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Abstract

We introduce the AusTraits database - a compilation of measurements of plant traits for taxa in the Aus-
tralian flora (hereafter AusTraits). AusTraits synthesises data on 375 traits across 29230 taxa from field
campaigns, published literature, taxonomic monographs, and individual taxa descriptions. Traits vary in
scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to
morphological parameters (e.g. leaf area, seed mass, plant height) which link to aspects of ecological varia-
tion. AusTraits contains curated and harmonised individual-, species- and genus-level observations coupled
to, where available, contextual information on site properties. This data descriptor provides information on
version 2.1.0 of AusTraits which contains data for 937243 trait-by-taxa combinations. We envision AusTraits
as an ongoing collaborative initiative for easily archiving and sharing trait data to increase our collective
understanding of the Australian flora.
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Background and Summary

Species traits are essential metrics for comparing ecological strategies in plants arrayed across environmental
space or evolutionary lineages [1, 2, 3, 4]. Broadly, a trait is any measurable property of a plant capturing
aspects of its structure or function [5, 6, 7, 8]. Traits thereby provide useful indicators of species’ behaviours
in communities and ecosystems, regardless of their taxonomy [8, 9]. Through global initiatives the volume
of available trait information for plants has grown rapidly in the last two decades [10, 11]. However, the geo-
graphic coverage of trait observations across the globe is patchy, limiting detailed analyses of trait variation
and diversity in some regions.

One such region is Australia; a continent with a flora of c. 26,000 native higher-plant species [12]. While sig-
nificant investment has been made in curating and digitising herbarium collections and observation records
in Australia over the last two decades (e.g. The Australian Virtual Herbarium houses ~7 million specimen
occurrence records; https://avh.ala.org.au), no complementary resource yet exists for consolidating infor-
mation on plant traits. Moreover, relatively few Australian species are represented in the leading global
databases. For example, the international TRY database [11] has observations for only 3830 Australian
species across all collated traits. This level of species coverage limits our ability to use traits to understand
and ultimately manage Australian vegetation [13]. While initiatives such as TRY [11] and the Open Traits
Network [14] are working towards global synthesis of trait data, a stronger representation of Australian plant
taxa in these efforts is essential given the high richness and endemicity of this continental flora.

Here we introduce the AusTraits database (hereafter AusTraits), a compilation of plant traits for the Aus-
tralian flora. Currently, AusTraits draws together 351 primary sources and contains 937243 measurements
spread across 375 different traits for 29230 taxa. To assemble AusTraits from diverse primary sources and
make data available for reuse, we needed to overcome three main types of challenges (Figure 1): 1) Accessing
data from diverse original sources, including field studies, online databases, scientific articles, and published
taxonomic floras; 2) Harmonising these diverse sources into a federated resource, with common units, trait
names, and data formats; and 3) Distributing versions of the data under suitable license. To meet this chal-
lenge, we developed a workflow which draws on emerging community standards and our collective experience
building trait databases.

By providing a harmonised and curated dataset on 375 plant traits, AusTraits contributes substantially
to filling the gap in Australian and global biodiversity resources. Prior to the development of AusTraits,
data on Australian plant traits existed largely as a series of disconnected datasets collected by individual
laboratories or initiatives. We envision AusTraits as an on-going collaborative initiative for easily archiving
and sharing trait data about the Australian flora. Open access to a comprehensive resource like this will
generate significant new knowledge about the Australian flora across multiple scales of interest, as well as
reduce duplication of effort in the compilation of plant trait data, particularly for research students and
government agencies seeking to access information on traits.

Methods

Primary sources

AusTraits version 2.1.0 was assembled from 351 distinct sources, including published papers, field campaigns,
botanical collections, and taxonomic treatments (Table 10). Initially we identified a list of candidate traits of
interest, then identified primary sources containing measurements for these traits, before contacting authors
for access. As the compilation grew, we expanded the list of traits considered to include any measurable
quantity that had been quantified for a moderate number of taxa (n > 20).

Trait definitions

A full list of traits and their sources appears in Table 10 (available online). This list was developed gradually
as new datasets were incorporated, drawing from original source publications and a published thesaurus
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of plant characteristics [15]. We categorised traits based on the tissue where it is measured (bark, leaf,
reproductive, root, stem, whole plant) and the type of measurement (allocation, life history, morphology,
nutrient, physiological). Version 2.1.0 of AusTraits includes 302 numeric, 71 categorical, and 2 character
traits.

Database schema

The schema of AusTraits broadly follows the principles of the established Observation and Measurement
Ontology [16] in that, where available, trait data are connected to contextual information about the collection
(e.g. location coordinates, light levels) and information about the methods used to derive measurements
(e.g. number of replicates, equipment used). The database contains 11 elements, as described in Table 1.
This format was developed to include information about the trait measurements, taxa sampled, the methods
used, sites, contextual information, the people involved, and citation sources.

For storage efficiency, the main table of traits contains relatively little information (Table 2), but can be
cross linked against other tables (Tables 3-8) using identifiers for dataset, site, context, observation and taxon
(Table 1). The dataset_id is ordinarily the surname of the first author and year of publication associated
with the source’s primary citation (e.g. Blackman_2014). Trait measurements were also recorded as being
one of several possible value_type (Table 9), reflecting the type of measurement recorded.

Harmonisation

To harmonise each source into the common AusTraits format we applied a reproducible and transparent
workflow (Figure 1), written in R [17], using custom code, and the packages tidyverse [18], stringr
[19], yaml [20], remake [21], knitr [22], and rmarkdown [23]. In this workflow, we performed a series of
operations, including reformatting data into a standardised format, generating observation ids for each
individual measured, transforming variable names into common terms, transforming data common units,
standardising terms for categorical variables, encoding suitable metadata, and flagging data that did not
pass quality checks. Successive versions of AusTraits iterate through the steps in Figure 1, to incorporate
new data and correct identified errors, leading to a high-quality, harmonised dataset.

Details from each primary source were saved with minimal modification into two plain text files. The first file,
data.csv, contains the actual trait data in comma-separated values format. The second file, metadata.yml,
contains relevant metadata for the study, as well as options for mapping trait names and units onto standard
types, and any substitutions applied to the data in processing. These two files provide all the information
needed to compile each study into a standardised AusTraits format.

Taxonomy

We developed a custom workflow to clean and standardise taxonomic names using the latest and most
comprehensive taxonomic resources for the Australian flora: the Australian Plant Census (APC) [12] and the
Australian Plant Names Index (APNI) [24]. While several automated tools exist, such as taxize [25], these
do not currently include up to date information for Australian taxa. Updates were completed in two steps.
In the first step, we used both direct and then fuzzy matching (with up to 2 characters difference) to search
for an alignment between reported names and those in three name sets: 1) All accepted taxa in the APC,
2) All known names in the APC, 3) All names in the APNI. Names were aligned without name authorities,
as we found this information was rarely reported in the raw datasets provided to us. Second, we used the
aligned name to update any outdated names to their current accepted name, using the information provided
in the APC. If a name was recorded as being both an accepted name and an alternative (e.g. synonym) we
preferred the accepted name, but also noted the alternative records. When a suitable match could not be
found, we manually reviewed near matches and web portals such as the Atlas of Living Australia to find a
suitable match. The final resource reports both the original and the updated taxon name alongside each
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trait record (Table 2), as well an additional table summarising all taxonomic names changes (Table 6) and
further information from the APC and APNI on all taxa included (Table 7).

Data records

Access

As an evolving data product, successive versions of AusTraits are being released, containing updates and
corrections. Versions are labeled using semantic versioning to indicate the change between versions [26].
Static versions of the AusTraits, including version 2.1.0 used in this descriptor, are available on the project
website (http://traitecoevo.github.io/austraits.build/) and Zenodo [27]. The latest data can also be down-
loaded directly from the project website. As validation (see Technical Validation, below) and data entry is
ongoing, users are recommended to pull data from the static releases, to ensure results in their downstream
analyses remain consistent as the database is updated.

Data is released under a CC-BY license enabling reuse with attribution – being a citation of this descriptor
and, where possible, original sources.

Data coverage

The number of accepted vascular plant species in the APC (as of May 2020) is around 24,750 [12]. Version
2.1.0 of AusTraits includes at least one record for 24,148, or about 97% of taxa. Five traits (leaf_length,
leaf_width, plant_height, life_history, plant_growth_form) have records for more than 50% of taxa. Across
all traits, the median number of taxa with records is 62. Table 10 shows the number of studies, taxa, and
families recording data in AusTraits, as well as the number of geo-referenced records, for each trait.

There were substantial differences in coverage among different tissues and trait types, also with respect to
number of geo-referenced points (Figure 2). The most common traits are non geo-referenced records from
floras. Yet, geo-referenced records were available in several traits for more than 10% of the flora (Figure 2a).

We found that trait records were spread across the climate space of Australia (Figure 3a), as well as geographic
locations (Figure 3b). As with most data, in Australia, the density of records was somewhat concentrated
around cities or roads in remote regions, particularly for leaf traits.

Figure 4 shows that overall coverage across a phylogenetic tree of Australian plant species is relatively
unbiased, though there are some notable exceptions. One exception is for root traits, where taxa within
Poaceae have large amounts of information available relative to other plant families. A cluster of taxa within
the family Myrtaceae have little leaf information available, while reproductive information is limited for
species near the base of the tree.

Comparing coverage in AusTraits to the global database TRY, there were 72 traits overlapping. Of these,
AusTraits tended to contain records for more taxa, but not always (Figure 5). Multiple traits had more than
10 times the number of taxa represented in AusTraits. However, there were more records in TRY for 22 traits,
in particular physiological leaf traits. Many traits were not overlapping between the two databases (Figure
5). We noted that AusTraits includes more seed and fruit nutrient data; possibly reflecting the interest
in Australia in understanding how fruit and seeds are provisioned in nutrient-depauperate environments.
AusTraits includes more categorical values, especially variables documenting different components of species’
fire response strategies, reflecting the importance of fire in shaping Australian communities and the research
to document different strategies species have evolved to succeed in fire-prone environments.

Technical Validation

We implemented three strategies to maintain data quality. First, we conducted a detailed review of each
source based on a bespoke report, showing all data and metadata, by both an AusTraits curator and the
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original contributor (where possible). Observations for each trait were plotted against all other values for
the trait in AusTraits, allowing quick identification of outliers. Corrections suggested by contributors were
combined back into AusTraits and made available with the next release.

Second, we implemented automated tests for each dataset, to confirm that values for continuous traits
fall within the accepted range for the trait, and that values for categorical traits are on a list of accepted
values maintained by the creators. Data that did not pass these tests were moved to a separate spreadsheet
(“excluded_data”) that is also made available for use and review.

Third, we provide a pathway for user feedback. AusTraits is a community resource and we encourage
engagement from users on maintaining the quality and usability of the dataset. As such, we welcome
reporting of possible errors, as well as additions and edits to the online documentation for AusTraits that
make using the existing data, or adding new data, easier for the community. Feedback can be posted as an
issue directly at the project.

Usage Notes

Each data release is available in multiple formats: first, as a compressed folder containing text files for each
of the main components, second, as a compressed R object, enabling easy loading into R for those using that
platform.

Using the taxon names aligned with the APC, data can be queried against location data from the Atlas of
Living Australia. To create the phylogenetic tree in Figure 5, we pruned a master tree for all higher plants
[28] using the package V.PhyloMaker [29] and visualising via ggtree [30]. To create Figure 3A, we used the
package plotbiomes [31] to create the baseline plot of biomes.

Code Availability

All code, raw and compiled data are hosted within GitHub repositories under the Trait Ecology and Evolution
organisation (http://traitecoevo.github.io/austraits.build/). The archived material includes all data sources
and code for rebuilding the compiled dataset. The code used to produce this paper is available at http:
//github.com/traitecoevo/austraits_ms. (All code will be made available prior to final publication.)
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Overview

AusTraits harmonises data on 375 traits from 264 different sources, including field campaigns, published
literature, taxonomic monographs, and individual taxon descriptions.

This document provides information on the structure of AusTraits and corresponds to version 2.1.0 of the
dataset.
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Figures & Tables

Figure 1: The data curation pathway used to assemble the AusTraits database. Trait observations are
accessed from original data sources, including published floras and field campaigns. Features such as variable
names, units and taxonomy are harmonised to a common standard. Versioned releases are distributed to
users, allowing the dataset to be used and re-used in a reproducible way.
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Figure 2: Number of taxa with trait records by plant tissue and trait category, for data that are (A)
Geo-referenced, and (B) Not geo-referenced. Many records without a geo-reference come from botanical
collections, such as floras.
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Figure 3: Coverage of geo-referenced trait records across Australian climatic and geographic space for traits
in different categories. (A) AusTraits’ sites (orange) within Australia’s precipitation-temperature space
(dark-grey) superimposed upon Whittaker’s classifctaion of majore biomes by climate [32]. Climate data
were extracted at 10” resolution from WorldClim [33].(B) Locations of geo-referenced records for different
plant tissues.
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Figure 5: The number of taxa with trait records in AusTraits and global TRY database (accessed 28 May
2020). Each point shows a separate trait.
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Table 1: Main elements of the harmonised AusTraits database. See Tables 2-8 for details on each component.

