
 1 

 

Manuscript Word Count: 2987 1 

 2 

 3 

 4 

Title: Associations between brain structure and sleep patterns across adolescent development 5 

 6 

Authors: 7 
Maria Jalbrzikowski, PhD1 8 
Rebecca Hayes, PhD1 9 
Kathleen E. Scully, BS1 10 
Peter L. Franzen, PhD1 11 
Brant P. Hasler, PhD1,2,3 12 
Greg J. Siegle, PhD1,2,3 13 
Daniel J. Buysse, MD1,3 14 
Ron E. Dahl, MD4 15 
Erika E. Forbes, PhD1,2,3,5 16 
Cecile D. Ladouceur, PhD1 17 
Dana L. McMakin, PhD6 18 
Neal D. Ryan, MD1 19 
Jennifer S. Silk, PhD4 20 
Tina R. Goldstein, PhD1,4 21 
Adriane M. Soehner, PhD1 22 
 23 
1Department of Psychiatry, University of Pittsburgh School of Medicine 24 
2Department of Psychology, University of Pittsburgh 25 
3Department of Clinical and Translational Science, University of Pittsburgh School of Medicine 26 
4Department of Public Health, University of California, Berkeley 27 
5Department of Pediatrics, University of Pittsburgh School of Medicine 28 
6Department of Psychology, Florida International University 29 

 30 

 31 

Corresponding Author: 32 
Adriane Soehner, PhD 33 
Department of Psychiatry 34 
University of Pittsburgh 35 
Loeffler Building, Room 304 36 
121 Meyran Ave 37 
Pittsburgh, PA 15213 38 
412-383-8200 39 
soehneram2@upmc.edu 40 
 41 

 42 

 43 

 44 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.05.424689doi: bioRxiv preprint 

mailto:soehneram2@upmc.edu
https://doi.org/10.1101/2021.01.05.424689


 2 

 

KEY POINTS 45 

 46 

Question: Does age modulate associations between gray matter structure and actigraphic 47 

sleep patterns across adolescent development? 48 

Findings: This cross-sectional study reports stable associations between regional gray matter 49 

structure and shorter duration, later timing, and poorer continuity of sleep from ages 9 to 25 50 

years-old, as well as developmentally-specific associations that are present only from late 51 

childhood to early-to-mid adolescence. 52 

Meaning: Stronger coupling of gray matter and sleep patterns from late childhood to early-to-53 

mid adolescence potentially implicates this discrete developmental window as a period of 54 

vulnerability to adverse sleep-brain interactions. Sleep intervention during this developmental 55 

stage may support healthier neurodevelopmental trajectories.   56 

 57 
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ABSTRACT 74 

 75 

Importance: Structural brain maturation and sleep are complex processes that exhibit 76 

significant changes over adolescence and are linked to healthy physical and mental 77 

development. The precise timing and magnitude of these changes influence function throughout 78 

the lifespan. However, the relationships between gray matter structure and sleep patterns 79 

during adolescence are not fully understood. A detailed characterization of brain-sleep 80 

associations during this sensitive period is crucial for understanding factors contributing to 81 

optimal neurodevelopmental trajectories in adolescence. 82 

Objective: To investigate whether sleep-gray matter relationships are developmentally-invariant 83 

(i.e., stable across age) or developmentally-specific (i.e., only present during discrete time 84 

windows) from late childhood through young adulthood. 85 

Setting: The Neuroimaging and Pediatric Sleep Databank was constructed from 8 research 86 

studies conducted at the University of Pittsburgh between 2009 and 2020. 87 

Participants: The final sample consisted of 240 participants without current psychiatric 88 

diagnoses (9-25 years), and with good quality sleep tracking and structural MRI (sMRI) data. 89 

