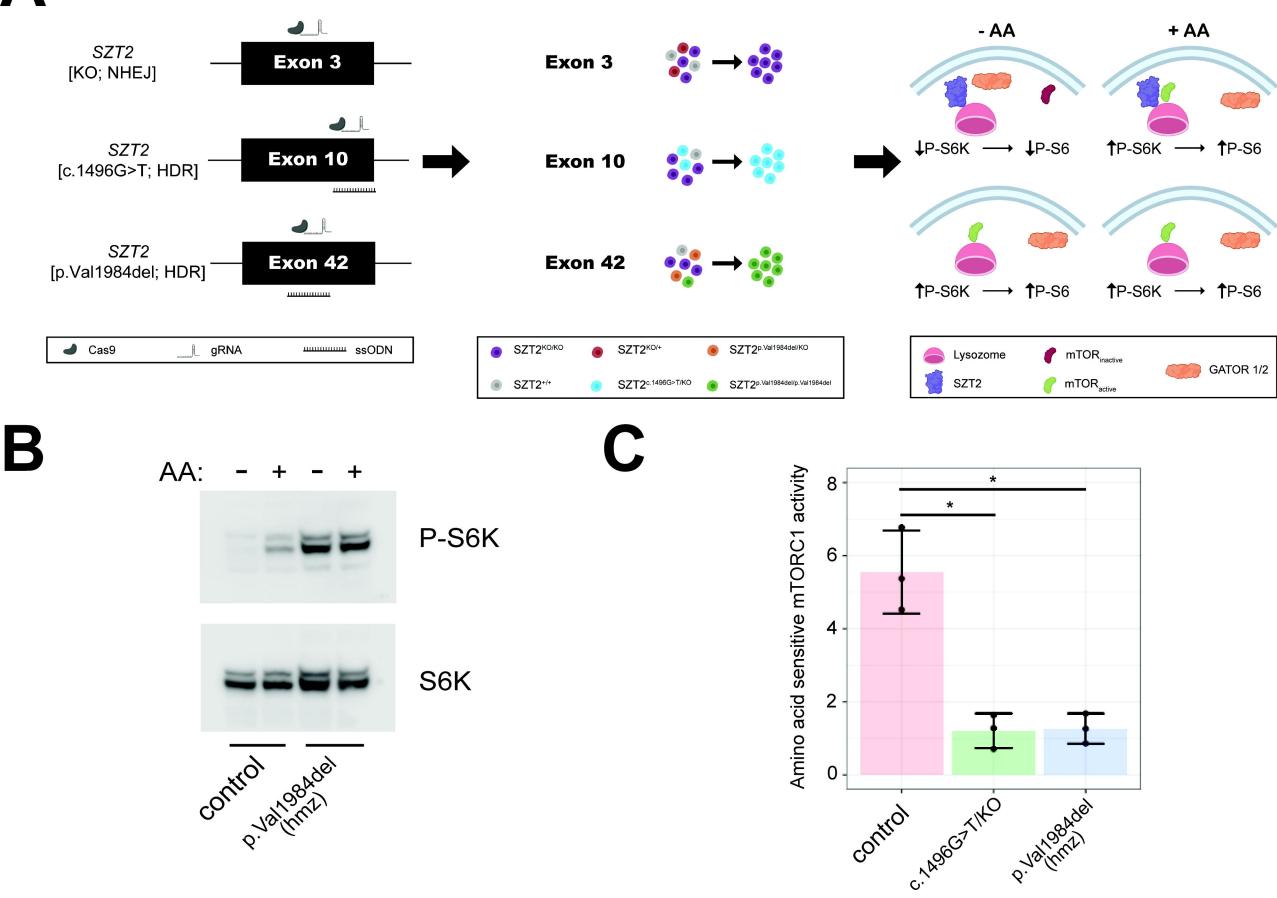
509 Footnotes: *Variant reclassification after functional testing. Abbreviations used include Cmp het: compound heterozygous, Hmz: homozygous, P: Pathogenic, LP:

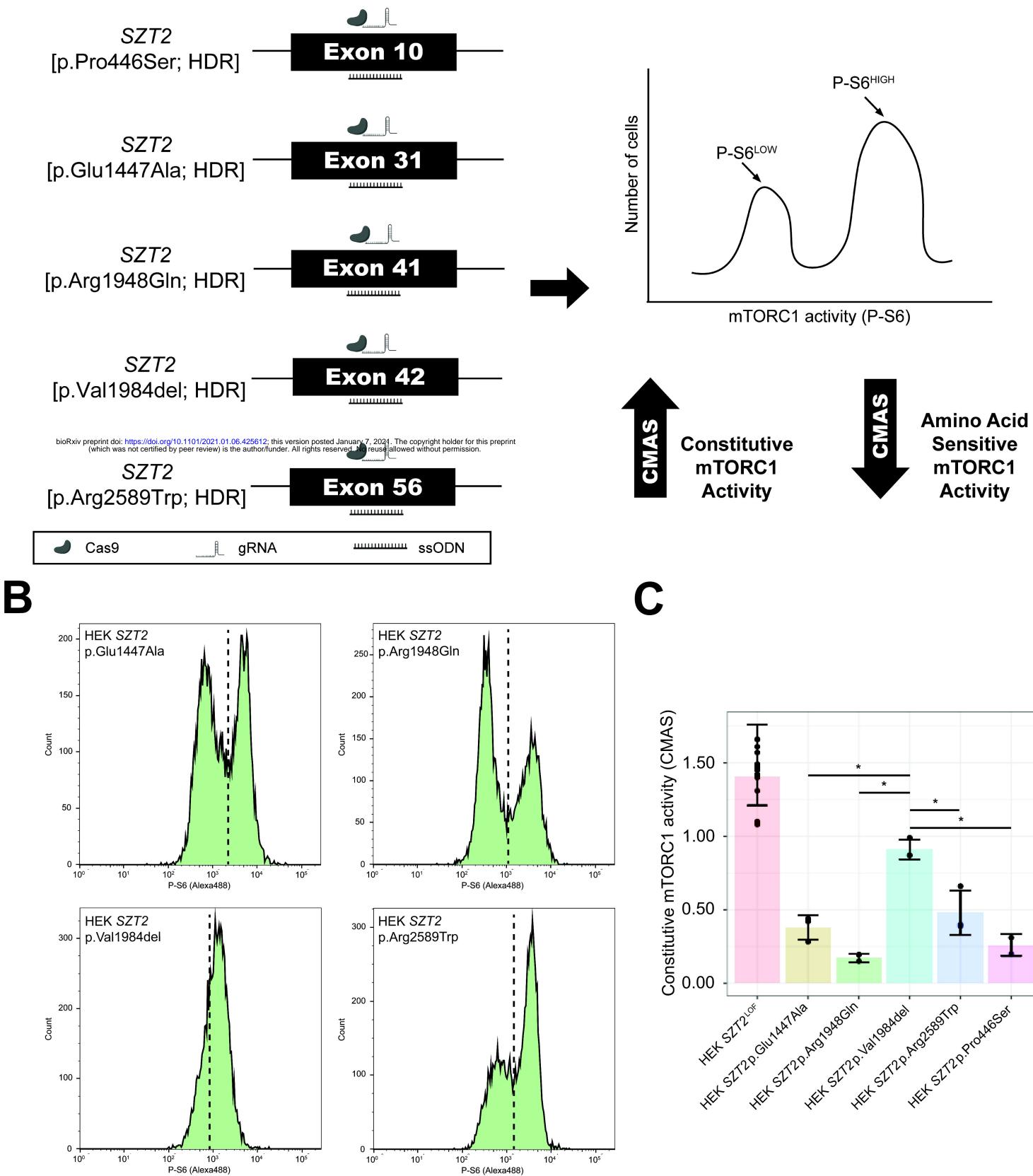
Likely pathogenic, VUS: variant of uncertain significance, LB: likely benign, MAF: minor allele frequency, CADD: Combined Annotation Dependent Depletion, ACMG: American College of Medical Genetics, NP, not present; VUS: variant of uncertain significance, LB: likely benign, NP: not 510

present. [%]Uniparental disomy (UPD) of all of chromosome 1. [&]Regions of homozygosity detected suggesting consanguinity. ^{\$}Samples from both parents were not available to confirm inheritance, the maternally and paternally inherited variants are randomly assigned in the table for clarity only. 512 513

514

515


Table 2 Summary of clinical features stratified by ACMG criteria and functional classification 516


Category	P or LP/ P or LP	P or LP/VUS	VUS/VUS	LB/LB	Cohort
Affected individuals	1-4 (n=4)	5-8 (n=4)	9,10 (n=2)	11,12 (n=2)	n=12
Median seizure onset (range)	30m (2m-4y)	9m (2DOL-2y)	18m (3DOL-3 y)	13 y (6y10m-20y)	24m (2DOL-20y)
Focal seizure	3/4 (75%)	2/4* (50%)	0/2 (0%)	1/2 (50%)	6/12 (50%)
Seizures intractable	2/4 (50%)	1/3 (33%)	0/2 (0%)	1/2* (50%)	4/11 (36%)
Developmental delays	4/4 (100%)	4/4 (100%)	2/2 (100%)	1/2 (50%)	11/12 (92%)
Macrocephaly	3/4^ (75%)	2/4 [%] (50%)	1/2 (50%)	1/2 (50%)	7/12 (58%)
Corpus callosum abnormalities	0/4 (0%)	1/4 (25%)	1/2 (50%)	1/2 (50%)	3/12 (25%)


517 518

^ Individual 4 had microcephaly * individual 7 had no report of seizures and * microcephaly *individual 12 achieved only partial seizure control

Abbreviations: DOL, day of life; m, months; y, years