Element Contents
traits A table containing measurements of plant traits.
sites A table containing observations of site characteristics associated

with information in traits. Cross referencing between the two
dataframes is possible using combinations of the variables
dataset_id, site_name.

contexts A table containing observations of contextual characteristics
associated with information in traits. Cross referencing between
the two dataframes is possible using combinations of the variables
dataset_id, context_name.

methods A table containing details on methods with which data were
collected, including time frame and source.

excluded_data A table of data that did not pass quality test and so were excluded
from the master dataset.

taxa A table containing details on taxa associated with information in
traits. This information has been sourced from the APC
(Australian Plant Census) and APNI (Australian Plant Names
Index) and is released under a CC-BY3 license.

definitions A copy of the definitions for all tables and terms. Information
included here was used to process data and generate any
documentation for the study.

sources Bibtex entries for all primary and secondary sources in the
compilation.

contributors A table of people contributing to each study.
taxonomic_updates A table of all taxonomic changes implemented in the construction of

AusTraits. Changes are determined by comapring against the APC
(Australian Plant Census) and APNI (Australian Plant Names
Index).

build_info A description of the computing environment used to create this
version of the dataset, including version number, git commit and R
session_info.
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Table 2: Structure of the traits table, containing measurements of plant traits.

key value
dataset_id Primary identifier for each study contributed into AusTraits; most

often these are scientific papers, books, or online resources. By
default should be name of first author and year of publication, e.g.
Falster_2005.

taxon_name Currently accepted name of taxon in the Australian Plant Census
or, for unplaced species, in the Australian Plant Names Index.

site_name Name of site where individual was sampled. Cross-references
between similar columns in sites and traits.

context_name Name of contextual senario where individual was sampled.
Cross-references between similar columns in contexts and traits.

observation_id A unique identifier for the observation, useful for joining traits
coming from the same observation_id. These are assigned
automatically, based on the dataset_id and row number of the raw
data.

trait_name Name of trait sampled. Allowable values specified in the table
traits.

value Measured value.
unit Units of the sampled trait value after aligning with AusTraits

standards.
date Date sample was taken, in the format yyyy-mm-dd, but with days

and months only when specified.
value_type A categorical variable describing the type of trait value recorded.
replicates Number of replicate measurements that comprise the data points for

the trait for each measurement. A numeric value (or range) is ideal
and appropriate if the value type is a mean, median, min or max. For
these value types, if replication is unknown the entry should be
unknown. If the value type is raw_value the replicate value should
be 1. If the value type is expert_mean, expert_min, or expert_max
the replicate value should be .na.

original_name Name given to taxon in the original data supplied by the authors
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Table 3: Structure of the sites table, containing observations of site characteristics associated with informa-
tion in traits. Cross referencing between the two dataframes is possible using combinations of the variables
dataset_id, site_name.

key value
dataset_id Primary identifier for each study contributed into AusTraits; most

often these are scientific papers, books, or online resources. By
default should be name of first author and year of publication, e.g.
Falster_2005.

site_name Name of site where individual was sampled. Cross-references
between similar columns in sites and traits.

site_property The site characteristic being recorded. Name should include units of
measurement, e.g. longitude (deg). Ideally we have at least these
variables for each site - longitude (deg), latitude (deg),
description.

value Measured value.
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Table 4: Structure of the contexts table, containing observations of contextual characteristics associated
with information in traits. Cross referencing between the two dataframes is possible using combinations
of the variables dataset_id, context_name.

key value
dataset_id Primary identifier for each study contributed into AusTraits; most

often these are scientific papers, books, or online resources. By
default should be name of first author and year of publication, e.g.
Falster_2005.

context_name Name of contextual senario where individual was sampled.
Cross-references between similar columns in contexts and traits.

context_property The contextual characteristic being recorded. Name should include
units of measurement, e.g. elevation (m).

value Measured value.
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Table 5: Structure of the methods table, containing details on methods with which data were collected,
including time frame and source.

key value
dataset_id Primary identifier for each study contributed into AusTraits; most

often these are scientific papers, books, or online resources. By
default should be name of first author and year of publication, e.g.
Falster_2005.

trait_name Name of trait sampled. Allowable values specified in the table
traits.

methods A textual description of the methods used to collect the trait data.
Whenever available, methods are taken near-verbatim from
referenced source. Methods can include descriptions such as
’measured on botanical collections’,’data from the literature’, or a
detailed description of the field or lab methods used to collect the
data.

year_collected_start The year data collection commenced.
year_collected_end The year data collection was completed.
description A 1-2 sentence description of the purpose of the study.
collection_type A field to indicate where the majority of plants on which traits were

measured were collected - in the field, lab, glasshouse,
botanical collection, or literature. The latter should only be
used when the data were sourced from the literature and the
collection type is unknown.

sample_age_class A field to indicate if the study was completed on adult or juvenile
plants.

sampling_strategy A written description of how study sites were selected and how
study individuals were selected. When available, this information is
lifted verbatim from a published manuscript. For botanical
collections, this field ideally indicates which records were ’sampled’
to measure a specific trait.

source_primary_citation Citation for primary source. This detail is generated from the
primary source in the metadata.

source_primary_key Citation key for primary source in sources. The key is typically of
format Surname_year.

source_secondary_citation Citations for secondary source. This detail is generated from the
secondary source in the metadata.

source_secondary_key Citation key for secondary source in sources. The key is typically
of format Surname_year.
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Table 6: Structure of the taxonomic_updates table, of all taxonomic changes implemented in the construc-
tion of AusTraits. Changes are determined by comapring against the APC (Australian Plant Census) and
APNI (Australian Plant Names Index).

key value
dataset_id Primary identifier for each study contributed into AusTraits; most

often these are scientific papers, books, or online resources. By
default should be name of first author and year of publication, e.g.
Falster_2005.

original_name Name given to taxon in the original data supplied by the authors
cleaned_name Name of the taxon after implementing any changes encoded for this

taxon in the metadata file in the specified correpsonding
dataset_id.

taxonIDClean Where it could be indentified, the taxonID of the cleaned_name for
this taxon in the APC.

taxonomicStatusClean Taxonomic status of the taxon identified by taxonIDClean in the
APC.

alternativeTaxonomicStatusClean The status of alternative records with the name cleaned_name in
the APC.

acceptedNameUsageID ID of the accepted name for taxon in the APC or APNI.
taxon_name Currently accepted name of taxon in the Australian Plant Census

or, for unplaced species, in the Australian Plant Names Index.
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Table 7: Structure of the taxa table, containing details on taxa associated with information in traits. This
information has been sourced from the APC (Australian Plant Census) and APNI (Australian Plant Names
Index) and is released under a CC-BY3 license.

key value
taxon_name Currently accepted name of taxon in the Australian Plant Census

or, for unplaced species, in the Australian Plant Names Index.
source Source of taxnonomic information, either APC or APNI.
acceptedNameUsageID Identifier for the accepted name of the taxon.
scientificNameAuthorship Authority for accepted of the taxon indicated under taxon_name.
taxonRank Rank of the taxon.
taxonomicStatus Taxonomic status of the taxon.
family Family of the taxon.
genus Genus of the taxon.
taxonDistribution Known distribution of the taxon.
ccAttributionIRI Source of taxonomic information.
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Table 8: Structure of the contributors table, of people contributing to each study.

key value
dataset_id Primary identifier for each study contributed into AusTraits; most

often these are scientific papers, books, or online resources. By
default should be name of first author and year of publication, e.g.
Falster_2005.

name Name of contributor
institution Last known institution or affiliation
role Their role in the study
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Table 9: Possible value types of trait records.

key value
raw_value Value is a direct measurement
site_min Value is the minimum of measurements on multiple individuals of

the taxon at a single site
site_mean Value is the mean or median of measurements on multiple

individuals of the taxon at a single site
site_max Value is the maximum of measurements on multiple individuals of

the taxon at a single site
multisite_min Value is the minimum of measurements on multiple individuals of

the taxon across multiple sites
multisite_mean Value is the mean or median of measurements on multiple

individuals of the taxon across multiple sites
multisite_max Value is the maximum of measurements on multiple individuals of

the taxon across multiple sites
expert_min Value is the minimum observed for a taxon across its range or in

this particular dataset, as estimated by an expert based on their
knowledge of the taxon. Data fitting this category include estimates
from flora that represent a taxon’s entire range, and values for
categorical variables obtained from a reference book, or identified by
an expert.

expert_mean Value is the mean observed for a taxon across its range or in this
particular dataset, as estimated by an expert based on their
knowledge of the taxon. Data fitting this category include estimates
from flora that represent a taxon’s entire range, and values for
categorical variables obtained from a reference book, or identified by
an expert.

expert_max Value is the maximum observed for a taxon across its range or in
this particular dataset, as estimated by an expert based on their
knowledge of the taxon. Data fitting this category include estimates
from flora that represent a taxon’s entire range, and values for
categorical variables obtained from a reference book, or identified by
an expert.

experiment_min Value is the minimum of measurements from an experimental study
either in the field or a glasshouse

experiment_mean Value is the mean or median of measurements from an experimental
study either in the field or a glasshouse

experiment_max Value is the maximum of measurements from an experimental study
either in the field or a glasshouse

individual_mean Value is a mean of replicate measurements on an individual (usually
for experimental ecophysiology studies)

individual_max Value is a maximum of replicate measurements on an individual
(usually for experimental ecophysiology studies)

literature_source Value is a site or multi-site mean that has been sourced from an
unknown literature source

unknown Value type is not currently known
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Table 10: Details on all traits represented in version 2.1.0 of AusTraits. Note the count of studies is less
than the number of references when studies are linked to multiple references.

Number of records

Trait Description Type all geo. studies taxa families refs

Bark (allocation)
bark_density Bark dry mass per unit bark

fresh volume (bark density)
num. 62 62 1 62 32 [34]

bark_water_content_
per_saturated_mass

Ratio of water in a saturated
bark (maximal water holding
capacity at full turgidity) to
bark saturated mass

num. 64 64 1 58 15 [35, 36, 37, 38]

Bark (morphology)
bark_mass_area Bark mass per unit surface area

of stem
num. 27 27 1 26 5 [39]

bark_thickness Thickness of the bark of the
stem

num. 1548 1548 9 221 49 [39, 40, 41, 42, 43]
[34, 35, 44, 45, 46]
[36, 37, 38, 47]

Bark (nutrient)
bark_C_per_dry_mass Bark carbon (C) content per

unit bark dry mass
num. 170 170 1 17 7 [47]

bark_Ca_per_dry_mass Bark calcium (Ca) content per
unit bark dry mass

num. 34 34 2 11 3 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

bark_K_per_dry_mass Bark potassium (K) content per
unit bark dry mass

num. 34 34 2 11 3 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

bark_Mg_per_dry_mass Bark magnesium (Mg) content
per unit bark dry mass

num. 34 34 2 11 3 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

bark_N_per_dry_mass Bark nitrogen (N) content per
unit bark dry mass

num. 364 364 4 44 13 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[41, 58, 59, 60, 61]
[62, 63, 64, 65, 66]
[47, 67, 68]

bark_Na_per_dry_mass Bark sodium (Na) content per
unit bark dry mass

num. 25 25 2 7 3 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

bark_P_per_dry_mass Bark phosphorus (P) content
per unit bark dry mass

num. 195 195 3 27 9 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[41, 58, 59, 60, 61]
[62, 63, 64, 65, 66]
[67, 68]

Bark (physiology)
bark_delta13C Bark carbon stable isotope

signature
num. 170 170 1 17 7 [47]

bark_delta15N Bark nitrogen stable isotope
signature

num. 170 170 1 17 7 [47]

modulus_of_
elasticity_bark

A measure of the force required
to bend bark

num. 192 192 2 92 35 [34, 46]
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(continued)

Trait Description Type all geo. studies taxa families refs

photosynthetic_bark Binary variable indicating
whether or not bark is
photosynthetic

cat. 62 62 1 62 32 [34]

Leaf (allocation)
leaf_area_ratio Ratio of leaf area to total plant

dry mass
num. 708 705 9 116 32 [69, 70, 71, 72, 73]

[74, 75, 76, 77, 78]
leaf_density Leaf tissue density num. 334 334 5 73 23 [79, 80, 81, 82, 83]

[84]
leaf_dry_matter_
content

Leaf dry mass per unit leaf fresh
mass. (See also
leaf_water_content_per_mass,
the ratio of water content to leaf
dry mass, recorded by some
studies.)