Design: Participants completed a sMRI scan and 5-7 days of wrist actigraphy to assess 90 

naturalistic sleep. We examined cross-sectional associations between sMRI measures and 91 

sleep patterns, as well as the effects of age, sex, and their interaction with sMRI measures on 92 

sleep.  93 

Main Outcome(s) and Measure(s): Using Freesurfer software, we extracted cortical thickness 94 

and subcortical volumes from T1-weighted MRI. Sleep patterns (duration, timing, continuity, 95 

regularity) were estimated from wrist actigraphy.  96 
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Results. Shorter sleep duration, later sleep timing, and poorer sleep continuity were associated 97 

with a stable pattern of thinner cortex and altered subcortical volumes in diverse brain regions 98 

across adolescence. In a discrete subset of regions (e.g., posterior cingulate), thinner cortex 99 

was associated with these sleep patterns from late childhood through early-to-mid adolescence, 100 

but not in late adolescence and young adulthood.  101 

Conclusions and Relevance: In childhood and adolescence, developmentally-invariant and 102 

developmentally-specific associations exist between sleep patterns and gray matter structure, in 103 

a wide array of brain regions linked to many sensory, cognitive, and emotional processes. Sleep 104 

intervention during specific developmental periods could potentially promote healthier 105 

neurodevelopmental outcomes. 106 

 107 

108 
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INTRODUCTION 109 

Structural brain maturation and sleep are complex processes that exhibit significant 110 

changes during adolescent development. The precise timing and amount of these changes in 111 

youths likely influences multiple adult outcomes. Optimal sleep and brain maturation are each 112 

known to influence adolescent health and functioning, including academic/vocational 113 

achievement, mental health, and/or risk behaviors1–10.  However, relationships between gray 114 

matter structure and sleep patterns over adolescence are not fully understood; furthermore, it is 115 

unknown whether these relationships vary as a function of age. A detailed characterization of 116 

brain-sleep relationships in adolescence is important for understanding factors contributing to 117 

optimal neurodevelopmental trajectories during this sensitive period. 118 

Many brain regions implicated in cognitive and emotional outcomes show a protracted 119 

developmental course through adolescence11–15, indicating that periods of heightened plasticity 120 

also come with greater vulnerability15,16. Cortical thickness usually peaks by age 9-10 and then 121 

decreases until early adulthood, particularly in frontal, parietal, and temporal regions4,12,17–23. 122 

Most subcortical regions increase in volume until ~14-15 years, with growth plateauing 123 

afterwards13,24,25. Deviations from these normative trajectories may increase vulnerability to 124 

diverse negative outcomes, including poorer academic performance, mental health difficulties, 125 

and/or risky behaviors.  126 

During adolescence, brain structural maturation is accompanied by multiple cognitive, 127 

behavioral, and emotional changes, including changes in sleep. Adolescence is characterized 128 

by a circadian phase delay and reduced homeostatic sleep drive, contributing to later sleep 129 

timing26,27. These biological shifts converge with psychosocial and behavioral factors (e.g., 130 

school start times, peer socializing) to result in insufficient sleep and, at times, poorer sleep 131 

regularity or continuity26,27. Disruptions to the timing, duration, continuity, and regularity of sleep 132 

predict and track with the severity of adverse cognitive and emotional outcomes (e.g., poor 133 

school performance, depression, substance use)28–32.   134 
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Developmental shifts in sleep characteristics may possess reciprocal relationships with 135 

brain structural maturation33–36, ultimately influencing diverse outcomes. While sleep serves 136 

multiple purposes, one such function is to support synaptic plasticity and reorganization of brain 137 

circuitry24. Sleep disruption was originally considered a consequence of brain structural 138 

abnormalities; however, recent animal data indicate that sleep disruption during periods of 139 

heightened developmental plasticity also cause deviations in brain maturation37–39. These 140 

translational studies imply stronger brain-sleep relationships in certain developmental 141 

windows37,40. Yet, in humans it is unknown whether brain-sleep relationships are stable across 142 

adolescent development (i.e., developmentally-invariant relationships) or only occur during a 143 

discrete window of development (i.e., developmentally-specific relationships). Developmentally-144 

specific brain-sleep relationships could inform the optimal timing of brain and/or sleep-based 145 

interventions that promote healthier neurodevelopmental outcomes. Several initial reports have 146 

identified ties between diverse gray matter structures and sleep in pediatric populations41–48. 147 

