
 

 

Increased sensitivity to strong perturbations in a whole-brain model of LSD 

Beatrice M. Jobst*1, Selen Atasoy2,3, Adrián Ponce-Alvarez1, Ana Sanjuán1, Leor Roseman4, Mendel 

Kaelen4, Robin Carhat-Harris4, Morten L. Kringelbach2,3, Gustavo Deco1,5,6,7 

 

1 Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón 

Trias Fargas 25-27, 08005 Barcelona, Spain. 

2 Department of Psychiatry, University of Oxford, Oxford, UK. 

3 Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, DK. 

4 Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, United Kingdom. 

5Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain. 

6 Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany 

7 School of Psychological Sciences, Monash University, Clayton, Melbourne, Australia 

 

 

Corresponding author: 

Beatrice M. Jobst, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, 

Spain, E-Mail: beatrice.jobst@upf.edu, Tel.: +34 935422932, Fax: +34 935421702 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.425415doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.425415


2 

 

Abstract 1 

Lysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical 2 

and pharmacological research within recent years. Human neuroimaging studies have shown 3 

fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain 4 

states, thus raising the question about a mechanistic explanation of the dynamics underlying these 5 

alterations. Here, we applied a novel perturbational approach based on a whole-brain computational 6 

model, which opens up the possibility to externally perturb different brain regions in silico and 7 

investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a 8 

certain brain region to an external perturbation. After adjusting the whole-brain model parameters to 9 

reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under 10 

the influence of LSD or placebo, perturbations of different brain areas were simulated by either 11 

promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we 12 

quantified the recovery characteristics of the brain area to its basal dynamical state with the 13 

Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two 14 

brain states. We found significant changes in dynamical complexity with consistently higher PILI 15 

values after LSD intake on a global level, which indicates a shift of the brain's global working point 16 

further away from a stable equilibrium as compared to normal conditions. On a local level, we found 17 

that the largest differences were measured within the limbic network, the visual network and the 18 

default mode network. Additionally, we found a higher variability of PILI values across different brain 19 

regions after LSD intake, indicating higher response diversity under LSD after an external 20 

perturbation. Our results provide important new insights into the brain-wide dynamical changes 21 

underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical 22 

applications of psychedelic drugs in particular psychiatric disorders. 23 

 24 
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Highlights 28 

• Novel offline perturbational method applied on functional magnetic resonance imaging 29 

(fMRI) data under the effect of lysergic acid diethylamide (LSD) 30 

• Shift of brain's global working point to more complex dynamics after LSD intake 31 

• Consistently longer recovery time after model perturbation under LSD influence 32 

• Strongest effects in resting state networks relevant for psychedelic experience 33 

• Higher response diversity across brain regions under LSD influence after an external in silico 34 

perturbation  35 
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1. Introduction 36 

In the past few years, we have witnessed an increasing interest in the study of the effects of 37 

psychedelic drugs, including lysergic acid diethylamide (LSD), on the human brain. LSD is a potent 38 

psychoactive drug, which was first synthesized in 1938 and whose potent psychological effects were 39 

discovered in 19431. Between the 1950s and the late 1960s LSD was widely used in psychology and 40 

psychotherapy and its clinical applications as a pharmacological substance were well studied2,3 ,for a 41 

recent review and meta-analysis see Fuentes et al4. Due to political reasons and its widespread 42 

uncontrolled recreational use, LSD was made illegal in the late 1960s, which explains the hiatus 43 

period in human research with LSD. It was not until recently that the drug has undergone a renaissance 44 

in clinical and brain research. 45 

 46 

Within the last few years, a significant number of human neuroimaging studies have been performed 47 

by only few research groups to identify neural correlates of the psychedelic state provoked by 48 

hallucinogenic drugs5–11. A non-exhaustive summary of these findings include: an increase in visual 49 

cortex blood flow and an expanded visual cortex functional connectivity6, a reduction of the integrity 50 

of functional brain networks6,8,11, a global increase in connectivity between networks6,8, where 51 

especially high-level association cortices comprising parts of the default-mode, salience, and 52 

frontoparietal attention networks and the thalamus showed increased global connectivity8, and an 53 

expanded repertoire of dynamical brain states, characterized by an increase of the variance of the 54 

Blood-Oxygen Level Dependent (BOLD) signal measured with functional Magnetic Resonance 55 

Imaging (fMRI) and a higher diversity of dynamic functional connectivity states7. While these results 56 

offer valuable insights into the major functional alterations taking effect in the brain during the 57 

psychedelic state, we do not yet have a compelling and complete mechanistic understanding of these 58 

effects in the context of whole-brain dynamics. To address this knowledge gap, we here apply a novel 59 

method combining a whole-brain computational model with an in silico model perturbation, 60 

previously described by Deco et al.12, which enables the simulation of external perturbations of any 61 

brain region for an unlimited amount of time in ways experimentally not possible. 62 
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 63 

In the last 15 years, there have been a number of studies investigating brain function by systematically 64 

exploring the dynamical responses to controlled artificial external perturbations of different brain 65 

regions and combining them with whole-brain neuroimaging13–18. There is a wide range of 66 

perturbation possibilities available, from easier to perform perturbation methods such as sensory 67 

stimulation and task instructions, to more invasive and costly methods, such as transcranial magnetic 68 

stimulation (TMS) in healthy human subjects to deep brain stimulation (DBS) in patients19–22. Also 69 

pharmacological studies inducing an anaesthetic state, which can also be considered as a perturbation 70 

to the brain, exist in human23 as well as in the non-human primate24 exploring the dynamic repertoires 71 

of the brain. The advantage of direct controlled artificial perturbations of specific brain regions is the 72 

systematic exploration of the provoked dynamical responses. These direct approaches have, however, 73 

been limited to transcranial magnetic stimulation (TMS) in healthy human subjects and to deep brain 74 

stimulation (DBS) in patients19–22. 75 

 76 

Here we apply a novel in silico model perturbation approach to study the perturbation-elicited changes 77 

in global and local brain activity and to obtain a deeper understanding of the mechanisms underlying 78 

the experimentally observed dynamical brain changes under the influence of LSD in three different 79 

scanning conditions (rest, rest while listening to music and rest after listening to music). Previous 80 

studies have shown that the effects of LSD are amplified during listening of music9,25,26. Music is 81 

believed to act in combination with psychedelic drugs to enhance its emotional effects25 and that it acts 82 

synergistically with the drug to intensify mental imagery and access to personal memories25,27,28. We 83 

used a computational whole-brain model, which directly simulates the resting state BOLD signal 84 

fluctuations12,18,29–31 by simulating the dynamics in each brain area with the normal form of a 85 

supercritical Hopf bifurcation. This direct simulation of the resting state BOLD signal allows for 86 

systematical perturbation of each brain region in silico without needing to perturb the brain activity 87 

explicitly, e.g. via TMS. This whole-brain model based perturbation approach has proven useful to 88 

reveal the changes in brain dynamics underlying sleep, where brain activity was found to more rapidly 89 
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return to its original state after perturbation than during awake12. Taken together with previous 90 

experimental findings on LSD, we hypothesized that under the influence of LSD, the brain would take 91 

longer to return to baseline activity - meaning brain activity without the model based perturbation -  92 

after a strong simulated perturbation. Such a scenario would be consistent with more complex and less 93 

stable dynamics12,32 as well as brain dynamics closer to bifurcation or critical regime6–8,33. Indeed, 94 

close to a bifurcation or instability, a dynamical system slows down its fluctuations and increases its 95 

responsiveness and complexity31,34. Whole-brain models have been shown to best represent the 96 

functional connectivity of whole-brain resting-state fMRI close to a bifurcation31,34. Previous research 97 

has suggested that LSD re-organizes brain dynamics at the edge of criticality33. Furthermore it has 98 

previously been shown that in an awake resting state - when compared to deep sleep - the brain takes 99 

longer to go back to its original state after perturbation12, and that perturbation induced stimuli 100 

propagate to other brain regions beyond the original stimulation site in an awake resting state as 101 

opposed to deep sleep13,15,35. Moreover, it has been shown that, while anesthesia reduces the 102 

complexity of brain signals with respect to normal wakefulness, LSD increases the activity complexity 103 

with respect to normal wakefulness, without a global loss of consciousness or changes in physiological 104 

arousal as seen in sleep or anaesthesia36. We thus hypothesized that LSD would produce more 105 

complex and sustained responses to perturbations than in normal resting-state conditions. We further 106 

expected this effect to be even stronger in the music condition, where the effects of LSD have been 107 

found to be amplified9,25,26. 108 

  109 
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2. Materials and Methods 110 