num. 4881 4872 27 1092 140 [40, 85, 86, 87, 88]
[89, 90, 91, 92, 93]
[79, 94, 95, 96, 97]
[76, 81, 82, 98, 99]
[77, 100, 101, 102, 103]
[78, 104, 105, 106, 107]
[108]

leaf_fresh_mass Leaf fresh mass num. 2053 2053 11 374 97 [87, 89, 91, 109, 110]
[92, 95, 97, 99, 111]
[102]

leaf_fresh_mass_per_
area

Leaf fresh mass per leaf area num. 108 108 1 19 12 [93]

leaf_mass_fraction Ratio of leaf dry mass to total
plant dry mass

num. 785 782 5 97 31 [71, 77, 78, 92, 95]
[47]

leaf_mass_to_stem_
mass

Ratio of leaf dry mass to stem
dry mass

num. 395 395 3 79 31 [47, 95, 112]

leaf_water_content_
per_area

Ratio of the mass of water in a
leaf to leaf surface area; leaf
succulence

num. 119 116 3 55 17 [77, 78, 99, 113]

leaf_water_content_
per_dry_mass

Ratio of the mass of water in a
leaf to leaf dry mass. (See also
leaf_dry_matter_content, the
ratio of a leaf’s dry mass to
fresh mass, that is recorded by a
greater number of studies.)

num. 1098 1098 6 210 73 [109, 114, 115, 116, 117]
[81, 82, 118, 119, 120]
[102, 104, 121, 122]

leaf_water_content_
per_fresh_mass

Ratio of the mass of water in a
leaf to leaf fresh mass. (See also
leaf_dry_matter_content, the
ratio of a leaf’s dry mass to
fresh mass, that is recorded by a
greater number of studies.)

num. 385 385 3 158 61 [81, 82, 89, 123]

leaf_water_content_
per_saturated_mass

Ratio of water in a saturated
leaf (maximal water holding
capacity at full turgidity) to leaf
saturated mass

num. 447 447 4 79 20 [35, 36, 84, 92, 124]
[37, 38]
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(continued)

Trait Description Type all geo. studies taxa families refs

specific_leaf_area Leaf area per unit leaf dry mass;
SLA

num. 31573 24962 122 3852 179 [48, 49, 50, 85, 125]
[51, 52, 53, 54, 55]
[86, 87, 126, 127, 128]
[109, 129, 130, 131, 132]
[40, 133, 134, 135, 136]
[56, 137, 138, 139, 140]
[88, 89, 90, 141, 142]
[143, 144, 145, 146, 147]
[148, 149, 150, 151, 152]
[110, 153, 154, 155, 156]
[57, 157, 158, 159, 160]
[91, 92, 161, 162, 163]
[69, 70, 164, 165, 166]
[93, 114, 167, 168, 169]
[58, 59, 71, 113, 170]
[39, 115, 171, 172, 173]
[41, 60, 94, 174, 175]
[112, 116, 117, 123, 176]
[35, 61, 72, 177, 178]
[73, 74, 79, 179, 180]
[62, 63, 181, 182, 183]
[95, 96, 184, 185, 186]
[64, 97, 118, 187, 188]
[80, 189, 190, 191, 192]
[65, 75, 98, 124, 193]
[81, 82, 99, 194, 195]
[66, 76, 119, 196, 197]
[120, 198, 199, 200, 200]
[102, 201, 202, 203, 204]
[83, 121, 122, 205, 206]
[77, 207, 208, 209, 210]
[67, 78, 104, 211, 212]
[84, 105, 106, 213, 214]
[107, 108, 215, 215, 216]
[36, 37, 38, 217, 218]
[47, 219, 220, 221, 222]

Leaf (life history)
leaf_lifespan Leaf lifespan (longevity) num. 428 425 6 139 39 [48, 49, 50, 51, 52]

[53, 54, 55, 56, 90]
[41, 57, 58, 59, 60]
[35, 61, 62, 63, 64]
[65, 66, 67, 81, 82]
[36, 37, 38, 104]

leaf_phenology Variable indicating whether a
plant has deciduous versus
evergreen leaves; different types
of deciduousness included as
trait values

cat. 8383 515 26 6702 206 [48, 49, 50, 51, 223]
[52, 53, 54, 55, 224]
[56, 88, 137, 138, 225]
[148, 149, 150, 151, 152]
[57, 58, 59, 171, 226]
[60, 61, 62, 63, 227]
[64, 65, 124, 228, 229]
[66, 81, 82, 100, 230]
[100, 101, 199, 203, 231]
[67, 77, 78, 232, 233]
[104, 234]

Leaf (morphology)
cell_cross-sectional_
area

Cell cross sectional area num. 38 38 1 38 11 [88]

cotyledon_position Binary variable distinguishing
between seedlings where the
cotyledon remains within the
seed coat versus emerges from
the seed coat at germination.

cat. 1731 0 1 1688 124 [235]
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(continued)

Trait Description Type all geo. studies taxa families refs

cotyledon_type Binary variable distinguishing
between glabrous versus hairy
cotyledons

cat. 584 0 1 580 93 [235]

epidermal_cell_
density_abaxial

Epidermal cell density on the
lower leaf surface

num. 90 90 1 1 1 [72]

epidermal_cell_
density_adaxial

Epidermal cell density on the
upper leaf surface

num. 90 90 1 1 1 [72]

epidermal_cell_
density_both_sides

Epidermal cell density averaged
across the upper and lower leaf
surfaces

num. 58 58 1 1 1 [83]

epidermis_thickness Thickness of the epidermis, leaf
surface not specified

num. 111 60 2 52 2 [83, 131, 132, 172, 173]

epidermis_thickness_
lower_leaf_surface

Thickness of the epidermis on
the lower leaf surface

num. 241 241 4 131 20 [72, 88, 144, 171]

epidermis_thickness_
upper_leaf_surface

Thickness of the epidermis on
the upper leaf surface

num. 239 239 4 130 20 [72, 88, 144, 171]

glaucous Variable indicating if a plant’s
leaves are glaucous or not

cat. 5 0 1 5 4 [228]

guard_cell_length Length of guard cells num. 339 0 1 338 1 [131, 132, 172, 173]
hypocotyl_type Binary variable distinguishing

between glabrous versus hairy
hypocotyls (the embryonic axis
to which the cotyeledons are
attached).

cat. 567 0 1 563 88 [235]

leaf_angle Leaf angle, relative to horizontal num. 1539 1539 3 187 68 [95, 102, 236]
leaf_area Area of the leaf surface num. 27165 19131 84 4839 200 [85, 125, 127, 128, 237]

[87, 109, 129, 130, 131]
[132, 133, 134, 135, 136]
[89, 142, 143, 144, 151]
[110, 152, 153, 154, 236]
[155, 156, 158, 159, 162]
[69, 70, 91, 92, 163]
[164, 165, 166, 167, 168]
[71, 171, 172, 173, 238]
[94, 115, 174, 175, 239]
[116, 117, 123, 176, 240]
[35, 177, 179, 182, 241]
[183, 184, 185, 242, 243]
[95, 96, 118, 186, 244]
[97, 187, 188, 189, 245]
[80, 98, 124, 246, 247]
[75, 81, 194, 195, 248]
[82, 99, 119, 196, 249]
[111, 120, 200, 201, 203]
[102, 103, 121, 122, 205]
[77, 78, 210, 212, 250]
[105, 106, 107, 214, 215]
[36, 37, 215, 216, 217]
[38, 47, 219, 220]

leaf_arrangement Describes leaf arrangement on
the stem

cat. 5990 0 1 5261 196 [230]

leaf_cell_wall_
fraction

Fraction of total leaf biomass
that is cell wall material

num. 85 85 3 36 12 [79, 83, 113]

leaf_compoundness Indicates whether or not a leaf
is compound; different ’simple’
terminology used by different
studies

cat. 20837 253 26 13719 256 [48, 49, 50, 51, 223]
[52, 53, 54, 55, 224]
[56, 131, 132, 148, 251]
[149, 150, 151, 152, 236]
[57, 58, 59, 172, 173]
[60, 61, 62, 226, 227]
[63, 64, 243, 252, 253]
[65, 81, 228, 229, 246]
[66, 82, 99, 196, 230]
[67, 203, 217, 233, 234]
[254, 255]
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(continued)

Trait Description Type all geo. studies taxa families refs

leaf_division Detailed description of leaf
divisions, beyond what is
captured in leaf_compoundness
(simple versus compound) and
leaf_margin (entire, toothed,
lobed). Includes pinnation

cat. 275 0 2 274 2 [131, 132, 172, 173, 255]

leaf_dry_mass Leaf dry mass num. 11656 8651 33 1707 134 [87, 109, 129, 133, 134]
[89, 135, 142, 143, 144]
[110, 153, 154, 158, 159]
[70, 91, 92, 163, 256]
[115, 116, 117, 176, 179]
[95, 97, 118, 187, 194]
[99, 111, 119, 120, 195]
[102, 121, 122, 200, 201]
[47, 205, 212, 214]

leaf_hairs_adult Binary variable describing
whether or not adult leaves have
hairs

cat. 137 137 2 126 39 [96, 186]

leaf_hairs_juvenile Binary variable describing
whether or not juvenile leaves
have hairs

cat. 75 75 1 72 31 [96]

leaf_length Length of the leaf, including
petiole and rachis in compound
leaves

num. 41180 1708 39 14503 265 [223, 224, 251, 257, 258]
[89, 225, 259, 260, 261]
[168, 226, 262, 263, 264]
[95, 227, 243, 252, 253]
[228, 230, 265, 266, 267]
[268, 269, 270, 271, 272]
[102, 233, 273, 274, 275]
[84, 254, 255, 276]

leaf_margin Description of leaf margin as
lobed, toothed or entire.

cat. 10512 0 6 8832 239 [131, 132, 172, 173, 261]
[226, 228, 230, 254]

leaf_shape Leaf shape cat. 3225 32 15 2915 154 [129, 131, 132, 224, 257]
[168, 172, 251, 261, 262]
[173, 228, 233, 271, 273]
[254, 255, 275]

leaf_thickness Thickness of the leaf lamina num. 3352 3261 28 848 106 [87, 129, 131, 132, 136]
[88, 89, 144, 151, 152]
[113, 168, 171, 172, 173]
[115, 116, 117, 174, 175]
[35, 72, 79, 118, 123]
[80, 81, 82, 124, 187]
[99, 111, 119, 120, 196]
[83, 84, 102, 121, 122]
[36, 37, 38, 107]

leaf_type Broad definitions of leaf type cat. 612 376 12 566 43 [48, 49, 50, 51, 223]
[52, 53, 54, 55, 224]
[56, 57, 58, 129, 261]
[59, 60, 61, 174, 175]
[62, 63, 64, 227, 228]
[65, 66, 124, 203, 232]
[67, 104]

leaf_width Longest width axis of a leaf;
orthogonal to its length

num. 40311 2790 41 14103 256 [223, 224, 251, 257, 258]
[88, 225, 259, 260, 261]
[89, 158, 159, 168, 262]
[226, 227, 252, 263, 264]
[95, 228, 230, 243, 253]
[265, 266, 267, 268, 269]
[102, 270, 271, 272, 273]
[84, 233, 274, 275, 276]
[254, 255]

leaf_work_to_punch Measure of how much force
(work) is required to punch
through a leaf; units same as
J/m2; slight variation in
methods used will mean that, in
some cases, values are not
perfectly comparable across
studies

num. 60 60 3 43 26 [79, 99, 151, 152]
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(continued)

Trait Description Type all geo. studies taxa families refs

leaf_work_to_punch_
adjusted

Measure of how much force
(work) is required to punch
through a leaf, adjusted for leaf
thickness; units same as J/m2;
slight variation in methods used
will mean that, in some cases,
values are not perfectly
comparable across studies

num. 60 60 3 43 26 [79, 99, 151, 152]

leaf_work_to_shear Measures of how much force
(work) is required to shear a
leaf; equivalent to cutting a leaf
with scissors; units same as
J/m; slight variation in methods
used will mean that, in some
cases, values are not perfectly
comparable across studies

num. 192 192 5 137 46 [35, 79, 123, 151, 152]
[36, 37, 38, 99]

leaf_work_to_shear_
adjusted

Measures of how much force
(work) is required to shear a
leaf, adjusted to leaf thickness;
same units as J/m2; also
referred to as ’fracture
toughness’; slight variation in
methods used will mean that, in
some cases, values are not
perfectly comparable across
studies

num. 192 192 5 137 46 [35, 79, 123, 151, 152]
[36, 37, 38, 99]

lower_cuticle_
thickness

Thickness of the lower cuticle num. 264 160 5 229 20 [88, 131, 132, 144, 171]
[124, 172, 173]

lower_hypodermis_
thickness

Thickness of the lower
hypodermis

num. 4 4 2 3 2 [88, 144]

lower_palisade_cell_
thickness

Thickness (length) of lower
palisade cells

num. 62 62 2 51 8 [88, 144]

palisade_cell_length Length of individual palisade
cells

num. 59 59 1 1 1 [83]

palisade_cell_width Width of individual palisade
cells

num. 107 59 2 49 2 [83, 131, 132, 172, 173]

palisade_layer_number Number of layers of palisade
cells

num. 60 60 1 1 1 [83]

pendulous_leaves Binary variable describing
whether or not leaves are
pendulous

cat. 95 95 1 95 37 [89]

physical_defence Physical defences cat. 291 290 2 291 89 [203, 242]
seedling_first_leaf Binary variable distinguishing

between seedlings where the
first leaf is scale-like (cataphyll)
versus leaf-like.