However, developmentally-specific relationships have not been examined and these studies 148 

have been restricted to retrospective self-report or lab-based sleep measures that do not reflect 149 

usual sleep. An important next step is to evaluate how brain structure relates to objective, 150 

ecologically-valid sleep patterns (as captured by wrist actigraphy) through a developmental lens. 151 

To address these open questions, we created the Neuroimaging and Pediatric Sleep 152 

(NAPS) Databank, a large, harmonized cross-sectional databank comprised of healthy children, 153 

adolescents, and young adults (ages 9-25yr). We estimated sleep from wrist actigraphy and 154 

sMRI measures from T1-weighted MRI. Given that a wide array of sMRI measures have been 155 

associated with sleep, we conducted data-driven regularized regression analyses, to test many 156 

potential predictors while minimizing the issues of predictor inter-correlation and multiple 157 

comparisons. We explored developmentally-invariant and developmentally-specific associations 158 

between sMRI measures (subcortical volume, cortical thickness) and core sleep dimensions 159 

(sleep duration, timing, continuity, regularity). Because there are important sex differences in 160 
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sleep and brain development17,49–54, we also explored the interaction between self-reported sex 161 

and neuroimaging measures on sleep outcomes.  162 

 163 

METHODS 164 

Participants 165 

The initial NAPS databank includes a total of 307 participants drawn from eight 166 

University of Pittsburgh studies conducted between the years of 2009 to 2020. Studies were 167 

considered for inclusion in NAPS if they included: a) actigraphic sleep monitoring; b) a sMRI 168 

scan; c) a baseline assessment reflecting naturalistic sleep; and d) participants aged 8-30 169 

years-old (inclusive). Participant-level inclusion criteria were: a) 8-25 years-old; b) absence of 170 

current psychiatric diagnosis based on clinical interview (i.e., KSADS, SCID); c) no current 171 

psychotropic or hypnotic medication use; d) ≥5 days of good quality actigraphic sleep monitoring 172 

composed of both weekday and weekend days; e) good quality MRI scan. Demographics of the 173 

final analytic sample of N=240 are described in Table 1. Demographics by protocol are reported 174 

in eTable 1 and reasons for participant exclusion are documented in the eMethods. 175 

Neuroimaging Methods and Outcomes 176 

Please see eTable 2 for sMRI protocol parameters. We used the FreeSurfer analysis 177 

software55–58 (v6.0) to extract measures of cortical thickness (Desikan-Killiany atlas59, n=34 178 

measures) and subcortical volume (aseg.mgz atlas, n=8 measures) averaged across two 179 

hemispheres. We implemented a quality assessment pipeline developed by and used for the 180 

Enhancing Neuroimaging Genetics through Meta-Analysis consortium60–70. An automated 181 

MRIQC T1w-classifier determined individual scan quality based on a reference template71. We 182 

adjusted neuroimaging data for scanner protocol effects with ComBat72,73.  183 

Wrist Actigraphy 184 

Actigraphy is a well-validated and widely-used tool for objectively assessing naturalistic 185 

sleep in children, adolescents, and adults74–76. Participants continuously wore wrist actigraphs 186 
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on their non-dominant wrist during a monitoring period of 5 or more consecutive days77. eTable 187 

1 describes the number of participants who wore watches from Philips Respironics (PR; 188 

Actiwach-64, Actiwatch2, Spectrum series) or Ambulatory Monitoring, Inc. (AMI; Basic 189 

Octagonal Motionlogger). Wrist activity was sampled in 1-minute intervals (epochs). Participants 190 

were asked to indicate via button press the start and end of each sleep interval.  191 