2.1. Functional magnetic resonance imaging (fMRI) data 111 

For the fMRI blood oxygen level dependent (BOLD) data, 20 healthy participants were scanned in 6 112 

different conditions: LSD resting state, placebo (PCB) resting state, LSD and PCB resting state while 113 

listening to music, LSD and PCB resting state after listening to music. LSD and PCB sessions were 114 

separated by at least 14 days with the condition order being balanced across participants, who were 115 

blind to this order. All participants gave informed consent. The experimental protocol was approved 116 

by the UK National Health Service research ethics committee, West-London. Experiments conformed 117 

with the revised declaration of Helsinki (2000), the International Committee on Harmonization Good 118 

Clinical Practice guidelines and the National Health Service Research Governance Framework. The 119 

data collection was sponsored by the Imperial College London, which was carried out under a Home 120 

Office license for research with schedule 1 drugs. Eight out of the 20 subjects were excluded from 121 

further analyses for the following reasons: the scanning session of one participant needed to be 122 

terminated early due to the subject reporting significant anxiety. Four participants were excluded due 123 

to high levels of head movement (as described in the original publication by Carhart-Harris6, the 124 

exclusion criterion for excessive head movement was subjects displaying more than 15% scrubbed 125 

volumes with a scrubbing threshold of FD = 0.5). Three participants needed to be excluded due to 126 

technical problems with the sound delivery in the music condition. In total, 12 subjects were 127 

considered for further analyses. Each participant received either 75 g of LSD (intravenous, I.V.) or 128 

saline/placebo (I.V.) 70 minutes prior to MRI scanning. As described in the supplementary 129 

information of the original publication by Carhart-Harris et al6 the participants reported noticing 130 

subjective drug effects between 5 to 15 minutes post-dosing. The drug effects reached peak intensity 131 

between 60 to 90 minutes post-dosing. The subsequent plateau of drug effects varied among 132 

individuals regarding their duration, but participants reported a general remaining of the drug effects 133 

for four hours post-dosing. MRI scanning started - as mentioned above - approximately 70 minutes 134 

post-dosing, and lasted for about 60 minutes. After each of the three scans, participants performed 135 

subjective ratings inside the scanner via a response box. The subjects who received saline/placebo 136 
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were considered as baseline MRI scans compared to the LSD scans. The BOLD fMRI data were 137 

recorded using a gradient echo planer imaging sequence, TR/TE = 2000/35ms, field of view = 220mm, 138 

64x64 acquisition matrix, parallel acceleration factor = 2, 90º flip angle. The exact length of each of 139 

the BOLD scans per participant was 7:20 minutes. As described in the original publication by Carhart-140 

Harris6, the performed pre-processing steps were the following: 1) the first three volumes were 141 

removed; 2) de-spiking; 3) slice time correction; 4) motion correction by registering each volume to 142 

the volume most similar to all others regarding least squares; 5) brain extraction; 6) rigid body 143 

registration to anatomical scans; 7) non-linear registration to 2mm MNI brain; 8) scrubbing using an 144 

FD threshold of 0.4 (the mean percentage of volumes scrubbed for placebo and LSD was 0.4 ±0.8% 145 

and 1.7 ±2.3%, respectively). The maximum number of scrubbed volumes per scan was 7.1% and 146 

scrubbed volumes were replaced with the mean of the surrounding volumes. Additional pre-processing 147 

steps were: 9) spatial smoothing of 6mm; 10) band-pass filtering between 0.01 to 0.08 Hz; 11) linear 148 

and quadratic de-trending; 12) regressing out 9 nuisance regressors (all nuisance regressors were 149 

bandpass filtered with the same filter as in step 10. 150 

BOLD signals were averaged over cortical and sub-cortical regions of interest following the automated 151 

anatomical labeling (AAL) atlas parcellation of the brain into 90 regions of interest (76 cortical and 14 152 

subcortical regions, AAL90), comprising 45 regions in each hemisphere37. We chose this parcellation 153 

of the human brain, since especially for studying the spatiotemporal dynamics on a whole brain level, 154 

AAL seems to be particularly well fitted. It has been found to produce good results in the whole-brain 155 

literature in general12,38–40 and furthermore whole brain computational models can be quite 156 

computationally expensive to perform and thus profit from a not too large number of parcels, as is the 157 

case in the AAL parcellation. The list of AAL ROIs can be found in the Supplementary Material 158 

(Supplementary Table S1). 159 

The full details on the whole study design, the scanning protocol and further details on the fMRI pre-160 

processing can be consulted in the supplementary information of the original publication6. 161 

 162 

2.2. Anatomical connectivity 163 
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The anatomical connections between the different brain areas used in this study were obtained from 164 

Diffusion Tensor Imaging (DTI) data of an independent set of subjects, recorded in 16 healthy right-165 

handed participants (11 men and 5 women, mean age: 24.75 ± 2.54), recruited through the online 166 

recruitment system at Aarhus University. This data has already been described in previous studies29,41. 167 

Briefly, the automated anatomical labelling (AAL) template was used for the parcellation of the entire 168 

brain into 90 regions, as explained in the previous section. The brain parcellations were conducted in 169 

each individual's native space. The acquired DTI data was used to generate the structural connectivity 170 

(SC) maps for each participant. A three-step process was applied to construct these structural 171 

connectivity maps. First, the regions of the whole-brain network were defined with the AAL template 172 

as used in the functional MRI data. Secondly, probabilistic tractography was applied to estimate the 173 

connections between nodes in the whole-brain network (i.e. edges). Finally, the data was averaged 174 

across participants. 175 

 176 

2.3. Hopf computational whole-brain model 177 

The brain activity in each brain region was simulated with a computational whole-brain model, which 178 

has been previously described in various publications12,29,31,42. The model is based on the 90 coupled 179 

brain regions, comprising cortical and subcortical areas, retrieved from the AAL parcellation 180 

explained above. This computational model simulates the spontaneous brain activity in each node, 181 

which originates in the mutual interactions between anatomically connected brain areas (Fig. 1A). The 182 

anatomical connections are represented by the structural connectivity matrix ijC  , obtained through 183 

DTI based tractography, as explained above. The structural connectivity matrix was scaled to a 184 

maximum value of 0.229,31, leading to a reduction of the parameter space to search for the optimal 185 

parameter. The dynamics in each brain area can be simulated by the normal form of a supercritical 186 

Hopf bifurcation, which can describe the transition from noise-induced oscillations to fully sustained 187 

oscillations31,43. In fact, it has been shown that by coupling the brain regions together using the 188 

underlying anatomical connections, the interactions between the local Hopf oscillators can describe 189 

electroencephalography (EEG)44, magnetoencephalography (MEG)41 and fMRI dynamics12,29,31,42. The 190 
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dynamics of a given uncoupled node j  are described by the following complex-valued equation, 191 

representing the normal form of a supercritical Hopf bifurcation: 192 

 193 

)()(
2

tzziaz
dt

dz
jjj

j βηω +−+= ,   (1) 194 

 195 

where jj
i

jj iyxez j +== θρ , )(tjη  is additive Gaussian noise, 04.0=β  and jω  is the intrinsic 196 

node frequency, which was estimated as the peak frequency of the filtered BOLD time series for each 197 

brain region averaged over the participants within one subject group for each of the 6 conditions. This 198 

normal form possesses a supercritical Hopf bifurcation at a = 0. For a > 0 the local dynamics settle 199 

into a stable limit cycle, producing self-sustained oscillations with frequency 
π
ω
2

j
jf = . For a < 0 the 200 

damped oscillations lead the system to a stable fixed point (or focus), at 0=jz , and, in the presence 201 

of noise, noise-induced oscillations are observed. 202 

In order to simulate the whole-brain dynamics a coupling term was added which represents the input 203 

from node j  to node i  scaled by the structural connectivity matrix ijC . Hence, the whole-brain 204 

dynamics are described by the following set of coupled equations: 205 

 206 

𝑑𝑑𝑧𝑧𝑗𝑗
𝑑𝑑𝑑𝑑

= 𝑧𝑧�𝑎𝑎 + 𝑖𝑖𝜔𝜔𝑗𝑗 − |𝑧𝑧|2� + 𝐺𝐺 ∑ 𝐶𝐶𝑗𝑗𝑗𝑗�𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑗𝑗�𝑁𝑁
𝑗𝑗=1 + 𝛽𝛽𝜂𝜂𝑗𝑗,  (2) 207 