cat. 938 0 1 925 98 [235]

seedling_first_node Binary variable distinguishing
between seedlings where the
leaves at the first node are
single versus paired.

cat. 838 0 1 827 98 [235]

spongy_mesophyll_
thickness

Thickness of the spongy
mesophyll cells

num. 75 75 2 63 11 [88, 144]

stomatal_density_
abaxial

Stomatal density on the lower
leaf surface

num. 209 148 3 63 3 [72, 131, 132, 172, 173]
[83]

stomatal_density_
adaxial

Stomatal density on the upper
leaf surface

num. 98 90 2 9 2 [72, 131, 132, 172, 173]

stomatal_density_
average

Stomatal density averaged
across both leaf surfaces

num. 63 18 3 63 6 [131, 132, 170, 172, 173]
[124]

stomatal_distribution Distribution of stomatal across
the two leaf surfaces

cat. 390 0 1 389 1 [131, 132, 172, 173]

upper_cuticle_
thickness

Thickness of the upper cuticle num. 268 163 5 231 21 [88, 131, 132, 144, 171]
[124, 172, 173]

upper_hypodermis_
thickness

Thickness of the upper
hypodermis

num. 8 8 2 7 4 [88, 144]

upper_palisade_cell_
thickness

Thickness (length) of upper
palisade cells

num. 95 95 2 81 11 [88, 144]

vein_angle_secondary Angle of secondary veins num. 287 287 1 229 1 [214]
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(continued)

Trait Description Type all geo. studies taxa families refs

vein_density Count of veins per distance num. 298 254 2 252 2 [131, 132, 172, 173, 214]
vessel_density_leaves Count of vessels per area in

leaves
num. 151 151 1 34 13 [127, 128, 130, 164, 165]

[166, 167]
vessel_diameter_
leaves

Diameter of xylem vessels in
leaves

num. 160 160 1 36 13 [127, 128, 130, 164, 165]
[166, 167]

Leaf (nutrient)
carotenoid_per_area Leaf carotenoid content per unit

leaf area
num. 93 93 1 38 12 [277]

carotenoid_per_dry_
mass

Leaf carotenoid content per unit
leaf dry mass

num. 163 163 2 67 12 [107, 277]

cell_epidermis_Ca_
per_fresh_mass

Ca content of epidermal cells num. 20 20 1 7 1 [278]

cell_epidermis_P_per_
fresh_mass

P content of epidermal cells num. 20 20 1 7 1 [278]

cell_hypodermis_Ca_
per_fresh_mass

Ca content of hypodermis cells num. 9 9 1 3 1 [278]

cell_hypodermis_P_
per_fresh_mass

P content of hypodermis cells num. 9 9 1 3 1 [278]

cell_internal_
parenchyma_Ca_per_
fresh_mass

Ca content of internal
parenchyma cells

num. 12 12 1 4 1 [278]

cell_internal_
parenchyma_P_per_
fresh_mass

P content of internal
parenchyma cells

num. 12 12 1 4 1 [278]

cell_palisade_
mesophyll_Ca_per_
fresh_mass

Ca content of palisade
mesophyll cells

num. 20 20 1 7 1 [278]

cell_palisade_
mesophyll_P_per_
fresh_mass

P content of palisade mesophyll
cells

num. 20 20 1 7 1 [278]

cell_rubisco_
concentration

Concentration of Rubisco num. 68 68 1 29 1 [107]

cell_rubisco_N_per_
total_N

Percentage of N accounted for
by Rubisco

num. 68 68 1 29 1 [107]

cell_sclerenchyma_Ca_
per_fresh_mass

Ca content of sclerenchyma cells num. 17 17 1 7 1 [278]

cell_sclerenchyma_P_
per_fresh_mass

P content of sclerenchyma cells num. 17 17 1 7 1 [278]

cell_spongy_
mesophyll_Ca_per_
fresh_mass

Ca content of spongy mesophyll
cells

num. 9 9 1 3 1 [278]

cell_spongy_
mesophyll_P_per_
fresh_mass

P content of spongy mesophyll
cells

num. 9 9 1 3 1 [278]

cell_thylakoid_N_per_
total_N

Percentage of N accounted for
by thylakoid proteins

num. 70 70 1 29 1 [107]

chlorophyll_A_B_ratio Ratio of leaf chlorophyll A to
chlorophyll B

num. 630 630 5 153 48 [70, 83, 102, 107, 277]

insoluable_protein_
per_area

Mass of insoluble protein per
leaf area

num. 30 30 1 1 1 [83]

leaf_Al_per_dry_mass Leaf aluminium (Al) content per
unit leaf dry mass

num. 548 548 6 112 36 [197, 218, 231, 278, 279]
[47]

leaf_B_per_dry_mass Leaf boron (B) content per unit
leaf dry mass

num. 658 658 7 214 40 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 164]
[58, 59, 165, 166, 167]
[60, 61, 62, 63, 64]
[65, 66, 67, 197, 231]
[47, 218]
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(continued)

Trait Description Type all geo. studies taxa families refs

leaf_C_per_dry_mass Leaf carbon (C) content per
unit leaf dry mass

num. 4419 4417 24 1060 113 [87, 127, 128, 130, 135]
[136, 141, 142, 143, 157]
[70, 92, 164, 165, 166]
[35, 72, 123, 167, 280]
[80, 100, 101, 181, 231]
[83, 200, 201, 203, 281]
[36, 37, 38, 218, 220]
[47]

leaf_Ca_per_dry_mass Leaf calcium (Ca) content per
unit leaf dry mass

num. 1097 1089 15 292 49 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 164]
[58, 165, 166, 167, 279]
[59, 256, 278, 280, 282]
[60, 61, 62, 283, 284]
[63, 64, 65, 66, 197]
[47, 67, 68, 218, 231]

leaf_cell_wall_N Proportion of leaf cell wall
material that is nitrogen

num. 29 29 1 22 5 [113]

leaf_cell_wall_N_
fraction

Proportion of all N in leaves
that is found in the leaf cell
walls

num. 29 29 1 22 5 [113]

leaf_Cl_per_dry_mass Leaf chlorine (Cl) content per
unit leaf dry mass

num. 6 6 2 6 2 [68, 256]

leaf_CN_ratio Leaf carbon/nitrogen (C/N)
ratio

num. 720 720 5 79 37 [72, 87, 123, 141, 280]

leaf_Cu_per_dry_mass Leaf copper (Cu) content per
unit leaf dry mass

num. 977 977 11 257 46 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 164]
[58, 165, 166, 167, 280]
[59, 60, 61, 256, 278]
[62, 63, 64, 65, 197]
[66, 67, 68, 218, 231]
[47]

leaf_Fe_per_dry_mass Leaf iron (Fe) content per unit
leaf dry mass

num. 975 975 11 256 46 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 164]
[58, 165, 166, 167, 280]
[59, 60, 61, 256, 278]
[62, 63, 64, 65, 197]
[66, 67, 68, 218, 231]
[47]

leaf_K_per_area Leaf potassium (K) content per
unit leaf area

num. 18 15 1 18 5 [77, 78]

leaf_K_per_dry_mass Leaf potassium (K) content per
unit leaf dry mass

num. 1875 1782 17 341 54 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 157]
[58, 164, 165, 166, 167]
[59, 256, 278, 280, 282]
[60, 61, 62, 283, 284]
[63, 64, 65, 66, 197]
[67, 77, 78, 211, 231]
[47, 68, 218]

leaf_lignin_per_dry_
mass

Leaf lignin per unit leaf dry
mass

num. 77 63 2 52 28 [123, 283]

leaf_Mg_per_dry_mass Leaf magnesium (Mg) content
per unit leaf dry mass

num. 1067 1059 14 288 48 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 164]
[58, 165, 166, 167, 280]
[59, 256, 278, 282, 283]
[60, 61, 62, 63, 284]
[64, 65, 66, 197, 231]
[47, 67, 68, 218]
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(continued)

Trait Description Type all geo. studies taxa families refs

leaf_Mn_per_dry_mass Leaf manganese (Mn) content
per unit leaf dry mass

num. 975 975 11 256 46 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 164]
[58, 165, 166, 167, 280]
[59, 60, 61, 256, 278]
[62, 63, 64, 65, 197]
[66, 67, 68, 218, 231]
[47]

leaf_Mo_per_dry_mass Leaf molybdenum (Mo) content
per unit leaf dry mass

num. 330 330 3 77 22 [90, 127, 128, 130, 164]
[165, 166, 167, 280]

leaf_N_per_area Leaf nitrogen (N) content per
unit leaf area

num. 3940 3928 28 681 83 [48, 49, 50, 51, 52]
[53, 54, 55, 86, 135]
[56, 140, 141, 142, 143]
[148, 149, 150, 151, 152]
[57, 58, 59, 160, 169]
[35, 60, 115, 116, 117]
[61, 62, 63, 118, 181]
[64, 65, 80, 81, 187]
[66, 82, 99, 119, 196]
[83, 120, 121, 122, 199]
[67, 77, 78, 104, 212]
[36, 37, 84, 107, 108]
[38, 220]

leaf_N_per_dry_mass Leaf nitrogen (N) content per
unit leaf dry mass

num. 10869 10628 77 2121 142 [48, 49, 50, 51, 125]
[52, 53, 54, 55, 127]
[86, 87, 109, 128, 130]
[56, 135, 136, 140, 141]
[88, 142, 143, 148, 149]
[150, 151, 152, 153, 155]
[57, 156, 157, 160, 163]
[70, 92, 164, 165, 166]
[93, 114, 167, 169, 285]
[58, 59, 113, 256, 280]
[41, 115, 282, 283, 284]
[60, 94, 116, 174, 175]
[112, 117, 123, 176, 178]
[35, 61, 62, 72, 181]
[63, 64, 118, 187, 191]
[65, 80, 81, 82, 124]
[66, 99, 119, 196, 197]
[100, 100, 101, 120, 231]
[199, 200, 200, 201, 202]
[83, 102, 203, 204, 281]
[121, 122, 207, 208, 286]
[67, 77, 78, 209, 211]
[84, 104, 107, 108, 212]
[36, 37, 38, 68, 218]
[47, 220]

leaf_Na_per_dry_mass Leaf sodium (Na) content per
unit leaf dry mass

num. 767 767 10 243 45 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 130, 164, 165]
[58, 166, 167, 256, 278]
[59, 60, 61, 62, 94]
[63, 64, 65, 66, 197]
[47, 67, 68, 218, 231]

leaf_Ni_per_dry_mass Leaf nickel (Ni) content per unit
leaf dry mass

num. 55 55 2 15 4 [90, 197]

leaf_P_per_area Leaf phosphorus (P) content per
unit leaf area

num. 2493 2490 16 361 64 [48, 49, 50, 51, 52]
[53, 54, 55, 86, 135]
[56, 90, 141, 151, 152]
[57, 58, 59, 160, 169]
[35, 60, 61, 62, 63]
[64, 65, 80, 81, 82]
[66, 77, 78, 99, 196]
[36, 37, 38, 67, 108]
[220]
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(continued)

Trait Description Type all geo. studies taxa families refs

leaf_P_per_dry_mass Leaf phosphorus (P) content per
unit leaf dry mass

num. 5408 5253 41 958 104 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 86, 130, 135, 141]
[57, 90, 151, 152, 157]
[160, 163, 164, 165, 166]
[93, 167, 169, 279, 285]
[58, 59, 256, 278, 280]
[41, 60, 282, 283, 284]
[35, 61, 174, 175, 178]
[62, 63, 64, 65, 80]
[81, 82, 99, 196, 197]
[66, 102, 203, 204, 231]
[67, 77, 78, 211, 286]
[36, 37, 68, 108, 218]
[38, 47, 220]

leaf_S_per_dry_mass Leaf sulphur (S) content per
unit leaf dry mass

num. 974 966 12 263 46 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 164]
[58, 165, 166, 167, 280]
[59, 60, 256, 278, 284]
[61, 62, 63, 64, 65]
[66, 67, 68, 197, 231]
[47, 218]

leaf_soluable_starch_
per_mass

Mass of soluble starch per leaf
mass

num. 87 87 3 13 11 [71, 108, 287]

leaf_soluable_sugars_
per_mass

Mass of soluble sugars per leaf
mass

num. 43 43 2 2 2 [71, 287]

leaf_total_
non-structural_
carbohydrates_per_area

Total non-structural
carbohydrates per leaf area

num. 22 22 1 11 10 [108]

leaf_total_
non-structural_
carbohydrates_per_mass

Total non-structural
carbohydrates per leaf mass

num. 22 22 1 11 10 [108]

leaf_Zn_per_dry_mass Leaf zinc (Zn) content per unit
leaf dry mass

num. 971 971 11 257 46 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 57, 90, 130, 164]
[58, 165, 166, 167, 280]
[59, 60, 61, 256, 278]
[62, 63, 64, 65, 197]
[66, 67, 68, 218, 231]
[47]