We estimated sleep from wrist actigraphy using a combination of validated brand-192 

specific sleep algorithms (PR Medium Threshold; AMI Sadeh) and standardized visual editing 193 

procedures78–80. Trained scorers blinded to neuroimaging data manually identified rest intervals 194 

based on a combination of event markers indicated by participants and clear changes in activity 195 

and (if available) environmental light level recorded by the device. Brand-specific sleep scoring 196 

algorithms estimated sleep within each rest interval74,75,79,81–83. We implemented additional semi-197 

automated quality assurance procedures using in-house R scripts, including identification of the 198 

main rest interval (defined as the longest rest interval each day), removal of invalid sleep 199 

intervals containing ≥1 hour of off-wrist time or recording errors79,84, time adjustment for daylight 200 

savings time, and final visual inspection of sleep intervals on raster plots.  201 

Sleep Outcomes 202 

Primary actigraphy sleep outcomes were based on the main rest interval. We selected 203 

four sleep outcomes corresponding to key dimensions of sleep health85: sleep duration (total 204 

sleep time in minutes), timing (midpoint between sleep onset and offset in minutes from 205 

midnight), continuity (minutes awake after sleep onset; WASO), and regularity (intra-individual 206 

standard deviation of midpoint in minutes). The first three outcomes were averaged over the 5-7 207 

tracking days most proximal to their MRI scan; regularity was calculated from the available days 208 

of recording. Sleep variables were natural log transformed to normalize distributions.  209 

Statistical Analyses 210 

We first conducted general additive models to confirm that the four sleep outcomes 211 

showed age-associated patterns consistent with prior research (eFigure 1). We observed the 212 
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characteristic decline in sleep duration, delay in sleep timing, and increased sleep variability 213 

over adolescent development. Sleep continuity did not vary with age.  214 

We were interested in developmentally-invariant effects (i.e., main effects) of 215 

neuroimaging measures on the four sleep outcomes, as well as developmentally-specific effects 216 

(i.e., interactions between age and neuroimaging measures). Due to the large number of and 217 

multicollinearity amongst neuroimaging measures, we used regularized regression86 to identify 218 

non-zero predictors associated with sleep outcomes. We used the R package, Group-Lasso-219 

INTERaction-NET (glinternet87,88) to examine main effects of structural neuroimaging measures, 220 

as well as their interaction with age and sex, for each sleep variable. Only potential interactions 221 

between non-zero main effects are considered. We included multiple actigraphy covariates (i.e., 222 

tracking days, season, ratio of weekday to weekend days, actigraph model) as potential 223 

predictors in the models. eTable 3 contains the full list of 48 predictors. We repeated 10-fold 224 

cross validation 100 times, using the penalty parameter (λ) one standard deviation away from 225 

the minimal cross-validation error. The final model was the model was selected most often 226 

during this procedure. Regularized regression selects variables based on minimizing error in the 227 

model as opposed to statistical significance as in standard regression. Thus, p-values are not 228 

reported for non-zero coefficients. 229 

Non-zero predictors selected by group-lasso models were entered into linear regression 230 

models, as in prior reports89,90. R-squared was computed to estimate variance explained by the 231 

full model as well as groups of predictors (i.e., demographics, neuroimaging measures, 232 

actigraphy covariates). We assessed non-zero interactions between age and neuroimaging 233 

predictors with the Johnson-Neyman technique, which obtains parameter estimates and points 234 

of significance from the interaction between two continuous variables91–93. Non-zero interactions 235 

between sex and neuroimaging predictors were probed by comparing estimated marginal 236 

means94.  237 

 238 
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RESULTS 239 

All neuroimaging measures, and their interactions with age and sex, selected as non-240 

zero predictors of sleep outcomes are reported in Table 2. Non-zero actigraphy covariates (e.g., 241 

season, actigraph type) are reported in eTable 4.  242 

 243 

Sleep Duration (Total Sleep Time) 244 

The main effects of neuroimaging measures, age, sex, and their respective interactions 245 

accounted for 25% of the total variance in sleep duration (Table 2A). Shorter sleep duration was 246 

associated with older age and males had shorter sleep duration in comparison to females. 247 