 208 

This model can be interpreted as an extension of the Kuramoto model30,45 with amplitude variations, 209 

hence the choice of coupling �𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑗𝑗�, which relates to a tendency of synchronization between two 210 

coupled nodes. For each node j  the variable 𝑥𝑥𝑗𝑗 = Re�𝑧𝑧𝑗𝑗� simulates the fMRI BOLD signal using the 211 

Euler algorithm with a time step of 





⋅

2
TR1.0 . The parameter G, the global coupling strength, serves 212 

as a global coupling factor scaling equally the total input in each brain node. 213 
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 214 

2.4. Functional connectivity estimation 215 

The BOLD signal of each AAL region was detrended, demeaned and then band-pass filtered within 216 

the range of 0.04-0.07 Hz following Glerean et al.46 individually for each subject. This frequency band 217 

has been shown to be less affected by noise and to be more functionally relevant compared with other 218 

frequency bands46–49. Next, the filtered time series were z-scored for each subject. The functional 219 

connectivity (FC) matrices were then calculated for each participant in each condition. Here we 220 

calculated the FC matrix as the Pearson correlations between the BOLD signals of all pairs of regions 221 

of interest (ROIs) over the whole recording duration. To obtain group-level FC matrices we applied 222 

fixed-effect analysis by Fisher's r-to-z transforming ( )tanh(rz = ) the correlation values before 223 

averaging over all participants within each condition and then back-transforming to correlation values. 224 

Thus, we obtained 6 final FC matrices, one for each condition. For the group level comparison, the FC 225 

matrices were averaged across subjects individually for each condition and the comparison was 226 

performed for each pair of LSD - PCB scanning condition (i.e. LSD vs. PCB in rest, rest with music 227 

and rest after music conditions, respectively). To test the significance of the differences of the 228 

conditions, we generated 100 surrogate datasets where the LSD and PCB conditions are randomly 229 

permuted with a 50% chance of switching of the condition assignment, following Jobst et al.29. In this 230 

way, the group pairs get randomly mixed and thus fulfil the null-hypothesis of no difference between 231 

drug-induced conditions.  232 

 233 

In order to ensure that within the group PCB there would be no differences between FC matrices 234 

between the group of participants who received PCB in their first session and the group of participants 235 

who received PCB in their second session, we performed a similar statistical significance analysis as 236 

described above. We divided the PCB sessions in the aforementioned groups and generated again 100 237 

surrogate datasets where the group assignments are randomly permuted with a 50% chance of 238 

switching the group assignment. Thus, also here the null-hypothesis of no difference between the two 239 

groups is fulfilled and it can be analyzed if the differences of the mean FC matrices of the two groups 240 
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are significantly larger than the ones generated by the surrogate data. The results of this analysis are 241 

shown in the Supplementary Material (Supplementary Figure S1). 242 

In line with this analysis we furthermore analyzed if the differences between the LSD and PCB states 243 

showed differences between the two groups mentioned above, those who received PCB in their first 244 

session (“First”) and those who received PCB in their second session (“Second”). We again divided 245 

the data into these two groups and now compared the LSD state to the PCB state within each group, as 246 

was done in the original FC matrix analysis described above. Then, we analyzed the differences 247 

between the two groups “First” and “Second” regarding the differences between LSD and PCB states, 248 

a difference of differences so to speak. In order to test for statistical significance we again constructed 249 

surrogate data in the same fashion as described above and tested for significance. The results of this 250 

analysis can be consulted in the Supplementary Material (Supplementary Figure S2). 251 

 252 

2.5. Drug state classification with Gaussian classifier 253 

To establish how specific each of the functional connectivity matrices is to the drug state (LSD or 254 

PCB), we classified the drug state based on the covariance of fMRI signals using a jackknife cross-255 

validation approach, assuming that observations are drawn from a multivariate Gaussian distribution, 256 

following Jobst et al29 . First, we estimated the covariance ( LSDΣ  and PCBΣ ) using the data of 1−n   257 

participants (train set), where n  is the number of participants, for each drug state. Note, that in the 258 

Gaussian approximation the fMRI signals were fully determined by their covariance, since the data 259 

was z-scored and thus the mean of each fMRI time-series was zero. Then, we associated the data of 260 

the remaining subject (test set) to a drug state by selecting the zero-mean multivariate Gaussian 261 

process ( ),0( LSDΣN  or ),0( PCBΣN ) which maximises the log-likelihood of the test data given the 262 

trained model. We calculated the percentage of correct classifications across both states and the n  263 

participants. Given the zero-mean multivariate Gaussian process ),0( ΣN , the likelihood of a test N-264 

dimensional vector tX , representing the t -th time step of the test data, is given by: 265 

 266 
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( ) [ ] ,
2
1exp)det(2| 1*

2
1







 Σ−Σ=Σ −−

ttt XXXP π    (3) 267 

 268 

where )det(Σ  is the determinant of the covariance Σ  and the superscript * represents the transpose. 269 

The log-likelihood L  of the entire test time series TXX ,...,1= , where T  is the number of time steps, 270 

is given by (assuming independence of the observations): 271 

 272 

( ) ( ) ( )∏ ∑= =
Σ=Σ=Σ

T

t

T

t tt XPXPXL
1 1

|log,0|log| ,   (4) 273 

 274 

To summarize, we calculated )|( LSDΣXL  and  )|( PCBΣXL  for each test dataset X . We predicted 275 

the state LSD if )|()|( PCBLSD Σ>Σ XLXL , otherwise the predicted state was PCB. 276 

 277 

To assess statistical significance of the classification performance we computed the probability of 278 

obtaining k  correct classifications by chance: knkk
n ppCk −−= )1()Pr( , where p  is the probability 279 

of getting a correct classification by chance 





 =

2
1p  and n  is the number of tests. Significant 280 

decoding of the conditions was reached when the performance exceeded the 95th percentile of )Pr(k . 281 

 282 

2.6. Fitting the model to experimental data 283 

We explored the parameter space of the whole-brain computational model by varying the global 284 

coupling strength parameter G from 0 to 2 in steps of 0.01.To match the procedure applied on the 285 

empirical data, we filtered the simulated BOLD time series as well in the range of 0.04-0.07 Hz. 286 

Furthermore, the signal lengths of the simulated data coincided with the duration of the empirical data 287 

recordings. Next, the FC matrix was estimated on the simulated data for the whole parameter space 288 

applying the same procedure as on the empirical data. Then, the fitting between the empirical and the 289 

simulated FC matrices was calculated for each condition (i.e. LSD during rest,  rest with music and 290 
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rest after music and PCB during rest, rest with music and rest after music) for the whole parameter 291 

space using the Kolmogorov-Smirnov distance (KS distance) between the two matrices, yielding a 292 

measure of fit for each value of the parameter G for each condition. For each condition, 50 simulations 293 

of the BOLD time series were generated, and the KS-distance of fit was averaged across the 50 294 

simulations in order to minimize the random effects induced by the Gaussian noise in the model. We 295 

compared the resulting fitting curve minima with the surrogate data explained above in order to test 296 

for significant differences between the LSD and PCB conditions. The coupling parameter values, 297 

where the fitting curves were minimal, were then used for the following analysis steps. 298 

 299 

2.7. Model perturbation protocols 300 

Following Deco et al.12 we made use of the locally defined bifurcation parameter a of the Hopf model 301 

to simulate two kinds of off-line perturbation protocols evoking either deviations from the basal state (302 

0=a ) into the synchronous regime ( 0>a ) or into the noisy regime ( 0<a ). In order to investigate 303 

the local effects provoked by the perturbation of single brain areas, we perturbed each node 304 

individually, repeated the perturbation procedure 3000 times and performed statistical analyses using 305 

the error of the distribution averaged over the 3000 trials. One perturbation trial consisted in 306 

perturbing one out of 90 nodes for 100 seconds by setting its local bifurcation parameter value a to 307 

either 0>a  or 0<a . Specifically, for the synchronization perturbation protocol a was set to 0.6 and 308 

for the noise perturbation protocol to -0.6. This leads to more oscillations in the perturbed node in the 309 

synchronization case and to an artificial destruction of the basal synchronization between the perturbed 310 

node and the other brain areas in the noise case. After perturbation, the bifurcation parameter was reset 311 

to zero in the perturbed node. 312 

 313 

2.8. Integration measure 314 

Next, in order to measure the level of brain-wide simulated BOLD signal interactions over time, we 315 

applied a measure previously defined in Deco et al.50 and applied to fMRI data in Deco et al.12, which 316 

characterizes the level of integration across all brain regions for each time point. 317 
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 318 