N_to_P_ratio Ratio of N to P per unit leaf
dry mass

num. 1583 1583 5 110 36 [86, 93, 108, 135, 141]

resorption_leaf_N Nitrogen resorption from leaves num. 86 86 1 14 7 [93]
resorption_leaf_P Phosphorus resorption from

leaves
num. 90 90 1 14 7 [93]

senesced_leaf_Ca_per_
dry_mass

Senesced leaf calcium (Ca)
content per unit leaf dry mass

num. 257 257 2 21 10 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 280]
[62, 63, 64, 65, 66]
[67]

senesced_leaf_Cu_per_
dry_mass

Senesced leaf copper (Cu)
content per unit leaf dry mass

num. 254 254 1 18 10 [280]

senesced_leaf_Fe_per_
dry_mass

Senesced leaf iron (Fe) content
per unit leaf dry mass

num. 254 254 1 18 10 [280]

senesced_leaf_K_per_
dry_mass

Senesced leaf potassium (K)
content per unit leaf dry mass

num. 257 257 2 21 10 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 280]
[62, 63, 64, 65, 66]
[67]

senesced_leaf_Mg_per_
dry_mass

Senesced leaf magnesium (Mg)
content per unit leaf dry mass

num. 257 257 2 21 10 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 280]
[62, 63, 64, 65, 66]
[67]

senesced_leaf_Mn_per_
dry_mass

Senesced leaf manganese (Mn)
content per unit leaf dry mass

num. 254 254 1 18 10 [280]
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(continued)

Trait Description Type all geo. studies taxa families refs

senesced_leaf_Mo_per_
dry_mass

Senesced leaf molybdenum (Mo)
content per unit leaf dry mass

num. 176 176 1 18 10 [280]

senesced_leaf_N_per_
dry_mass

Senesced leaf nitrogen (N)
content per unit leaf dry mass

num. 459 459 5 47 18 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 141]
[57, 58, 59, 93, 280]
[41, 60, 61, 62, 63]
[64, 65, 66, 67]

senesced_leaf_P_per_
dry_mass

Senesced leaf phosphorus (P)
content per unit leaf dry mass

num. 470 470 5 51 20 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 141]
[57, 58, 59, 93, 280]
[41, 60, 61, 62, 63]
[64, 65, 66, 67]

senesced_leaf_S_per_
dry_mass

Senesced leaf sulphur (S)
content per unit leaf dry mass

num. 254 254 1 18 10 [280]

senesced_leaf_Zn_per_
dry_mass

Senesced leaf zinc (Zn) content
per unit leaf dry mass

num. 254 254 1 18 10 [280]

soluable_protein_per_
area

Mass of soluble protein per leaf
area

num. 66 66 2 2 1 [70, 83]

soluable_starch_per_
area

Mass of soluble starch per leaf
area

num. 83 83 2 13 10 [70, 108]

soluable_sugars_per_
area

Mass of soluble sugars per leaf
area

num. 112 112 3 13 10 [70, 83, 108]

starch_per_area Mass of starch per leaf area num. 30 30 1 1 1 [83]

Leaf (physiology)
ca Ambient CO2 concentration

(external CO2 concentration)
num. 801 801 3 113 31 [35, 36, 37, 38, 80]

[47]
cc CO2 concentration inside

chloroplasts
num. 90 90 1 37 11 [80]

chlorophyll_A_per_
area

Leaf chlorophyll A content per
leaf area

num. 93 93 1 38 12 [277]

chlorophyll_A_per_
dry_mass

Leaf chlorophyll A content per
unit leaf dry mass

num. 494 494 2 123 48 [102, 277]

chlorophyll_B_per_
area

Leaf chlorophyll B content per
leaf area

num. 93 93 1 38 12 [277]

chlorophyll_B_per_
dry_mass

Leaf chlorophyll B content per
unit leaf dry mass

num. 494 494 2 123 48 [102, 277]

chlorophyll_per_area Sum of chlorophyll A and B per
leaf area

num. 416 416 7 63 21 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 70, 112]
[61, 62, 63, 64, 176]
[65, 66, 81, 82, 83]
[67, 277]

chlorophyll_per_dry_
mass

Leaf chlorophyll content per
unit leaf dry mass

num. 778 778 4 172 55 [81, 82, 102, 107, 277]

ci CO2 concentration in interstitial
spaces under ambient conditions

num. 43 43 2 29 13 [84, 104]

ci_at_Amax CO2 concentration in
interstitial spaces during Amax
measurement

num. 1347 1347 5 118 33 [70, 71, 80, 83, 86]

ci_at_Asat CO2 concentration in interstitial
spaces during Asat measurement

num. 3575 3575 16 248 53 [40, 86, 87, 135, 287]
[70, 92, 113, 154, 169]
[35, 71, 72, 83, 108]
[36, 37, 38, 47]

ci_over_ca Ratio of internal to external
CO2 concentrations

num. 2913 2913 14 481 78 [86, 87, 135, 142, 143]
[35, 92, 113, 169, 287]
[36, 72, 80, 104, 207]
[37, 38, 47]

fluorescence_Jmax_
over_Vcmax

Ratio of photosynthetic electron
transport capacity to maximum
Rubisco activity, measured
through chlorophyll fluorescence

num. 90 90 1 37 11 [80]

fluorescence_Jmax_
per_mass

Capacity for photosynthetic
electron transport, measured
through chlorophyll
fluorescence, on a per mass basis

num. 90 90 1 37 11 [80]
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(continued)

Trait Description Type all geo. studies taxa families refs

fluorescence_Vcmax_
per_mass

Maximum carboxylase activity
of ribulose 1,5-bisphosphate
carboxylase/oxygenase
(Rubisco), measured through
chlorophyll fluorescence, on a
per mass basis

num. 90 90 1 37 11 [80]

fv_over_fm Chlorophyll fluorescence
measurement that indicates
whether plant stress affects
photo-system II in a dark
adapted state

num. 153 153 2 3 3 [69, 110]

Jmax_per_area Capacity for photosynthetic
electron transport, calculated
from an A-Ci response curve, on
an area basis

num. 245 245 3 76 38 [135, 136, 140]

leaf_absorption Proportion of incoming visible
light (between 400-700 nm) that
is absorbed by the leaf

num. 99 99 1 37 12 [277]

leaf_dark_
respiration_per_area

Leaf respiration rate per unit
leaf area, in the dark

num. 2205 2058 13 325 64 [40, 86, 127, 128, 130]
[135, 148, 164, 165, 287]
[93, 166, 167, 169, 178]
[80, 104, 108, 204]

leaf_dark_
respiration_per_dry_
mass

Leaf respiration rate per unit
leaf dry mass, in the dark

num. 1585 1585 8 300 52 [86, 127, 128, 130, 148]
[164, 165, 166, 167, 169]
[35, 36, 80, 93, 104]
[37, 38]

leaf_dark_
transpiration_per_
area

Leaf transpiration rate per unit
leaf area, in the dark

num. 1027 1027 1 78 31 [86]

leaf_delta13C Leaf carbon stable isotope
signature

num. 4981 4946 31 1490 116 [48, 49, 50, 51, 125]
[52, 53, 54, 55, 127]
[87, 128, 130, 135, 136]
[56, 57, 142, 143, 153]
[92, 164, 165, 166, 167]
[58, 59, 60, 94, 113]
[35, 61, 62, 72, 112]
[63, 64, 65, 80, 288]
[66, 100, 100, 101, 197]
[199, 200, 200, 201, 231]
[202, 203, 210, 232, 281]
[36, 67, 84, 107, 212]
[37, 38, 47]

leaf_delta15N Leaf nitrogen stable isotope
signature

num. 2538 2537 15 856 103 [87, 94, 136, 142, 143]
[35, 72, 80, 100, 197]
[100, 101, 199, 203, 231]
[36, 37, 38, 47, 281]

leaf_delta18O Leaf oxygen stable isotope
signature

num. 15 15 1 1 1 [84]

leaf_hydraulic_
conductivity

Measure of how efficiently water
is transported through the leaf,
determined as the ratio of water
flow rate through the leaf to the
difference in water potential
across the leaf, standardised to
leaf area.

num. 81 81 2 79 22 [126, 127, 128, 130, 164]
[165, 166, 167]

leaf_hydraulic_
vulnerability

Leaf water potential value at
which leaf hydraulic
conductance has declined by
50% from the mean maximum
rate

num. 20 20 1 20 9 [126]

leaf_light_
respiration_per_area

Leaf respiration rate per unit
leaf area, in the light

num. 106 106 2 9 8 [93, 140]

leaf_mesophyll_
conductance_per_area

Rate of CO2 movement between
chloroplasts and sub-stomatal
cavities (intracellular space),
per unit leaf area

num. 90 90 1 37 11 [80]

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2021. ; https://doi.org/10.1101/2021.01.04.425314doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425314
http://creativecommons.org/licenses/by-nc-nd/4.0/


(continued)

Trait Description Type all geo. studies taxa families refs

leaf_mesophyll_
conductance_per_mass

Rate of CO2 movement between
chloroplasts and sub-stomatal
cavities (intracellular space),
per unit leaf mass

num. 90 90 1 37 11 [80]

leaf_photosynthetic_
nitrogen_use_
efficiency_maximum

Ratio of photosynthesis (CO2
assimilation rate) to leaf
nitrogen content at saturating
light and CO2 conditions

num. 99 99 1 19 12 [93]

leaf_photosynthetic_
nitrogen_use_
efficiency_saturated

Ratio of photosynthesis (CO2
assimilation rate) to leaf
nitrogen content at saturating
light conditions but ambient
CO2 conditions

num. 1410 1408 8 160 48 [86, 87, 93, 148, 160]
[77, 78, 84, 113]

leaf_photosynthetic_
phosphorus_use_
efficiency_maximum

Ratio of photosynthesis (CO2
assimilation rate) to leaf
phosphorus content at
saturating light and CO2
conditions

num. 73 73 1 14 7 [93]

leaf_photosynthetic_
phosphorus_use_
efficiency_saturated

Ratio of photosynthesis (CO2
assimilation rate) to leaf
phosphorus content at
saturating light conditions but
ambient CO2 conditions

num. 1269 1269 3 108 37 [86, 93, 160]

leaf_PRI Photochemical reflectance index
measures plant responses to
stress, by indicating changes in
carotenoid pigments in live
foliage.

num. 552 552 2 38 12 [125, 277]

leaf_reflectance Proportion of incoming visible
light (between 400-700 nm) that
is reflected by the leaf

num. 194 194 2 132 44 [89, 277]

leaf_reflectance_
near_infrared

Proportion of incoming near
infra-red light (between
750-10500 nm) that is reflected
by the leaf

num. 95 95 1 95 37 [89]

leaf_specific_
conductivity

Kl; the ratio of leaf hydraulic
conductivity to the leaf area
distil to the segment

num. 387 387 6 148 32 [127, 128, 130, 137, 138]
[164, 165, 166, 167, 289]
[181, 207, 221, 290]

leaf_transmission Proportion of incoming visible
light (between 400-700 nm) that
is transmitted through the leaf

num. 98 98 1 37 12 [277]

leaf_transpiration Rate of water loss from leaf
under ambient conditions

num. 180 180 1 4 4 [137, 138]

leaf_transpiration_
at_Amax

Rate of water loss from leaf
during Amax measurement

num. 1351 1351 5 89 31 [70, 71, 83, 86, 135]

leaf_transpiration_
at_Asat

Rate of water loss from leaf
during Asat measurement

num. 2440 2440 13 176 47 [40, 86, 135, 148, 287]
[35, 70, 71, 92, 176]
[36, 37, 72, 83, 108]
[38]

leaf_turgor_loss_
point

Water potential at which a leaf
loses turgor

num. 166 166 3 85 23 [35, 36, 37, 126, 153]
[38]

leaf_work_to_tear Measures of how much force
(work) is required to tear/rip a
leaf; units same as J/m; slight
variation in methods used will
mean that, in some cases, values
are not perfectly comparable
across studies

num. 16 16 1 16 14 [99]

leaf_work_to_tear_
adjusted

Measures of how much force
(work) is required to tear/rip a
leaf, adjusted to leaf thickness;
units same as J/m2; slight
variation in methods used will
mean that, in some cases, values
are not perfectly comparable
across studies

num. 36 36 2 31 20 [99, 151, 152]

leaf_xylem_delta15N Xylem nitrogen stable isotope
signature from leaves

num. 78 78 1 18 3 [281]
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(continued)