We observed several developmentally-invariant relationships between brain structure 248 

and sleep duration. From 9-25 years old, greater volume in the pallidum, hippocampus, and 249 

amygdala was associated with shorter sleep duration. Additionally, thinner medial orbitofrontal 250 

and isthmus (posterior) cingulate cortices were associated shorter sleep duration. Thinner 251 

cortex in the posterior cingulate was associated with shorter sleep duration in both sexes, but 252 

there was a stronger relationship in males. Conversely, thinner parahippocampal cortex and 253 

shorter sleep duration were associated in females, but not males.   254 

We also found developmentally-specific relationships between gray matter structure and 255 

sleep duration (Figure 2A). In late childhood through middle adolescence, thinner cortex in the 256 

cuneus (9-17.3 years) and superior parietal regions (9-16.0 years) was associated with shorter 257 

sleep duration; however, this relationship was not observed at older ages. From 21.9-25.9 years 258 

old, greater lateral ventricle volume was associated with longer sleep duration. 259 

Sleep Timing (Midsleep) 260 

The main effects of neuroimaging measures, age, and their interactions accounted for 261 

20% of the variance in midsleep (Table 2B). Midsleep was later in males and among older 262 

participants. 263 
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 Developmentally-invariant relationships were identified for several brain regions. 264 

Specifically, lower thalamus volume was associated with later midsleep; this was relationship 265 

driven by males. In females only, greater lateral ventricle volume was associated with later 266 

midsleep. Thinner superior parietal and lateral occipital cortices were associated with later sleep 267 

timing.  268 

Developmentally-specific relationships were also observed between neuroimaging 269 

measures and sleep timing (Figure 2B). From late childhood through middle adolescence, 270 

thinner cortex in the pars orbitalis (9-15.2 years), rostral middle frontal (9-14.1 years), and 271 

posterior cingulate regions (9-14.5 years) was associated with later midsleep. Thinner medial 272 

orbitofrontal cortex in late childhood (9-10 years) was also associated with later midsleep. 273 

Greater pallidum volume was associated with later midsleep only from ages 9 to 16.8 years. 274 

Sleep Continuity (WASO)  275 

The combined effects of neuroimaging measures, age, sex, and their interactions 276 

accounted for 16% of the variance in sleep continuity (Table 2C). WASO was longer among 277 

older participants and in females. 278 

With regard to developmentally-invariant relationships, greater palladium and thalamus 279 

volume was associated with greater WASO. Thinner cortex in middle temporal, precentral, and 280 

lateral occipital regions was associated with greater WASO. Greater precentral and entorhinal 281 

cortical thickness was associated with greater WASO in females.  282 

Thinner parahippocampal (9-14.6 years) and superior parietal cortices (9-16.0 years) 283 

were associated with greater WASO from late childhood to mid-adolescence, but not in older 284 

adolescents and young adults (Figure 2C).  285 

Sleep Regularity (Midsleep Variability) 286 

Regularized regression did not identify any nonzero predictors of midsleep regularity. 287 

 288 

 289 
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DISCUSSION 290 

Using a large sample of typical adolescent development (9.0-25.9 years), we identified 291 

developmentally-invariant and developmentally-specific relationships between gray matter 292 

structure and naturalistic sleep patterns. Shorter sleep duration, later sleep timing, and poorer 293 

sleep continuity — all of which are associated with adverse health outcomes — were associated 294 

with a stable pattern of thinner cortex and altered subcortical volumes in diverse brain regions 295 

over adolescent development. In discrete regions, developmentally-specific relationships were 296 

also observed. In these regions, thinner cortex from late childhood through early-to-mid 297 

adolescence — a pattern associated with accelerated maturation — was associated with less 298 

optimal sleep, but these relationships were not detected in late adolescence and young 299 

adulthood. Our results provide a novel view of brain-sleep structure relationships within brain 300 

structures implicated in a wide array of cognitive, emotional, and psychological processes over 301 

adolescent development2,95–100. 302 

Cortical thickness in a diverse set of brain regions show developmentally-invariant 303 