First, the Hilbert transform was applied on the band-pass filtered simulated time series giving us the 319 

instantaneous signal phases )(tnϕ . Next, the phase locking matrix P was calculated which 320 

characterizes for each time point the pair-wise phase synchronization between two brain regions p and 321 

q: 322 

 323 

)()()( tti
pq

qpetP ϕϕ −−= ,   (5) 324 

 325 

where i is the imaginary unit (Fig. 1B). The level of integration at time t is then defined as the size of 326 

the largest connected component of the phase locking matrix averaged over thresholds12,50. We 327 

binarized the phase locking matrix P for 100 evenly spaced thresholds between 0 and 1, applying the 328 

criterion 0=<θP and 1 otherwise, and extracted for each of the thresholds the number of nodes of 329 

the largest connected component of )(tP at each time point t. We then calculated the integration )(tI  330 

at time t as the integral of the curve of the largest component as a function of the thresholds (Fig. 1C). 331 

We computed the integration over 200 seconds of simulated BOLD time series in the basal state and 332 

starting at perturbation offset in the perturbed case. 333 

 334 

2.9. Perturbative Integration Latency Index (PILI) 335 

Following Deco et al.12 we calculated the Perturbative Integration Latency Index (PILI) to characterize 336 

the return of the brain dynamics to the basal state after a model perturbation of the system (Fig. 1C). 337 

For this we used the changes of the level of integration over time from the perturbed state to the basal 338 

dynamics. 339 

 340 

First, the integration was calculated for 200 seconds of the simulated basal state (blue curve in Fig. 341 

1C), averaged over 3000 trials and finally the maximum and minimum values of the averaged curve 342 

were identified. This was done for each of the 6 conditions. Then, the system was perturbed following 343 
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the procedure described above and again the integration was computed over 200 seconds after the 344 

offset of the perturbation. This procedure was performed 3000 times. The maximum and minimum 345 

values of the basal integration curve were used to determine the moment of recovery after the model 346 

perturbation, for the synchronization and noise protocol, respectively. Then, the PILI was calculated as 347 

the integral of the integration curve from perturbation offset to the reaching point of the basal state. 348 

Finally, we computed the average PILI over trials to obtain one final value for each brain area. The 349 

PILI reflects how strong the system reacts to a model perturbation and how long it takes for it to 350 

regain its basal dynamical state. The statistical significance tests were performed across the 3000 trials 351 

applying a Mann-Whitney U test to compare between LSD and PCB induced states. 352 

 353 

2.10. Region-wise and resting state network analysis 354 

The above described procedure resulted in one PILI for each of the 90 brain areas. We compared the 355 

p-values for all brain regions between LSD and PCB in each of the three scanning conditions (rest, rest 356 

with music, rest after music), computed with the above described statistical significance test, after 357 

ordering them from smallest to largest. Bonferroni correction was applied in order to correct for the 358 

multiple comparisons across the 90 brain areas. 359 

 360 

Next, we evaluated the differences between PILI values in seven commonly observed resting state 361 

networks (RSNs): default mode network (DMN), executive control, dorsal attention, ventral attention, 362 

visual, limbic and somato-motor networks, as described in Yeo et al.51. The parcellation of the cerebral 363 

cortex into these 7 networks has been extracted from the intrinsic functional connectivity data from a 364 

group of 1000 participants51 and is available online at 365 

http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011. For each of the 7 RSN51,52, 366 

we computed the standardized difference between the PILI values in the LSD and PCB induced states 367 

by calculating Cohen's d-values, defined as 

2

22

:

PCBLSD

PCBSD

σσ

µµ

+

−
, where µ is the mean of the PILI values 368 

and σ the standard deviation,53 by taking into account only the brain areas belonging to that particular 369 
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RSN. The RSNs were then ordered from highest to lowest Cohen's d-value, where the higher the d-370 

value, the higher the difference between PILI values and thus the larger the response to a model 371 

perturbation under the influence of LSD in one particular RSN. For completeness, we furthermore 372 

tested for statistical significance between the LSD and the PCB state models in each condition for each 373 

RSN by applying a Mann Whitney U test on the final PILI values of the brain areas belonging to each 374 

particular RSN. Bonferroni correction was applied to correct for the multiple comparisons across the 7 375 

RSNs. 376 

 377 

2.11. Response variability 378 

Finally, in order to learn more about the differences between the dynamics of individual brain regions, 379 

we calculated the variability of the PILI values over different brain regions. This was done by 380 

calculating the standard deviation of the PILI values across all brain nodes for each of the 3000 trials 381 

and then comparing the distributions over trials between LSD and PCB brain state model. We 382 

evaluated statistically significant differences between the LSD and PCB induced brain states by 383 

applying a two-sided t-test. 384 

  385 
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3. Results 386 

We investigated the differences between LSD and PCB brain states in three different scanning 387 

conditions, namely LSD and PCB during rest, LSD and PCB during rest while listening to music and 388 

LSD and PCB during rest after listening to music. We applied a previously published off-line 389 

perturbational approach based on a whole-brain model, which characterizes the return of the brain 390 

dynamics to the basal state after a model perturbation of the system (see Fig. 1 for overview of the 391 

method). 392 

 393 

3.1. Functional connectivity and optimal working point 394 

Firstly, we investigated the differences in functional connectivity (FC) between the LSD and PCB 395 

brain states in all three scanning conditions. For this, we calculated the FC matrices on a subject-level 396 

basis and averaged across subjects within each condition (see section 2. Methods). To compute the 397 

differences between the LSD and PCB states, the mean FC value was computed for each condition and 398 

then compared with the surrogate data. We found a significant difference in the mean FC values 399 

between LSD and PCB in the music condition (LSD: 0.204±0.179, PCB: 0.140±0.197; p-value: 400 

0.0297). We also observed a slight increase in mean FC values during the LSD state with respect to 401 

PCB in resting conditions, which did not involve listening to music(rest: LSD: 0.186±0.175, PCB: 402 

0.154±0.202; p-value: 0.0990; rest after music: LSD: 0.181±0.171, PCB: 0.163±0.191, p-value: 403 

0.1485). However, these differences were not found to be significant (Fig. 2A). 404 

 405 

Next, we fitted the Hopf whole-brain model to the fMRI data in each condition in order to compare the 406 

effects of LSD and PCB with regards to their dynamical working point, i.e. the parameter region 407 

where the model best fits the data. The Hopf whole brain model has been previously shown to be able 408 

to simulate fMRI-BOLD network dynamics12,29,31,42 and is especially well suited for simulating 409 

external perturbations to distinct brain nodes, as demonstrated in Deco et al.12. We computed the KS 410 

distance between the empirical and the simulated functional connectivity matrices and found a shift in 411 

the optimal global coupling parameter G, i.e. the minimal KS distance, towards higher values under 412 
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the influence of LSD in all three scanning conditions (rest: LSD: 0.31, PCB: 0.27; rest with music: 413 

LSD: 0.35, PCB: 0.25, rest after music: LSD: 0.29, PCB: 0.28) with a significant difference in the 414 

music condition (p = 0.0099) (Fig. 2B). As above, to assess statistical significance, the values were 415 

compared with surrogate data obtained by randomly permuting group assignments (see section 2. 416 

Methods). 417 

 418 

To summarize, we found a global increase in functional connectivity and a shift of the optimal global 419 

coupling strength to larger values under the effect of LSD, implying a higher global level of brain 420 

connectivity in this state. 421 

 422 

3.2. Drug state classification with Gaussian classifier 423 

We assessed how specific the functional connectivity is to the drug state (LSD or PCB). The jackknife 424 

cross-validation procedure we applied consisted of: first, calculating the covariances on a subset of the 425 

data using N-1 participants, and then classifying the data of the remaining subject given the previously 426 

computed covariances (see Methods). We found that the drug states were predicted with an accuracy 427 

exceeding the significance level for all 3 scanning conditions (75% for rest, 79,17% for rest with 428 

music and 70,83% for rest after music) (Supplementary Figure S3). Importantly, these classification 429 

performances were significantly higher than expected by chance given the number of subjects. To 430 

summarize, the whole-brain covariance of single participants reliably relates to the drug state and thus 431 

even a small number of participants can be seen as representative of the two states LSD and PCB. 432 