Trait Description Type all geo. studies taxa families refs

osmotic_potential Potential for water to move
across a semi-permeable
membrane based on solute
concentration

num. 80 80 1 4 2 [153]

photosynthetic_rate_
per_area_ambient

Rate at which a plant consumes
carbon dioxide through
photosynthesis, per unit leaf
area

num. 198 198 2 10 6 [137, 138, 197]

photosynthetic_rate_
per_area_maximum

Rate at which a plant consumes
carbon dioxide through
photosynthesis at saturating
light and CO2 conditions, per
unit leaf area

num. 1559 1559 7 144 37 [70, 72, 86, 93, 135]
[80, 83]

photosynthetic_rate_
per_area_saturated

Rate at which a plant consumes
carbon dioxide through
photosynthesis at saturating
light conditions but ambient
CO2 conditions, per unit leaf
area

num. 5132 4916 36 519 88 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[40, 86, 87, 130, 135]
[56, 136, 140, 148, 287]
[57, 149, 150, 154, 160]
[70, 92, 164, 165, 166]
[58, 93, 113, 167, 169]
[35, 59, 60, 176, 178]
[61, 62, 72, 73, 181]
[63, 64, 65, 81, 82]
[66, 76, 83, 197, 204]
[67, 77, 78, 207, 211]
[36, 37, 84, 104, 108]
[38, 47]

photosynthetic_rate_
per_dry_mass_maximum

Maximum rate at which a plant
consumes carbon dioxide
through photosynthesis at
saturating light and CO2
conditions, per unit leaf dry
mass

num. 1377 1377 4 142 37 [80, 86, 93, 169]

photosynthetic_rate_
per_dry_mass_
saturated

Maximum rate at which a plant
consumes carbon dioxide
through photosynthesis at
saturating light conditions but
ambient CO2 conditions, per
unit leaf dry mass

num. 3084 2871 20 399 75 [48, 49, 50, 51, 52]
[53, 54, 55, 127, 128]
[56, 86, 87, 130, 148]
[57, 149, 150, 160, 164]
[58, 93, 165, 166, 167]
[35, 59, 60, 176, 178]
[61, 62, 181, 289, 290]
[63, 64, 65, 81, 82]
[66, 77, 78, 207, 211]
[36, 37, 67, 84, 104]
[38, 47]

stomatal_conductance_
per_area_ambient

Rate of water loss through
stomata under ambient
conditions, per unit leaf area

num. 217 217 3 12 7 [110, 137, 138, 197]

stomatal_conductance_
per_area_at_Amax

Rate of water loss through
stomata, per unit leaf area
under saturated light and CO2
conditions

num. 1386 1386 6 90 32 [70, 71, 72, 86, 135]
[83]

stomatal_conductance_
per_area_at_Asat

Rate of water loss through
stomata, per unit leaf area
under saturated light conditions

num. 4415 4203 28 378 81 [48, 49, 50, 51, 52]
[53, 54, 55, 86, 87]
[40, 56, 135, 136, 140]
[57, 92, 148, 154, 287]
[58, 59, 60, 70, 169]
[35, 61, 72, 176, 178]
[62, 63, 64, 65, 73]
[66, 76, 83, 197, 207]
[67, 77, 78, 104, 211]
[36, 37, 38, 84, 108]
[47]

Vcmax_per_area Maximum carboxylase activity
of ribulose 1,5-bisphosphate
carboxylase/oxygenase
(Rubisco), calculated from an
A-Ci response curve, on an area
basis

num. 245 245 3 76 38 [135, 136, 140]
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(continued)

Trait Description Type all geo. studies taxa families refs

water_band_index Water band index, the ratio of
the reflectance at 970 nm / 900
nm, recorded from the
spectro-radiometer.

num. 453 453 1 1 1 [125]

water_potential_
midday

A plant’s water potential during
the heat of the day

num. 588 580 8 188 33 [127, 128, 130, 291, 292]
[137, 137, 138, 293, 294]
[110, 153, 164, 165, 295]
[35, 166, 167, 289, 296]
[36, 188, 290, 297, 298]
[37, 38]

water_potential_
predawn

A plant’s water potential just
before sunrise

num. 308 300 5 163 32 [127, 128, 130, 137, 138]
[35, 164, 165, 166, 167]
[36, 37, 188, 289, 290]
[38]

water_use_efficiency_
integrated

WUE; Rate of carbon dioxide
uptake relative to water loss, per
unit leaf area. This measures
how much biomass is produced
relative to transpiration, and is
therefore an integrated measure
of water use efficiency.
(Calculated as biomass
production / transpiration)

num. 111 111 1 97 19 [127, 128, 130, 164, 165]
[166, 167]

water_use_efficiency_
intrinsic

PWUE calculated as Aarea/gs;
Ratio of photosynthesis (CO2
assimilation rate) to stomatal
conductance (gs). This is
intrinsic water use efficiency.

num. 503 437 5 105 31 [35, 76, 77, 78, 87]
[36, 37, 38, 211]

water_use_efficiency_
photosynthetic

PWUE calculated as Aarea/E;
Ratio of photosynthesis (CO2
assimilation rate) to leaf
transpiration (E; water loss).
This is also termed
instantaneous water use
efficiency.

num. 3398 3331 7 189 53 [35, 86, 87, 92, 160]
[36, 37, 38, 84, 211]

Reproductive (allocation)
accessory_cost_
fraction

Fraction of total reproductive
investment required to mature a
seed that is invested in non-seed
tissues

num. 47 47 1 47 13 [299]

accessory_cost_mass Mass of seed accessory costs,
the proportion of a fruit that
does not develop into a seed

num. 47 47 1 47 13 [299]

flower_count_maximum Maximum flower number
produced

num. 7 7 1 7 4 [191]

Reproductive (life history)
dispersal_syndrome Type of dispersal syndrome

displayed by taxon, although
the list includes many dispersal
appendages and fruit types.
Many definitions come from
Kew Botanic Gardens website.

cat. 12621 1039 27 8593 209 [85, 133, 134, 223, 300]
[145, 162, 301, 302, 303]
[239, 304, 305, 306, 307]
[177, 183, 308, 309, 310]
[184, 185, 242, 243, 253]
[189, 193, 246, 311, 312]
[206, 215, 233, 313, 314]
[315]

dispersers Types of animals dispersing
fruit

cat. 913 234 2 765 101 [198, 316]

fire_cued_seeding Distinguishes between plants
that do and do not have
fire-cued seeding

cat. 3329 5 3 2947 143 [317, 318, 319]
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(continued)

Trait Description Type all geo. studies taxa families refs

flowering_time Months during which taxon is
flowering; keyed as a sequences
of 12 0s (not flowering) and 1s
(flowering) starting with
January

chr. 27844 0 28 17770 267 [223, 224, 257, 258, 320]
[259, 260, 261, 305, 316]
[228, 229, 230, 264, 321]
[265, 266, 267, 268, 269]
[233, 270, 271, 273, 274]
[234, 275, 276, 314]

fruiting_time Months during which taxon is
fruiting; keyed as a sequences of
12 0s (not flowering) and 1s
(flowering) starting with
January

chr. 3514 36 6 3262 197 [228, 230, 261, 316, 322]
[233]

germination Proportion of seeds that
germinate

num. 7644 872 5 2549 119 [154, 323, 324, 325, 326]
[327]

ploidy Chromosome ploidy num. 62 22 1 61 1 [328]
pollination_syndrome Pollination syndrome cat. 8973 285 5 7866 191 [242, 243, 253, 323, 324]

[314]
pollination_system Pollination system cat. 915 0 1 902 108 [145, 193, 206]
regen_strategy Different regeneration strategies

displayed by plants. Trait
values include both generic
terms and quite specific ones.
See Pausus, Lamont et al. 2018,
doi.org/10.1111/nph.14982 for
trait values used and detailed
desciptions of recolonization
ability and level of fire
protection provided by each
regeneration strategy. This trait
includes terminology for storage
organs and regeneration
strategies following fire. The
trait ”fire_response” is a binary
trait distinguishing between
fire-killed and regenerating taxa.

cat. 9261 1044 18 7002 200 [90, 145, 317, 319, 329]
[183, 184, 240, 323, 324]
[97, 185, 242, 243, 253]
[189, 193, 330, 331, 332]
[100, 206, 271, 314, 333]
[334]

seed_longevity Seed longevity cat. 8937 0 2 7207 173 [314, 318]
seed_release When a fruit or cone only

releases its seeds following an
environmental trigger, often fire;
; see also ’seed_longevity’,
’seed_storage_location’,
’soil_seedbank’,
’canopy_seedbank’, and
’serotiny’

cat. 7925 0 1 7053 168 [314]

seed_storage_location Location where seeds are stored
at maturity; see also
’seed_longevity’,
’soil_seedbank’,
’canopy_seedbank’, and
’serotiny’

cat. 587 587 1 584 72 [286]

seed_viability Proportion of seeds that are
viable

num. 145 145 2 104 20 [154, 335]

serotiny Categorical variable describing
whether a fruit or cone only
releases its seeds following an
environmental trigger, often fire

cat. 1048 472 8 993 79 [90, 336, 337, 338, 339]
[305, 308, 323, 324, 340]
[330, 331, 334, 341, 342]

sex_type Plant sex type cat. 24382 0 5 21205 227 [243, 253, 343, 344, 345]
soil_seedbank Binary variable indicating if

seeds present in soil seedbank;
see also ’seed_longevity’,
’seed_storage_location’,
’canopy_seedbank’, and
’serotiny’

cat. 522 334 4 515 62 [308, 336, 337, 338, 339]
[310, 313, 315]

Reproductive (morphology)
diaspore_mass Mass of seed including dispersal

appendages
num. 314 314 2 283 50 [240, 335]
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(continued)

Trait Description Type all geo. studies taxa families refs

dispersal_appendage Type of dispersal appendage
present

cat. 3316 615 11 2920 108 [161, 162, 261, 320, 346]
[227, 243, 253, 344, 347]
[228, 233]

embryo_colour Binary variable distinguishing
between embryos that are green
versus colourless

cat. 296 0 1 293 53 [235]

flower_colour Flower colour, with six possible
outcomes

cat. 8667 0 1 5037 195 [230]

fruit_breadth Shorter width dimension of a
fruit; orthogonal to the length

num. 86 0 2 47 2 [243, 253]

fruit_length Longest fruit dimension or if
clearly recognizable the length
from its base to its apex

num. 6639 340 10 3289 177 [261, 262, 316, 320, 322]
[194, 243, 253, 323, 324]
[255]

fruit_mass Dry mass of a fruit, including
the seed

num. 495 400 7 138 5 [256, 322, 323, 324, 348]
[176, 194, 195]

fruit_type Fruit types cat. 31299 519 9 22403 248 [242, 253, 316, 320, 343]
[198, 235, 243, 345]

fruit_type_botanical Binary variable, dividing fruits
into ’dry’ versus ’fleshy’ based
on botanical descriptions of the
true fruit

cat. 5350 0 2 5126 149 [320, 344]

fruit_type_functional Binary variable dividing fruits
into dry versus fleshy based on
their dispersal units. Fruits
classified as ’fleshy’ if the true
fruit, accessory fruits (such as
the receptacle in Podocarpus)
and appendages (e.g. the
sarcotesta in Cycads) were
fleshy when mature (e.g. aril,
thalamus, receptacle, calyx,
rachis or bract or succulent
pedicel); otherwise, they are
classified as ’non-fleshy’

cat. 4126 0 1 4106 82 [320]

fruit_wall_width Width of the fruit wall num. 329 329 1 16 1 [194]
fruit_width Longest width dimension of a

fruit; orthogonal to the length
num. 5438 340 9 2643 162 [261, 262, 316, 320, 322]