relationships with sleep  304 

Across adolescent development, thinner cortex in frontal, temporal, parietal, and visual 305 

processing areas was associated with shorter sleep duration, later sleep timing, and longer time 306 

awake after sleep onset. These brain regions are implicated in salience detection (pars 307 

orbitalis), motor function (precentral), memory (entorhinal, middle temporal), and attention and 308 

visuospatial perception (superior parietal cortex, lateral occipital)101. Given that sleep is 309 

associated with diverse range of mental, cognitive and physical health outcomes in 310 

adolescence1–10, it is reasonable that naturalistic sleep is related to brain structure in regions 311 

that support multiple functions. Some of these relationships were modulated by self-reported 312 

sex, consistent with reported sex differences in sleep patterns and brain development17,49–54. 313 

Future studies should also examine the extent to sex effects may be better explained by 314 

pubertal maturation.  315 
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Increased cortical thickness was associated with healthier sleep patterns from late 316 

childhood to middle adolescence 317 

 This is the first study, to our knowledge, to demonstrate that brain structure is related to 318 

individual differences in naturalistic sleep patterns at different ages, from late childhood through 319 

adulthood. Thicker cortex in multiple brain regions was associated with “healthier” sleep (as 320 

indicated by longer, more continuous, and earlier sleep) during late childhood and early 321 

adolescence. These findings, in conjunction with other work102,  present the possibility that 322 

biological factors exert differential influences on behavior at distinct points in development. 323 

Accelerated cortical thinning/growth patterns in discrete brain regions could contribute to 324 

disruptions in sleep characteristics during late childhood and early adolescence, but not during 325 

other periods. Alternatively, disruptions in the typical age-related changes in sleep could lead to 326 

accelerating cortical thinning, particularly during this late childhood-early adolescence age 327 

range, but not during others. Multiple neurobiological mechanisms likely underlie individual 328 

differences in cortical thickness. Cortical thinning is traditionally believed to be caused by 329 

synaptic pruning, a re-wiring of synapses103,104. Translational models find that, in mice, synaptic 330 

pruning is higher during sleep than wakefulness in adolescents, but not adults105. More recent 331 

data suggest that age-associated changes in cortical thickness may also be driven by white 332 

matter maturational processes, i.e. myelination106. Sleep disruption is detrimental to the 333 

formation and maintenance of myelin in murine models107,108. Future longitudinal within-person 334 

investigations, particularly during late childhood and early adolescence, will be necessary to 335 

disentangle the directionality and neurobiological mechanisms of relationships between sleep, 336 

cortical thickness measures, and white matter integrity. 337 

Unexpected relationships between poorer sleep and larger subcortical volumes 338 

 Surprisingly, in many cases, we also discovered that larger subcortical (i.e., 339 

hippocampal, amygdala, thalamus, and caudate) volumes are associated with more disrupted 340 

sleep patterns. One possibility is that exposure to sleep disruption at certain developmental 341 
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stages may be correlated with or cause accelerated subcortical growth patterns, akin to the 342 

acceleration-deceleration hypothesis of chronic stress and neurodevelopment109–111. 343 

Importantly, this result stands in contrast with prior research showing lower subcortical gray 344 

matter volumes in relation to poor sleep46 and mental health conditions60,112,113. Thus, replication 345 

of these findings, as well as work examining the relationship between structural brain measures 346 

and sleep, needs to be further explored in informative subgroups such as individuals with 347 

mental disorders. 348 

 We also observed subcortical volume-sleep relationships in the expected direction. In 349 

females, larger lateral ventricle volume was associated with shorter sleep duration and later 350 

midsleep. Greater ventricle size has been linked to serious mental health conditions, including 351 

schizophrenia114. Furthermore,  study of older adults also found longitudinal reduction in sleep 352 

duration corresponded to ventricular expansion over the follow-up period115.   353 