 433 

3.3. Global differences in Integration 434 

Next, we simulated two kinds of model perturbation protocols for each brain state in order to compare 435 

the different state models with regard to their responses to a strong in silico perturbation. We 436 

compared the brain states by making use of the global integration measure (see section 2.7. Integration 437 

measure), which we used to evaluate the differences in integration. 438 

 439 
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With the adjustment of the whole-brain model to the fMRI data, we obtained a representative model of 440 

the basal brain state for LSD and PCB states in each condition. The two model perturbation protocols 441 

were then simulated by either shifting one brain node to a more synchronous state or to a noisier state 442 

for 100 s (see section 2.6. Model perturbation protocols). This was done for each of the 90 nodes 443 

representing the brain regions in the AAL parcellation. Immediately after perturbation, we quantified 444 

the perturbation-caused changes in brain-wide signal interactions over time by computing the global 445 

integration measure. 446 

 447 

In Fig. 3, the integration averaged over 3000 trials and all 90 brain nodes is displayed as a function of 448 

time. The integration is shown immediately after perturbation offset for LSD and PCB state models in 449 

each condition. We observed that the basal integration was higher for each scanning condition in LSD 450 

(dark green curve) compared with PCB (light green curve), where the difference between LSD and 451 

PCB was highest in the music condition. This implies that without perturbation, the level of BOLD 452 

signal connectedness was higher in the LSD state than in PCB. Notably, comparison of the basal 453 

integration among scanning conditions (i.e. before, during and after music listening) within both the 454 

LSD and PCB state models also revealed that the basal integration increased under the influence of 455 

LSD while listening to music, whereas in the PCB state model it decreased with music. This finding is 456 

in line with previous results that have demonstrated an enhancement of the LSD experience while 457 

listening to music9,25,26, whilst in the PCB state, music appeared here to have a contrastive effect. 458 

These results call for further exploration of the differential effects of music on brain dynamics in the 459 

psychedelic state. Regarding the perturbation protocols, we found that for all three scanning 460 

conditions, the deviations from the basal activity were both stronger and longer-lasting under the 461 

influence of LSD (violet curve)in comparison with PCB (orange curve) after being exposed to the 462 

same kind of perturbation. While this is valid for both synchronization protocols and noise protocols, 463 

the effects on the differences in integration in the LSD state model as compared to the PCB state 464 

model were much smaller for the noise protocol than for the synchronization protocol (detailed 465 

analysis in Methods - Global and local differences in Perturbative Integration Latency Index and 466 
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Supplementary Information). We therefore decided to mainly focus on the synchronization protocol 467 

for the rest of the article. The results of the noise perturbation protocol can be consulted in the 468 

Supplementary Information. 469 

 470 

3.4. Global and local differences in Perturbative Integration Latency Index 471 

In order to formally characterize the above observed changes in Integration strength and the return 472 

duration of the brain dynamics to its basal state after a model perturbation, we computed the 473 

Perturbative Integration Latency Index (PILI). The PILI is defined as the area under the integration 474 

curve up to the point it reaches the basal state. Thus, the PILI captures both, strength of deviation from 475 

the basal state and duration of the recovery. The PILI was calculated for each node by only perturbing 476 

this specific node and leaving the other nodes at their basal dynamics for 3000 trials, which were then 477 

averaged in order to obtain one single PILI value for each brain area (see section 2.8. Perturbative 478 

Integration Latency Index (PILI)). 479 

 480 

We found consistently higher PILI values for the LSD induced brain state model than for PCB in all 481 

three scanning conditions, where the effect was strongest for the music condition (Fig. 4). Again, the 482 

effect was diminished in the rest after music condition, which is most likely due to the decreased effect 483 

of LSD, as explained above. Most importantly, we demonstrate here, that the LSD and PCB brain 484 

states show very different dynamical responses to a model perturbation. In particular, the responses to 485 

the same perturbation are stronger and longer lasting under the influence of LSD with respect to PCB. 486 

Similar results were found for the noise protocol (Supplementary Figure S4). Also, here we observed a 487 

global increase in PILIs for LSD when compared to PCB for all three scanning conditions.  488 

 489 

In order to prove that the higher PILI values not only depend on the stronger deviations from the 490 

baseline brain activity, but are indeed longer lasting under the influence of LSD when compared to 491 

PCB, we furthermore calculated the time for the perturbed signals to come back to the basal state. We 492 

found, by applying a Mann Whitney U test, that for the synchronization protocol in the first resting 493 
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state 88 out of 90 nodes showed significantly higher latencies in LSD when compared to PCB, in the 494 

Rest with Music condition 90 out of 90 nodes showed significantly higher latencies in the LSD state 495 

and in the Rest after Music condition 62 out of 90 nodes showed significantly higher latencies in the 496 

LSD state. This means that the perturbation effect is also longer lasting and not only stronger in the 497 

LSD state, where the effect is most prominent in the Music condition. The latencies for the 3 LSD 498 

conditions compared to the PCB conditions can be found in the Supplementary Material (Figure S5). 499 

 500 

Next, to gain further insights into local processes, we looked at the PILI values on a node-to-node 501 

basis. We checked for statistical significance of the difference in the mean PILI value between LSD 502 

and PCB for each scanning  condition for each node applying a Mann-Whitney U test with Bonferroni 503 

correction for multiple comparison across the number of brain nodes. The results for the 504 

synchronization protocol are shown in Table 1, where the 20 brain areas with the highest PILI 505 

differences are shown in order from smallest to largest p-value with their according effect sizes 506 

Nzr /= , where N  is the number of samples. Effect sizes between 3.01.0 <− indicate small 507 

effects, 5.03.0 <−  medium effects and 5.0≥  large effects. The ordering of the rest of the brain 508 

regions and the results for the noise protocol can be found in the Supplementary Material 509 

(Supplementary Tables S2 and S3). 510 
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Rest Rest with Music Rest after Music 

Brain region p-value Effect Size Brain region p-value Effect Size Brain region p-value Effect Size 

Olfactory R 2.99e-37* 0.2328 Cingulum Mid R 1.24e-172* 0.5114 Hippocampus R 1.63e-34* 0.2237 

Thalamus L 2.70-36* 0.2297 Precuneus L 2.21e-166* 0.5019 Cingulum Ant R 2.20e-21* 0.1734 

Supp Motor Area R 4.74e-35* 0.2255 Medial OFC R 2.93e-166* 0.5017 Precuneus R 4.97e-18* 0.1580 

CingulumMid L 3.34e-33* 0.2192 Frontal Sup Medial R 1.32e-159* 0.4915 Precentral R 4.12e-15* 0.1433 

Calcarine L 1.41e-32* 0.2170 Frontal Sup Medial L 3.68e-158* 0.4892 Hippocampus L 7.24e-12* 0.1251 

Cingulum Ant R 1.80e-31* 0.2131 Frontal Sup R 9.98e-157* 0.4870 Supp Motor Area R 9.00e-12* 0.1245 

Occipital Sup R 9.14e-30* 0.2069 Frontal Sup L 1.24e-156* 0.4868 Occipital Mid L 3.36e-11* 0.1210 

Cingulum Post R 1.03e-29* 0.2067 Precuneus R 1.68e-154* 0.4834 Frontal Sup Medial R 5.16e-11* 0.1199 

Precuneus L 2.19e-29* 0.2055 Cingulum Post L 5.07e-151* 0.4779 Cingulum Mid L 6.66e-11* 0.1192 

Medial OFC L 3.74e-29* 0.2046 Cingulum Mid L 4.49e-149* 0.4748 ParaHippocampal R 7.58e-11* 0.1188 

Putamen L 4.22e-29* 0.2044 Cingulum Post R 6.79e-149* 0.4745 Medial OFC L 2.80e-10* 0.1152 

Thalamus R 8.44e-29* 0.2033 Medial OFC L 2.74e-147* 0.4719 Cingulum Ant L 9.31e-10* 0.1118 