[194, 253, 255, 323, 324]
germination_treatment Seed treatment required for

germination
cat. 3530 738 2 1116 63 [327, 346]

seed_breadth Shorter width axis of a seed;
orthogonal to its length

num. 3859 2574 14 881 75 [154, 223, 224, 251, 261]
[226, 227, 228, 262, 306]
[233, 267, 269, 273]

seed_length Longest seed dimension num. 20964 3720 33 7693 211 [223, 224, 257, 258, 346]
[225, 251, 259, 316, 320]
[154, 261, 262, 263, 306]
[226, 227, 228, 253, 344]
[265, 266, 267, 268, 269]
[198, 233, 270, 271, 273]
[255, 275, 276]

seed_mass Seed dry mass num. 40362 20574 49 9935 228 [85, 133, 134, 346, 349]
[90, 139, 145, 146, 154]
[155, 156, 162, 323, 324]
[256, 299, 304, 340, 348]
[239, 240, 284, 325, 350]
[177, 180, 182, 241, 309]
[183, 184, 185, 242, 310]
[243, 244, 253, 351, 352]
[189, 190, 193, 245, 353]
[194, 195, 249, 341, 354]
[76, 286, 342, 355, 356]
[206, 208, 209, 250, 313]
[36, 215, 215, 315]

seed_mass_reserve Energy reserves stored in seeds
that are mobilized at the time
of germination; on a carbon dry
mass basis

num. 104 58 2 73 18 [36, 215, 216]
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(continued)

Trait Description Type all geo. studies taxa families refs

seed_shape Possible seed shapes. Note that
some terms currently used refer
to 2-dimensional shapes, not
3-dimensional shapes.

cat. 2978 983 8 2713 109 [223, 224, 251, 261, 346]
[227, 228, 233]

seed_texture Texture of a seed cat. 960 942 1 939 83 [346]
seed_volume Volume of a seed num. 516 0 1 511 80 [235]

seed_width Longest width dimension of a
seed; orthogonal to the length

num. 12066 3584 27 5207 190 [223, 224, 251, 320, 346]
[154, 225, 259, 261, 262]
[226, 227, 228, 306, 344]
[265, 266, 267, 268, 269]
[233, 270, 271, 273, 275]
[255, 276]

Reproductive (nutrient)
flower_N_per_dry_mass Flower nitrogen (N) content per

unit flower dry mass
num. 8 8 1 1 1 [176]

fruit_Ca_per_dry_mass Fruit calcium (Ca) content per
unit fruit dry mass

num. 19 11 3 19 1 [256, 284, 348]

fruit_K_per_dry_mass Fruit potassium (K) content per
unit fruit dry mass

num. 19 11 3 19 1 [256, 284, 348]

fruit_Mg_per_dry_mass Fruit magnesium (Mg) content
per unit fruit dry mass

num. 19 11 3 19 1 [256, 284, 348]

fruit_N_per_dry_mass Fruit nitrogen (N) content per
unit fruit dry mass

num. 23 15 4 20 2 [176, 256, 284, 348]

fruit_P_per_dry_mass Fruit phosphorus (P) content
per unit fruit dry mass

num. 21 13 4 21 3 [256, 284, 322, 348]

fruit_S_per_dry_mass Fruit sulphur (S) content per
unit fruit dry mass

num. 19 11 3 19 1 [256, 284, 348]

seed_Ca_concentration Seed calcium (Ca) content per
unit seed mass

num. 23 15 4 23 2 [256, 284, 348, 351]

seed_K_concentration Seed potassium (K) content per
unit seed mass

num. 43 15 5 40 2 [256, 284, 348, 351, 352]

seed_Mg_concentration Seed magnesium (Mg) content
per unit seed mass

num. 23 15 4 23 2 [256, 284, 348, 351]

seed_N_concentration Seed nitrogen (N) content per
unit seed mass

num. 43 15 5 40 2 [256, 284, 348, 351, 352]

seed_oil_content Seed oil content as a fraction of
total seed weight, usually on a
dry weight basis

num. 327 0 2 230 41 [284, 357]

seed_P_concentration Seed phosphorus (P) content
per unit seed mass

num. 115 51 7 44 2 [90, 256, 284, 340, 348]
[341, 342, 351, 352]

seed_protein_content Seed protein content as a
fraction of total seed weight

num. 154 0 2 85 24 [284, 358]

seed_S_concentration Seed sulphur (S) content per
unit seed mass

num. 19 11 3 19 1 [256, 284, 348]

Root (allocation)
root_distribution_
coefficient

Root biomass depth distribution
coefficient (‘B’ from Gale &
Grigal (1987), where high values
indicate root biomass allocated
deeper in the soil).

num. 75 75 1 75 33 [95]

root_dry_matter_
content

Root dry mass per unit root
fresh mass

num. 124 124 2 96 39 [95, 103]

root_fine_root_
coarse_root_ratio

Volume of fine root (<0.5mm
diametre) / Volume of coarse
root (>0.5mm diametre)

num. 41 41 1 14 5 [95]

root_mass_fraction Fraction of plant dry mass
comprised of root material

num. 1983 1906 6 57 19 [69, 71, 74, 92, 154]
[211]

root_shoot_ratio Ratio of root dry mass to shoot
dry mass

num. 1996 1996 7 113 37 [70, 71, 92, 154, 287]
[76, 95]

specific_root_area Root area per unit root dry
mass

num. 102 102 1 75 33 [95]
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(continued)

Trait Description Type all geo. studies taxa families refs

specific_root_length Root length per unit root dry
mass; SRL

num. 201 201 4 66 26 [91, 95, 103, 160]

specific_taproot_
length

Taproot length per unit root dry
mass. This trait measures the
efficiency of taproot length per
unit mass during the very early
stage of growth when seedlings
need to reach reliable water.

num. 188 158 1 12 4 [211]

thickest_root_
diameter

Diameter of the thickest root num. 264 264 1 71 30 [95]

Root (life history)
sprout_depth Depth of resprouting shoots num. 4349 4349 1 39 13 [359]

Root (morphology)
root_morphology Categorical root descriptions

sensu Cannon 1949, A Tentative
Classification of Root Systems,
Ecology,
doi.org/10.2307/1932458

cat. 15 15 1 12 8 [160]

root_structure Specific specialized types of root
structures and root symbioses.
https://www.mycorrhizas.info/
provides detailed information
for types of mycorrhizal
associations.

cat. 3152 1290 14 2599 164 [94, 145, 160, 183, 280]
[184, 185, 242, 243, 253]
[189, 193, 197, 332, 360]
[100, 100, 101, 206, 286]

root_wood_density Root wood dry mass per unit
root wood fresh volume

num. 199 137 3 99 31 [91, 103, 188]

tap_root Binary variable describing
whether or not a plant has a tap
root

cat. 67 67 1 67 28 [95]

Root (nutrient)
root_C_per_dry_mass Root carbon (C) content per

unit root dry mass
num. 61 61 2 15 5 [72, 281]

root_N_per_dry_mass Root nitrogen (N) content per
unit root dry mass

num. 64 64 2 15 5 [72, 281]

root_soluable_starch_
per_mass

Mass of soluble starch per root
mass

num. 43 43 2 2 2 [71, 287]

root_soluable_sugars_
per_mass

Mass of soluble sugars per root
mass

num. 43 43 2 2 2 [71, 287]

Root (physiology)
root_delta13C Root carbon stable isotope

signature
num. 61 61 2 15 5 [72, 281]

root_delta15N Root nitrogen stable isotope
signature

num. 60 60 2 15 5 [72, 281]

root_xylem_delta15N Xylem nitrogen stable isotope
signature from roots

num. 67 67 1 16 3 [281]

Stem (allocation)
basal_diameter Diameter at the base of the

plant, usually ”DBH” except in
short plants; only ”maximum”
values are included

num. 401 18 2 395 66 [208, 209, 316]

branch_mass_fraction Fraction of plant dry mass
comprised of branch material

num. 45 45 1 45 23 [155]

huber_value Sapwood area to leaf area ratio num. 1171 1171 15 304 54 [40, 127, 128, 130, 137]
[138, 153, 155, 156, 164]
[41, 165, 166, 167, 289]
[75, 76, 181, 207, 290]
[219, 221, 222]
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(continued)

Trait Description Type all geo. studies taxa families refs

stem_count_
categorical

Number of stems present,
expressed in groups, where
categories were 1=1; 2-3=2;
4-10=3; 11-30=4; and >30=5.
Used by Peter Vesk.

num. 140 140 2 61 16 [212, 359]

stem_dry_matter_
content

Stem dry mass per unit stem
fresh mass

num. 390 390 2 53 15 [45, 46]

stem_mass_fraction Ratio of stem dry mass to total
plant dry mass

num. 1126 1123 3 49 11 [71, 77, 78, 154]

stem_water_content_
per_saturated_mass

Ratio of water in a saturated
stem (maximal water holding
capacity at full turgidity) to
stem saturated mass

num. 137 137 2 61 15 [35, 36, 37, 38, 76]

twig_area Cross-sectional area of the
terminal twig

num. 58 58 1 57 15 [215, 216]

twig_length Length of the terminal twig num. 33 33 1 33 8 [215, 216]

Stem (morphology)
bark_morphology Description of bark morphology cat. 276 0 1 243 1 [314]
plant_height Vegetative plant height num. 42347 3430 65 17477 266 [48, 49, 50, 51, 85]

[52, 53, 54, 223, 257]
[55, 127, 128, 130, 224]
[133, 134, 137, 251, 258]
[138, 225, 259, 260, 316]
[56, 139, 145, 146, 261]
[57, 156, 164, 165, 262]
[58, 59, 166, 167, 263]
[39, 226, 239, 264, 305]
[35, 60, 61, 177, 240]
[62, 63, 227, 241, 252]
[183, 184, 185, 242, 253]
[64, 188, 189, 243, 244]
[192, 228, 229, 245, 311]
[65, 193, 194, 195, 230]
[66, 249, 265, 266, 267]
[268, 269, 270, 271, 272]
[198, 206, 208, 209, 273]
[210, 233, 274, 275, 276]
[67, 106, 215, 234, 250]
[36, 37, 38, 254, 255]

stem_density Stem dry mass per unit stem
fresh volume, specifically for
non-woody or partially woody
stems that otherwise are
outliers for wood density

num. 880 880 1 27 6 [154]

vessel_density Count of vessels per area in
stems

num. 496 496 5 148 38 [41, 137, 138, 361, 362]
[222]

vessel_diameter Diameter of xylem vessels in
stems

num. 531 531 7 171 42 [41, 137, 138, 179, 361]
[73, 222, 362]

vessel_diameter_
hydraulic

Hydraulic diameter
(hydraulically weighted
diameter) is based on the
equivalent circle diameter D and
has been introduced to reflect
the actual conductance of
conduits. Based on the
Hagen–Poiseuille law, a few
large conduits may transport an
equal amount of water as many
small ones.

num. 488 488 5 148 38 [41, 137, 138, 361, 362]
[222]

vessel_lumen_fraction Fraction of xylem vessels
comprised of lumen

num. 503 503 5 161 39 [41, 179, 222, 361, 362]

vessel_non_lumen_
fraction

Fraction of xylem vessels
comprised of non-lumen

num. 19 19 1 16 9 [179]

vessel_wall_fraction Fraction of xylem vessels
comprised of cell wall

num. 278 278 2 87 32 [222, 362]
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(continued)

Trait Description Type all geo. studies taxa families refs

wood_axial_
parenchyma_fraction

Fraction of wood comprised of
axial parenchyma

num. 435 435 3 103 33 [41, 222, 362]

wood_conduit_fraction Fraction of wood comprised of
all conduits

num. 157 157 1 16 8 [41]

wood_density Stem dry mass per unit stem
fresh volume (stem specific
density or SSD or wood density)

num. 8017 4068 40 1899 117 [125, 126, 127, 128, 363]
[87, 130, 137, 364, 365]
[138, 147, 366, 367, 368]
[91, 153, 155, 156, 369]
[164, 165, 166, 167, 370]
[39, 226, 361, 371, 372]
[41, 45, 179, 373, 374]
[46, 182, 188, 242, 375]
[34, 75, 194, 248, 376]
[198, 205, 207, 208, 377]
[209, 210, 217, 219, 378]
[47, 220, 221, 379, 379]
[222, 362]

wood_fibre_fraction Fraction of wood comprised of
fibres

num. 435 435 3 103 33 [41, 222, 362]

wood_ray_fraction Fraction of wood comprised of
rays

num. 435 435 3 103 33 [41, 222, 362]

wood_tracheid_
fraction

Fraction of wood comprised of
tracheids

num. 72 72 1 23 8 [362]

woodiness A plant’s degree of lignification
in stems

cat. 14134 215 14 9494 240 [131, 132, 262, 300, 319]
[162, 172, 306, 328, 344]
[173, 229, 230, 246, 252]
[100, 203, 380]