Implications for optimal timing and targets for sleep intervention 354 

 If sleep patterns prove to be a causal contributor to individual differences in sMRI 355 

measures, our findings have the potential to inform developmentally-sensitive optimization of 356 

evidence-based behavioral sleep interventions116. As an example, both shorter sleep duration 357 

and later sleep timing were associated with thinner cortex in default mode network (DMN) 358 

regions (medial orbitofrontal and posterior cingulate cortices), a neural signature tied to 359 

outcomes such as depression, insomnia, and poor cognitive function98,117. DMN cortical 360 

thickness and sleep duration relationships were developmentally-invariant. However, DMN 361 

cortical thickness-sleep timing association were only present in late childhood/mid-adolescence. 362 

Thus, a sleep treatment geared toward promoting healthy DMN-relevant outcomes should 363 

include sleep extension regardless of age but also advance sleep timing in late childhood and 364 

early/mid adolescence. Taken as a whole, our findings suggest that sleep interventions, 365 

particularly in late childhood through mid-adolescence, may be advantageous for 366 

neurodevelopment and thus downstream effects on psychological well-being. 367 
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Limitations 368 

Our sample, while representative of the Pittsburgh Metropolitan area, was limited in its 369 

racial and ethnic diversity, factors which contribute to individual differences in brain structure 370 

and sleep28,118. Although we adjusted for salient actigraphy covariates, actigraphy brand 371 

differences may have contributed noise in our data that was not captured by covarying for watch 372 

type in our models. Because our analyses were cross-sectional across a range of ages, rather 373 

than longitudinal within participants, it is unclear whether sleep patterns are a cause, correlate, 374 

or consequence of gray matter structure. Future, prospective longitudinal studies are necessary 375 

to disambiguate causal relationships between sleep and sMRI measures, and assess 376 

relationships between within-subject trajectories of sleep and brain development. 377 

Conclusions & Future Directions 378 

We found compelling and novel evidence for developmentally-invariant and 379 

developmentally-specific associations between sMRI measures and sleep across adolescent 380 

development. We plan to build on these findings and examine how individual differences in 381 

neuroimaging and sleep measures may identify youth at high-risk for developing adverse 382 

cognitive, mental, and physical outcomes.  383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 
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FIGURE CAPTIONS 782 

 783 

Figure 1. Relationships between sleep and gray matter (cortical thickness, subcortical volume) 784 

that are developmentally-invariant (i.e., stable across age) or developmentally-specific (i.e., only 785 

present during discrete time windows) from late childhood through young adulthood. 786 

Figure 2. Johnsyon-Neyman plots of age by neuroimaging measure interactions on sleep 787 

dimensions (A. duration, B. timing, and C. continuity). A statistically significant relationship 788 

between age and the neuroimaging measures (p<.05) is represented by the red color.  Non-789 

significant relationships are represented by the gray color. To aid in the interpretation of the 790 

plots, we provide one example of the age by cuneus cortical thickness interaction on sleep 791 

duration. a. From 9-17.3 years old, thicker cuneus cortex is associated with longer sleep 792 

duration (r=0.33, p=1.0x10-4). b. From 17.4-25.9 years old, this relationship is not present (r=-793 

0.003, p=0.97). 794 
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Table 1: NAPS sample characteristics  811 

Variable  Mean or n (sd or %) 

Sample N 240 

Age (Years) 18.13 (5.26) 

Self-reported Sex  

   Female 133 (55%) 

   Male 107 (45%) 

Ethnicity  

   Non-Hispanic 223 (93%) 

   Hispanic 15 (6%) 

   Missing 2 (1%) 

Race  

   White 170 (71%) 

   Black 40 (17%) 

   Asian 11 (5%) 

   Multiple 16 (7%) 

   Unknown/Missing 3 (1%) 

Wrist Actigraph Type  

  AMI Octagonal MotionLogger 36 (15%) 

  PR/MiniMitter Actiwatch64 25 (10%) 

  PR Actiwatch2 113 (47%) 

  PR Spectrum Series 66 (28%) 

Tracking Days 6.59 (0.84) 

  Weekdays 4.51 (0.92) 