Calcarine R 2.85e-28* 0.2013 Caudate L 2.64e-144* 0.4670 Frontal Sup R 3.58e-09* 0.1078 

Putamen R 2.86e-28* 0.2013 Olfactory R 1.63e-139* 0.4591 Fusiform R 3.62e-09* 0.1077 
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Lingual L 3.52e-28* 0.2010 Frontal Sup Orb L 1.26e-136* 0.4542 Cingulum Mid R 4.11e-09* 0.1073 

Olfactory L 1.10e-27* 0.1991 MedialOFC R 1.22e-132* 0.4474 Calcarine R 4.54e-09* 0.1070 

Precuneus R 1.12e-26* 0.1952 Cingulum Ant R 5.57e-132* 0.4463 Temporal Pole Sup L 1.10e-08* 0.1043 

Cingulum Post L 1.58e-26* 0.1946 Supp Motor Area R 5.64e-131* 0.4446 Frontal Mid Orb L 1.55e-08* 0.1033 

Frontal Sup Medial L 3.00e-26* 0.1935 Cingulum Ant L 1.03e-130* 0.4441 Precuneus L 2.14e-08* 0.1022 

Cingulum Ant L 3.87e-26* 0.1931 Frontal Sup Orb R 5.13e-130* 0.4429 Temporal Inf L 3.25e-08* 0.1009 

 511 

* statistically significant after Bonferroni correction 512 

Table 1: Node level PILI differences. In this table brain nodes are ordered for each scanning condition by p-values - from smallest to largest -, based on the PILI 513 

differences between LSD and PCB by perturbing each specific node at a time. Here the 20 regions with the smallest p-values are shown with their corresponding 514 

effect sizes. 515 
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Ordering the brain regions by p-values of each scanning condition revealed that globally p-values were 516 

lower and effect sizes higher for the rest with music condition with respect to the other resting 517 

conditions, which confirms previous findings on the amplified effect of LSD while listening to 518 

music25,33. The brain regions with small p-values in all three scanning conditions, were the cingulate 519 

cortex, the precuneus, the medial OFC and the supplementary motor area. Other regions where high 520 

differences between LSD and PCB could be observed were the calcarine sulcus, the olfactory sulcus, 521 

the superior frontal gyrus and the medial frontal gyrus, thalamus and hippocampus. 522 

 523 

Taken together, these results reveal that the dynamical responses of the brain as a whole to an external 524 

model perturbation are stronger and longer lasting under the influence of LSD when compared to 525 

PCB. Furthermore, this effect is amplified in the model estimated from data in which participants 526 

listen to music. Next, we performed the same analysis on a resting state network level, in order to 527 

assess whether some networks exhibit larger responses to external perturbations than others and more 528 

importantly, whether those networks coincide with the ones which have been reported to be relevant 529 

for the LSD experience. 530 

 531 

3.5. Relationship of PILI to resting state networks 532 

Next, we assessed the differences in PILI values based on the synchronization protocol in seven 533 

reference RSNs - default mode, executive control, dorsal attention, ventral attention, visual, limbic and 534 

somato-motor networks - by computing Cohen's d values, a standardized difference measure, between 535 

LSD and PCB PILI values for each RSN. Furthermore we tested for statistical significance of the 536 

differences between LSD and PCB state models for each RSN 537 

 538 

The differences between LSD and PCB state models for all 7 RSNs in the resting state and music 539 

condition have been found to be statistically significant. In the rest after music condition 5 out of the 7 540 

networks don’t survive the Bonferroni correction for multiple comparisons. The table of the 541 

corresponding p-values can be found in the Supplementary Material (Supplementary Table S4). 542 
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Notably, in all three scanning conditions, three RSNs were found to have the highest PILI differences 543 

between the LSD and PCB state models: i.e. the limbic, visual and default mode networks. The limbic 544 

network showed the highest differences in all three cases (see Fig. 5, where the RSNs were ordered for 545 

each of the three scanning conditions by Cohen's d values, darker colours indicate higher difference). 546 

In both of the no-music conditions, the visual network seemed to play an important role, whereas in 547 

the music condition the default mode network showed higher differences in PILI values than the visual 548 

network. In the resting state conditions, the somato-motor network came fourth to the first three RSNs 549 

by Cohen's d values, whilst in the music condition, the ventral attention network gained more 550 

importance. 551 

Overall, these results highlight that in particular three resting state networks, limbic, visual and default 552 

mode, show highly increased sensitivity under the influence of LSD, in line with previous studies6,8. 553 

Importantly, our findings propose a mechanistic explanation for the enhanced emotional, visual and 554 

self-referential processing due to increased sensitivity of the limbic, visual and default mode networks, 555 

respectively, in the psychedelic state. 556 

 557 

3.6. Increased perturbation response variability in LSD condition 558 

Finally, we analyzed the perturbation response variability across all brain regions. This was done by 559 

computing the standard deviation of the PILI values over brain nodes. In Fig. 6 we show the 560 

distribution over the 3000 trials of the standard deviation for all three scanning conditions and both 561 

drug states for the synchronization protocol. We found that the differences in variability between LSD 562 

and PCB were highly significant (p < 0.0001) in all three scanning conditions, with higher response 563 

variability under the influence of LSD than for PCB. This effect was strongest in the music condition 564 

and again less apparent in the after-music condition. 565 

566 
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4. Discussion 567 

We applied a novel in silico model-based perturbational approach to analyze the perturbation-elicited 568 

changes in global and local brain activity under the influence of LSD compared with PCB in three 569 

consecutive scanning conditions, namely a resting state followed by resting while listening to music 570 

and finally a post-music resting state. Besides finding an increase in global functional connectivity and 571 

a shift of the brain's global working point to higher connectivity in the LSD state, we showed that 572 

under the influence of LSD, brain dynamics show a larger divergence from and take longer to return to 573 

baseline activity after a strong model perturbation compared with the PCB state. Although we found 574 

that this effect was global on the whole cortex, our findings also revealed that certain brain regions and 575 

networks, such as the limbic network, the visual network, and the default mode network, were most 576 

sensitive to these changes. Finally, we also evaluated the differences between LSD and PCB with 577 

regard to the variability of these perturbational responses and found higher response variability under 578 

the influence of LSD. 579 

 580 

We found that the empirical functional connectivity was higher on average in the LSD condition 581 

compared with the PCB condition, and this difference was especially pronounced in the music 582 

condition (Fig. 2A), where the effects of LSD seem to be amplified - as reported in the literature9,25,26. 583 

This finding consolidates the results of previous studies, where it was found that high-level association 584 

cortices and the thalamus exhibit increased global functional connectivity under the influence of 585 

psychedelics8,54,55. At least two previous studies have found increased thalamic functional connectivity 586 

to various cortical regions54,55 and another found a dramatic increase in functional connectivity 587 

between the primary visual cortex and other cortical areas under LSD -an effect that correlated 588 

strongly with ratings of enhanced visual imagery6. Similar results have been reported for other 589 

psychedelic drugs such as psilocybin (the main psychedelic component of magic mushrooms). One 590 

study found an expanded repertoire of dynamical brain states under the influence of psilocybin, 591 

characterized by an increase of the variance of the Blood-Oxygen Level Dependent (BOLD) signal 592 

measured with (fMRI) and a higher diversity of dynamic functional connectivity states7. In another 593 
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study psilocybin was found to have an increasing effect on DMN-Task-positive network (TPN) 594 

functional connectivity, thus underlining similarities of the psychedelic state to psychosis and 595 

meditatory states, where the same effect has been found54. Yet another study by Roseman et al56 found 596 

an increase in between-network functional connectivity under psilocybin, suggesting that the 597 

psychedelic state makes networks become less differentiated from each other. All these findings 598 

confirm our results of an increase of global functional connectivity. 599 

 600 

Additionally to comparing the functional connectivity between LSD and PCB, we also assessed how 601 

specific the functional connectivity is to the drug state, meaning how well the functional connectivity 602 

of a single participant relates to either the LSD or the PCB state. We found that the brain states were 603 

predicted with an accuracy exceeding the significance level for all 3 scanning conditions (see 604 

Supplementary Figure S3). The finding that the FC matrices of single participants can be classified to 605 

the corresponding drug state with an accuracy higher than the chance level, implies that the 606 

characteristics of the single subjects are reflected in the group-level results. Importantly, these 607 

classification performances were significantly higher than expected by chance given the number of 608 

subjects. This suggests that also a small number of participants, as is the case in this study, and the 609 

characteristics of their fMRI recordings for each of the two drug states can be seen as a representative 610 

sample which can be used to draw general conclusions on a global level. Nevertheless, it would be 611 

undoubtedly advantageous to perform further similar experiments in the future with more participants 612 

involved. 613 

 614 

In order to study the whole-brain dynamics underlying the psychedelic state, first, we applied a whole-615 

brain model based on the normal form of a supercritical Hopf bifurcation simulating directly the fMRI 616 

BOLD responses. Our analyses revealed that the global working region of brain dynamics shifts to 617 

higher global coupling parameters in the LSD state when compared with PCB. Notably however, 618 

statistical significance was only reached in the music condition, implying that the differences in brain 619 

dynamics between the LSD and PCB state may be accentuated under conditions of significant 620 
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emotional evocation here represented by listening to music (Fig. 2B). This result underlines yet again 621 

the enhancing effect of music on the psychedelic state, as previously reported9,25,26. Taken together, 622 

our results suggest increased propagation of activity and enhanced communication between distinct 623 

brain regions. This finding is in agreement with previous studies that have demonstrated that the 624 

dynamical repertoire of the brain expands under the influence of psilocybin7, implying that, in this 625 

state, the brain operates in a different dynamic working region. Similar findings have also been 626 

recently demonstrated by Atasoy et al.33, where LSD was found to tune brain dynamics closer to 627 

criticality, entailing an increase in the diversity of the repertoire of brain states – a finding replicated 628 

more recently using both LSD and psilocybin data57. Increased brain criticality is consistent with the 629 

so-called entropic brain hypothesis58,59- and note the schematic figure 2 in Carhart-Harris et al.32.  630 

 631 

In order to understand the optimal working point of brain dynamics in each scanning condition, we 632 

evaluated the responses to strong off-line model perturbations in each state. In a previous study12, this 633 

method was successfully used to discriminate between awake and sleep states. The importance of this 634 

new methodology lies in the fact that perturbations are exclusively applied in silico to a whole-brain 635 

computational model, allowing for stronger, longer lasting and brain node-specific perturbations in 636 

ways not possible experimentally. Furthermore, an important difference of this model-based 637 

perturbation approach to previously described perturbation procedures13,15,35 is the fact that with this 638 

new approach, we measure the recovery characteristics of the system after the offset of the 639 

perturbation, not the dynamical reaction to the perturbation itself. 640 

 641 

Following this approach, we characterized return to the basal brain activity by the Perturbative 642 

Integration Latency Index (PILI). Interestingly, we found differences in the global integration, even 643 

without applying any perturbation, where the basal integration was increased under LSD in contrast to 644 

PCB, which was again amplified in the music condition (Fig. 3). These findings indicate that the 645 

communication and interaction between distinct brain areas is enhanced under the influence of LSD, in 646 

line with the previous study of Tagliazucchi et al., where, amongst other findings, LSD was found to 647 
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increase global integration by enhancing the level of communication between normally distinct brain 648 

networks8. Similar effects could be observed with psilocybin56,60. Interestingly, we also observed an 649 

increase in the basal integration in the music condition under LSD, while music during PCB condition 650 

led to a slight decrease in the basal integration. This opposing effect of music in the LSD versus PCB 651 

conditions could be related to an accentuated psychological response to music under psychedelics, as 652 

observed more generally in the psychedelic research literature9,25,26. The effect of music on brain 653 

activity in the placebo condition appeared to be more consistent with a generic ‘focused’ brain 654 

response – as suggested by a decrease in brain-wide integration and a narrowing of the repertoire of 655 

activity61,62. Music could be characterized as a type of (felt) intrinsic perturbation under LSD but 656 

perhaps less so under placebo, where it is more likely to be witnessed more as an external object. That 657 

there was less of a difference between the LSD and placebo condition in the final resting state scan 658 

(post-music), could be due to a waning effect of the drug (i.e. a pharmacokinetic factor) - as described 659 

in the Materials and Methods section, the third and final fMRI session (rest after music) was more 660 

temporally distanced to the subjective peak effect of the drug than the first two sessions -, or a residual 661 

effect of having just listened to music, e.g. stabilising mind and brain dynamics under LSD, such that 662 

they differ less from those of the placebo condition. It would be useful to test these speculations in the 663 

future with more experiments. 664 

It was evident that almost every node revealed a marked difference in PILI values under LSD versus 665 

placebo (see Supplementary Tables S2 and S3) – and this was evident across all three scanning 666 

conditions (rest, rest with music, rest after music). A higher PILI value indicates that the perturbed 667 

node shows increased sensitivity and stronger reaction to a model perturbation and requires longer 668 

recovery time to return to normal baseline activity. This suggests there is a diminished ability of the 669 

brain to homeostatically ‘right itself’ after perturbation under LSD. It is well established that slowness 670 

of recovery to perturbation is a key property of critical systems, where it is sometimes referred to in 671 

the literature as “critical slowing”63. That the brain should exhibit critical slowing under psychedelics 672 

was recently hypothesised in a narrative review on the effects of psychedelics on global brain function 673 
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(and note figure 2 in this article)32. The present findings therefore provide important empirical support 674 

for this principle. 675 

 676 

Heightened sensitivity and the stronger reaction to a model perturbation in the LSD state models is 677 

also consistent with the work of Schartner et al.36, where elevated measures of MEG-recorded 678 

spontaneous or resting state brain complexity was found under psychedelics using an approach not 679 

unrelated to that of Massimini and colleagues13,15,64,65, who used TMS and complexity measures to 680 

characterise (diminished) states of consciousness. The here described effect of a simulated 681 

perturbation to LSD fMRI data could be regarded as a logical extension of these previous studies, 682 

where actual brain stimulation may be difficult to perform under a potent psychedelic. Moreover, the 683 

finding of elevated brain complexity is consistent with the finding of Schartner et al.36, Atasoy et al.33 684 

as well as the entropic brain hypothesis58,59, which stipulates that within reasonable bounds, the 685 

complexity or entropy of spontaneous activity indexes the richness of conscious experience, where 686 

greater ‘richness’ implies greater diversity and depth.  687 

 688 

Analyzing the perturbation-elicited differences on a local node and network level (Fig. 4 and Table 1), 689 

we found that some brain regions and networks were more dominant regarding differences in PILI 690 

than others. For example, the limbic network yielded the highest perturbation-elicited differences 691 

between the LSD and the PCB state models indicating an enhanced sensitivity of this network under 692 

the effect of LSD. Within this network, the cingulate cortex showed a remarkably large sensitivity (p < 693 

10-8, effect size: 0.51 in music condition). The cingulate cortex, and the limbic system more generally, 694 

are both implicated in emotional processing66. Moreover, they are both also implicated in the brain 695 

action of psychedelics67–70. Interestingly, limbic brain regions, especially the medial temporal lobe, 696 

have been associated with producing transient dreamlike states with visual hallucinations, similar to 697 

psychedelic-like phenomena, upon electrical depth stimulation71–74, also supporting the involvement of 698 

these brain regions in psychedelic visions. The here presented finding of enhanced sensitivity to a 699 

model perturbation of the limbic network supports the well known effect of LSD to facilitate 700 
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emotional arousal75. One could infer that heightened sensitivity of the limbic circuitry in particular is 701 

implicated in the heightened emotional responsivity that has been found in relation to psychedelic 702 

therapy25,76,77 . The release of emotional content is thought to be a key aspect of the therapeutic action 703 

of psychedelic therapy75,76. Abnormal functioning of the limbic circuitry is well reported in mood 704 

disorders– and depression in particular78,79 which has been the target of psychedelic therapy75,76. 705 