  Weekend Days 2.08 (0.52) 

Season  

  Spring 43 (18%) 

  Summer 100 (42%) 

  Fall 52 (22%) 

  Winter 45 (19%) 

Sleep Duration (min) 417.96 (63.52) 

Wake After Sleep Onset (minutes) 56.19 (26.83) 

Midsleep (minutes from midnight) 289.99 (76.59) 

Midsleep Variability (minutes) 63.66 (44.06) 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.05.424689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.424689


 29 

 

Table 2. Main effects and interactions between age, sex, and neuroimaging measures on 819 
actigraphic sleep dimensions. Model weights are reported as standardized regression 820 
coefficients.  821 

A. Sleep Duration (Total Sleep Time) 

Type of Effect Variable Model Weight 

Demographic Variable Main Effects 
 

Sex  0.0403 

Age -0.0732 

Subcortical Volume Main Effects 

Pallidum -0.0122 

Hippocampus -0.0529 

Amygdala -0.0032 

Lateral Ventricles  0.0221 

Cortical Thickness Main Effects 

Medial Orbitofrontal Cortex  0.1090 

Parahippocampal Cortex  0.0022 

Posterior Cingulate  0.0576 

Isthmus Cingulate  0.0196 

Superior Parietal Cortex  0.0067 

Cuneus  0.0277 

Sex Interactions 
 

Sex x Parahippocampal Cortex  0.0054 

Sex by Posterior Cingulate Cortex -0.0219 

Age Interactions 

Age x Lateral Ventricles  0.0234 

Age x Cuneus -0.0332 

Age x Superior Parietal Cortex -0.0072 

Variance Accounted for by demographic measures only: R
2
=0.22 

Variance Accounted for by neuroimaging and demographic measures, and their interactions:  R
2
=0.25 

B. Sleep Timing (Midsleep) 

Type of Effect Variable Model Weight 

Demographic Variable Main Effects Sex -0.0601 

Age  0.1315 

Subcortical Volume Main Effects Thalamus -0.0009 

Pallidum  0.0120 

Lateral Ventricles  0.0057 

Cortical Thickness Main Effects Medial Orbitofrontal Cortex -0.0002 

Pars Orbitalis -0.0136 

Rostral Middle Frontal Cortex -0.0200 

Posterior Cingulate Cortex  -0.0089 

Superior Parietal Cortex -0.0051 

Lateral Occipital Cortex -0.1115 

Sex Interactions 
 

Sex x Lateral Ventricles  0.0342 

Sex x Thalamus  0.0010 

Age Interactions Age x Pallidum -0.0431 

Age x Medial Orbitofrontal Cortex  0.0002 

Age x Pars Orbitalis  0.0187 

Age x Rostral Middle Frontal Cortex  0.0267 

Age x Posterior Cingulate Cortex  0.0189 

Variance Accounted for by demographic measures only:  R
2
=0.10 

Variance Account for by neuroimaging and demographic measures, and their interactions:  R
2
=0.20 
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 822 

 

C. Sleep Continuity (WASO) 

Type of Effect Variable Model Weight 

Demographic Variable Main Effects Sex -0.0444 

Age  0.0244 

Subcortical Volume Main Effects Thalamus  0.0065 

Pallidum  0.0260 

Caudate  0.0083 

Cortical Thickness Main Effects Entorhinal Cortex  0.0009 

Parahippocampal Cortex -0.0192 

Middle Temporal Cortex -0.0086 

Precentral Cortex -0.0283 

Superior Parietal Cortex -0.0243 

Lateral Occipital Cortex -0.0149 

Sex Interactions Sex x Caudate -0.0117 

Sex x Entorhinal Cortex -0.0021 

Sex x Precentral Cortex -0.0151 

Age Interactions Age x Parahippocampal Cortex  0.0533 

Age x Superior Parietal Cortex  0.0622 

Variance Accounted for by demographic measures only:  R
2
=0.05 

Variance Account for by neuroimaging and demographic measures, and their interactions:  R
2
=0.16 
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