 706 

Two other networks, the visual network and the default mode network (DMN), were strongly altered 707 

by LSD, consistent with previous studies reporting changes in the functioning of visual areas and in 708 

the functional properties of the DMN under LSD6,8. Consistent with this result, brain changes 709 

involving visual regions have been found to correlate with eyes-closed imagery under LSD6, while 710 

changes in DMN properties have been found to correlate with high-level characteristics of the 711 

experience, including ego dissolution8. 712 

 713 

Finally, in order to understand the level of variation across brain nodes in the perturbation response, 714 

we analyzed the perturbation response variability by looking at the variance over nodes of the 715 

perturbation-elicited responses. Larger variance over brain nodes means higher heterogeneity across 716 

brain regions. A larger response variability signifies that each brain region is becoming more 717 

independent in its activity after a strong model perturbation. We found that the response variability 718 

was significantly higher in all three scanning conditions under LSD than PCB (Fig. 6), which indicates 719 

an enhanced diversity in brain dynamics, as also previously suggested for the LSD state33. This effect 720 

is consistent with what one would expect from a breakdown in the usual hierarchical constraints 721 

governing global brain function. Interestingly, abnormal hierarchical organization has previously been 722 

associated with neuropathological disorders such as depression, with changes in multimodal network 723 

organization80 as well as psychosis and schizophrenia, with connectivity disturbances afflicting 724 

hierarchical brain organization80 leading to attenuated top-down cognitive control81. Furthermore 725 

autism also has been found to relate to differences in this multimodal network hierarchy82. The 726 

relationship between hierarchical organization in the brain and criticality (including critical slowing) 727 
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was the focus of a recent major review on the acute and potential therapeutic action of psychedelics32 – 728 

and flattened functional hierarchy in the brain has recently been observed in formal ‘gradient-based’ 729 

analyses applied to the present dataset83.  730 

 731 

The present study’s results suggest fundamental changes in brain dynamics and complexity under the 732 

influence of psychedelic drugs, consistent with the brain moving closer to a critical regime in which 733 

the brain is exquisitely sensitive to perturbation. These findings are therefore consistent with recent32 734 

and older theoretical models of the effects of psychedelics on global brain function59,84. They also bear 735 

significant relevance to principles of psychedelic psychotherapy, where great emphasis is placed on 736 

the importance of context, or ‘set and setting’, as a principal modulator of outcomes85. More plainly, 737 

the present findings of increased brain sensitivity to perturbation under LSD could be interpreted as 738 

related to evidence-based assumptions25 about increased emotional sensitivity to environmental and 739 

other contextual factors (such as music) under psychedelics85.  740 

 741 

The present version of the model allows us to understand how the global changes induced by LSD 742 

(i.e., global coupling) interact with the connectome and produce different network dynamics. The main 743 

limitation of the model is its homogeneity. In this model, all the brain regions were assumed to have 744 

the same intrinsic dynamics (a = 0). Therefore, within this model, the differences in the dynamics of 745 

the brain regions were a consequence of the different effective connectivity of the regions. The model 746 

could be extended by introducing heterogeneity in local dynamics (i.e., by allowing the parameter a to 747 

vary between brain regions, thus requiring the estimation of N new model parameters). This extension 748 

might be useful to investigate local changes produced by LSD. A further limitation of the model is its 749 

limited frequency range. Since the model was constructed based on BOLD signals, it can only produce 750 

slow frequencies. Probing the model with MEG signals could provide insights on how LSD affects the 751 

different frequency bands of brain activity. 752 

 753 

 754 
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In summary, by exploring the underlying mechanistic properties of the whole-brain dynamics in the 755 

LSD state using a novel in silico perturbational approach, we have provided important new insights 756 

into global brain function underlying a possible altered state of consciousness that could bear 757 

relevance to our understanding of brain function and conscious states more generally. Importantly, the 758 

perturbational approach based on whole-brain modelling allows for the exploration of characteristic 759 

changes in whole-brain dynamics in ways that are extremely challenging to do via in vivo 760 

experiments. Furthermore, the here presented results enrich our understanding of how psychedelic 761 

drugs may have therapeutic utility and suggest future research directions, in which the neural 762 

mechanisms underlying their clinical use can be further explored. 763 

  764 
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 1015 

 1016 

Figure 1: Calculation of the Perturbative Integration Latency Index (PILI). A. Initially, the 1017 

computational whole-brain model was built based on the empirical structural connections between the 1018 

90 brain nodes. In this model each brain area was represented by a supercritical Hopf bifurcation. The 1019 

model was fitted to the empirical functional connectivity in each of the 6 conditions, thus resulting in 1020 

an optimal global coupling parameter for each condition. B. Next, we simulated the BOLD time series 1021 

in each brain node for the basal dynamics and for the two perturbed states. The signals were band-pass 1022 

filtered and Hilbert transformed to obtain the instantaneous phases and to subsequently calculate the 1023 

phase locking matrix for each time point. C. Next, the integration was calculated as a function of time 1024 

over 200 seconds in the basal state and after the offset of a model perturbation in either the 1025 

synchronous or the noisy regime (here only shown the synchronous regime). The integration was 1026 

computed by binarizing the phase locking matrix for different thresholds and calculating the number 1027 

of areas in the largest connected component and finally integrating over thresholds. Finally the PILI 1028 
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was calculated, which characterizes the return of the brain dynamics to the basal state after a model 1029 

perturbation of the system. For each trial, the PILI was computed as the integral under the curve of 1030 

integration values after the offset of the model perturbation (yellow) until reaching the maximum of 1031 

the basal state (blue). The final PILI was obtained by averaging over trials. (see section 2. Methods for 1032 

detailed explanation). 1033 
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 1035 

 1036 

Figure 2: Empirical functional connectivity and model fitting. In A the functional connectivity 1037 

matrices are shown for each of the 6 conditions. Significance tests have been performed between the 1038 

LSD and PCB conditions resulting in a significant difference in the mean functional connectivity 1039 

between the LSD and the PCB state in the music scanning session. In B the mean and standard 1040 

deviation over 50 realizations of the KS distance between the empirical and the simulated functional 1041 

connectivity matrices are shown for each condition as a function of the global coupling strength. The 1042 

optimal fit corresponds in each condition to the minimal KS distance. We found a significant 1043 

difference between the optimal fit in the LSD and the PCB state in the music scanning session. 1044 
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 1046 

 1047 

Figure 3: Mean integration. The integration averaged over trials and nodes and the standard 1048 

deviation of the integration over nodes is shown as a function of time for the three scanning conditions 1049 

for both perturbation protocols. The mean and standard deviation of the integration are shown in dark 1050 

green and light green for the basal state of the LSD and the PCB state, respectively. The mean and 1051 

standard deviation of the integration are indicated in violet and orange and for the LSD and the PCB 1052 

state, respectively. 1053 
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 1055 

 1056 

Figure 4: PILI - Node level analysis. Here the mean and the standard error of the mean (SEM) of the 1057 

PILI values over trials are shown for each of the three scanning conditions for the LSD and the PCB 1058 

state for all 90 brain regions. The vertical error bars represent the SEM for the PCB state and 1059 

horizontal error bars represent the errors for the LSD state. The results show that the global differences 1060 

between the LSD and PCB induced brain states were amplified in the music condition. Node-by-node 1061 

analysis with corresponding p-values can be found in Table 1 and Supplementary Table S2.  1062 
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 1063 

Figure 5: PILI - RSN analysis. The differences between the PILIs in LSD and PCB are shown on an 1064 

RSN level. For all the nodes forming part of one RSN the Cohen's d value was calculated based on the 1065 

mean and standard deviation over nodes in each state, indicating the standardized mean difference 1066 

between the PILIs of each RSN in LSD and PCB. This was done for each of the 7 RSNs. The RSNs 1067 

were ordered for each scanning condition (rest, rest with music, rest after music) by Cohen's d values, 1068 

where darker colours indicate larger differences in PILI between the LSD and PCB conditions. The 1069 

white area, which represents the corpus callosum and the subcortical structures, is to be discarded. It 1070 

should be noted that the differences between PILI values in LSD and PCB state models for each RSN 1071 

have found to be statistically significant in the rest and the rest with music condition. In the rest after 1072 

music condition only 2 out of 7 networks (limbic network and DMN) show statistically significant 1073 

differences (see Supplementary Table S4).  1074 
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 1075 

 1076 

Figure 6: Response variability. Here the distribution over trials of the standard deviation of PILI 1077 

values is shown for the three different scanning conditions for LSD and PCB. Statistical differences 1078 

between LSD and PCB brain states were evaluated with a two-sided t-test resulting in highly 1079 

significant differences in all three scanning conditions with significantly higher PILI variability in the 1080 

LSD state with respect to PCB. Especially in the music condition under the influence of LSD a 1081 

considerably larger response variability can be observed with a p-value significantly smaller than 1082 

0.0001. 1083 
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