Stem (nutrient)
dead_wood_Ca_per_dry_
mass

Dead wood calcium (Ca)
content per unit dead wood dry
mass

num. 5 5 2 5 1 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

dead_wood_K_per_dry_
mass

Dead wood potassium (K)
content per unit dead wood dry
mass

num. 5 5 2 5 1 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

dead_wood_Mg_per_dry_
mass

Dead wood magnesium (Mg)
content per unit dead wood dry
mass

num. 5 5 2 5 1 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

dead_wood_N_per_dry_
mass

Dead wood nitrogen (N) content
per unit dead wood dry mass

num. 5 5 2 5 1 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

dead_wood_Na_per_dry_
mass

Dead wood sodium (Na) content
per unit dead wood dry mass

num. 5 5 2 5 1 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

dead_wood_P_per_dry_
mass

Dead wood phosphorus (P)
content per unit dead wood dry
mass

num. 5 5 2 5 1 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

stem_C_per_dry_mass Stem carbon (C) content per
unit stem dry mass

num. 82 82 1 22 8 [45]

stem_N_per_dry_mass Stem nitrogen (N) content per
unit stem dry mass

num. 82 82 1 22 8 [45]

stem_soluable_starch_
per_mass

Mass of soluble starch per stem
mass

num. 43 43 2 2 2 [71, 287]
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(continued)

Trait Description Type all geo. studies taxa families refs

stem_soluable_sugars_
per_mass

Mass of soluble sugars per stem
mass

num. 43 43 2 2 2 [71, 287]

wood_C_per_dry_mass Wood carbon (C) content per
unit wood dry mass

num. 280 280 4 36 19 [47, 72, 87, 141]

wood_Ca_per_dry_mass Wood calcium (Ca) content per
unit wood dry mass

num. 48 48 2 13 4 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

wood_K_per_dry_mass Wood potassium (K) content
per unit wood dry mass

num. 48 48 2 13 4 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

wood_Mg_per_dry_mass Wood magnesium (Mg) content
per unit wood dry mass

num. 45 45 2 13 4 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

wood_N_per_dry_mass Wood nitrogen (N) content per
unit wood dry mass

num. 568 568 7 68 24 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 87]
[41, 57, 58, 59, 141]
[60, 61, 62, 63, 72]
[64, 65, 66, 67, 68]
[47]

wood_Na_per_dry_mass Wood sodium (Na) content per
unit wood dry mass

num. 31 31 2 9 4 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 57]
[58, 59, 60, 61, 62]
[63, 64, 65, 66, 67]
[68]

wood_P_per_dry_mass Wood phosphorus (P) content
per unit wood dry mass

num. 299 299 4 33 9 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 141]
[41, 57, 58, 59, 60]
[61, 62, 63, 64, 65]
[66, 67, 68]

Stem (physiology)
bulk_modulus_of_
elasticity

In leaves, the ratio of the
change in cell turgor to the
change in cell volume as a plant
dries out; calculated from a
pressure-volume curve

num. 66 66 1 61 17 [35, 36, 37, 38]

hydraulic_safety_
margin_50

Difference between minimum
observed water potential and
water potential at which 50% of
conductivity is lost.

num. 24 24 1 24 7 [137, 291, 292, 293, 294]
[295, 296, 297, 298]

modulus_of_
elasticity_stem

A measure of the force required
to bend a stem; This is the
modulus of a compound tissue
made up of bark and wood (or
xylem) and potentially pith;
could also be called structural
modulus of elasticity

num. 222 222 2 93 35 [34, 46]

modulus_of_
elasticity_xylem

A measure of xylem’s resistance
to being deformed elastically
(i.e., non-permanently) when a
stress is applied to it; definition
for measurements on wood
(secondary xylem)

num. 549 549 4 208 44 [127, 128, 130, 164, 165]
[34, 46, 166, 167, 222]

modulus_of_rupture A measure of the force required
to rupture xylem vessels

num. 347 347 3 165 40 [127, 128, 130, 164, 165]
[34, 46, 166, 167]
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(continued)

Trait Description Type all geo. studies taxa families refs

sapwood_specific_
conductivity

Ks; Describes the flow rate of
water (kg/s) along a stem for a
given drop in pressure (1/MPa),
normalised to the length of the
segment (1/m). Calculated as
hydraulic conductivity divided
by the sapwood cross-sectional
area where the measurement is
taken.

num. 608 608 9 182 40 [127, 128, 130, 137, 138]
[164, 165, 166, 167, 361]
[41, 73, 181, 289, 290]
[207, 221]

stem_hydraulic_
conductivity

Kh; Measure of how efficiently
water is transported through
the leaf, determined as the ratio
of water flow rate through the
leaf to the difference in water
potential across the leaf,
standardised to leaf area; units
same as mg*m/s/MPa

num. 261 261 5 51 18 [137, 138, 181, 289, 290]
[207, 221]

stem_respiration_per_
dry_mass

Stem respiration rate per unit
dry mass

num. 212 212 1 4 2 [40]

stem_water_delta18O Oxygen stable isotope signature
of stem water

num. 95 95 1 17 14 [87]

transverse_branch_
area_specific_
conductivity

Describes the flow rate of water
(kg/s) along a stem for a given
drop in pressure (1/MPa),
normalised to the length of the
segment (1/m). Calculated as
hydraulic conductivity divided
by the transverse branch area
where the measurement is taken.

num. 112 112 2 10 6 [181, 289, 290]

water_potential_
50percent_lost_
conductivity

Xylem pressure at which 50% of
conductivity is lost

num. 99 99 2 97 25 [127, 128, 130, 291, 292]
[137, 164, 293, 294, 295]
[165, 166, 167, 296, 297]
[298]

water_potential_
88percent_lost_
conductivity

Xylem pressure at which 88% of
conductivity is lost

num. 81 81 2 79 20 [127, 128, 130, 291, 292]
[137, 164, 293, 294, 295]
[165, 166, 167, 296, 297]
[298]

wood_delta13C Wood carbon stable isotope
signature

num. 274 274 3 35 19 [47, 72, 87]

wood_delta15N Wood nitrogen stable isotope
signature

num. 274 274 3 35 19 [47, 72, 87]

Whole plant (allocation)
plant_width Width of the plant canopy num. 648 610 3 100 24 [192, 208, 209, 261]
support_fraction Fraction of shoot dry mass that

is stems (versus leaves)
num. 588 588 1 79 40 [102]

Whole plant (life history)
calcicole_status Dichotonmous variable, defining

plants as calcifuge (intolerant of
basic soils) versus calcicole
(tolerant of basic soils, such as
calcareous sands and limestone
derived soils)

cat. 280 0 1 251 21 [314]

competitive_stratum Categorical descriptions of a
taxon’s relative stature in its
community, used to assess
competitive heirarchies within a
community (definition based on
Keith 2007, Gosper 2012)

cat. 344 344 1 344 44 [336, 337]

dormancy_type Classification for seed dormancy cat. 5 3 1 5 5 [353]
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(continued)

Trait Description Type all geo. studies taxa families refs

fire_and_establishing Variable capturing post-fire
time frame during which
species’ establishes. Includes
trait values for a broad range of
responses, from species that
establish immediately following
fire to those that only establish
in mature forest stands.

cat. 1612 0 1 1587 118 [318]

fire_response Distinguishes between plants
that are killed by fire and
resprout following fire

cat. 15246 1843 24 10367 212 [90, 261, 317, 318, 319]
[156, 329, 336, 337, 338]
[308, 323, 324, 339, 340]
[39, 183, 184, 185, 242]
[97, 189, 330, 331, 381]
[100, 200, 201, 333, 341]
[106, 286, 314, 334, 342]

fire_response_
detailed

Detailed information
distinguishing between plants
that are killed by fire and
resprout following fire

cat. 46 46 1 46 17 [106]

fire_response_
juvenile

Variable summarising how
juvenile plants respond to fire

cat. 1306 0 1 1283 102 [318]

fire_response_on_
maturity

Variable summarising how
plants’ maturity status changes
following fire

cat. 1306 0 1 1283 102 [318]

flood_regime_
classification

Functional group classification
scheme used to categorise taxa
into seven groups based on their
growth and germination
responses to flood regime.
Based on Brock and Casanova
(1997) and Casanova and Brock
(2000).

cat. 144 144 1 143 39 [133, 134]

genome_size Mass of the plant’s genome num. 1081 1035 3 975 3 [161, 328, 382]

growth_habit Variable that defines a
combination of growth habit
and plant vegetative
reproductive potential

cat. 307 125 4 299 35 [97, 133, 134, 316, 321]

inundation_tolerance Ability of taxon to tolerate
being under water

cat. 7415 0 1 6601 168 [314]

life_form Raunkiaer classification;
Categorical classification of
plants according to shoot-apex
or bud protection

cat. 4107 617 12 2764 156 [145, 160, 318, 338, 339]
[183, 184, 185, 242, 310]
[95, 189, 243, 253, 311]
[193, 206, 313, 314, 315]

life_history Categorical description of
plant’s life history

cat. 46854 1889 49 23101 280 [131, 132, 223, 224, 257]
[133, 134, 258, 259, 318]
[89, 139, 160, 260, 338]
[172, 305, 328, 339, 344]
[173, 227, 240, 264, 310]
[97, 242, 245, 311, 335]
[228, 229, 246, 321, 332]
[230, 265, 266, 267, 268]
[100, 101, 269, 270, 271]
[233, 273, 286, 345, 356]
[234, 274, 275, 276, 313]
[254, 255, 315]

lifespan Broad categories of plant life
span, in years

cat. 10041 574 4 7678 176 [239, 314, 318, 336, 337]

parasitic Whether or not a plant is
parasitic

cat. 7965 8 8 7074 170 [224, 239, 305, 338, 339]
[228, 240, 254, 314]
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(continued)

Trait Description Type all geo. studies taxa families refs

plant_growth_form Different growth forms
displayed by plants, including
both standard plant growth
form descriptors (tree, shrub,
etc.) and specific plant
characteristics (i.e. parasitic)

cat. 63775 4261 78 25838 284 [48, 49, 50, 51, 85]
[52, 53, 54, 223, 257]
[55, 87, 133, 134, 224]
[136, 225, 251, 258, 316]
[56, 89, 259, 260, 261]
[145, 148, 149, 150, 151]
[57, 152, 157, 158, 159]
[160, 262, 336, 337, 338]
[58, 59, 304, 305, 339]
[60, 94, 226, 239, 264]
[61, 177, 178, 179, 240]
[62, 63, 227, 252, 309]
[64, 96, 228, 242, 335]
[65, 98, 124, 193, 229]
[66, 81, 82, 230, 383]
[265, 266, 267, 268, 269]
[100, 100, 270, 271, 360]
[101, 199, 231, 312, 345]
[206, 232, 273, 281, 286]
[67, 233, 274, 275, 276]
[104, 105, 106, 213, 359]
[215, 234, 254, 255, 314]

plant_type_by_
resource_use

Plants categories referencing
their ability to tolerate/obtain
water and/or salt in their
environment

cat. 292 0 1 292 60 [350]

reproductive_maturity Age of plants at reproductive
maturity, by category. For
several big compilations with
fire response data, this is
neitherthe time to first
flowering, nor to first seed set,
but instead reproductive
maturity refers to a seed load or
a group of suckers sufficient to
replace the adult population.

cat. 9581 0 2 7309 174 [314, 318]

resprouting_
proportion_
individuals

Proportion of individuals that
resprout following a fire across a
population; this trait is
generally used in studies looking
at resprouting vs. death
following a fire

num. 260 260 4 96 11 [97, 329, 333, 381]

resprouting_strength Ratio of stem count post-fire to
pre-fire at an individual or
population level; this trait is
appropriate to use for plants
that have many stems from the
base (shrubs, herbs, graminoids)
where the number of stems
before and after fire is censused.
It is effectively a continuous
measure of resprouting strength
conditioned on initial size

num. 780 780 1 52 1 [97]

snow_tolerance Description of a taxon’s
tolerance to snow cover

cat. 7909 0 1 7039 168 [314]

time_from_fire_to_
fruit

Elapsed time from fire to
fruiting

num. 10 10 2 10 3 [336, 337, 338, 339]

vegetative_
regeneration

Ability to regenerate and spread
through the growth and division
of vegetative material. Although
most taxa displaying vegetative
spread resprout following fire,
this trait is not explicitly about
fire response; traits better suited
to capture a taxon’s response to
fire are ”fire_response”,
”fire_response_detailed”, and
”regen_strategy”

cat. 9979 212 8 7984 177 [133, 134, 183, 184, 310]
[185, 189, 243, 253, 311]
[230, 313, 314, 315]
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(continued)

Trait Description Type all geo. studies taxa families refs

water_logging_
tolerance

Ability of taxon to tolerate
water-logged soils

cat. 7779 0 1 6925 166 [314]

Whole plant (morphology)
spinescence Degree to which a plant is

defended by spines, thorns
and/or prickles; definition and
trait values based on
Perez-Harguindeguy 2016.

cat. 8976 86 3 7129 173 [96, 145, 193, 206, 314]

vine_climbing_
mechanism

Mechanism vines use to climb cat. 92 0 1 92 36 [162]

Whole plant (physiology)
modified_NDVI Modified normalized difference

vegetation index (modified
NDVI), based on Landsat data

num. 453 453 1 1 1 [125]

nitrogen_fixing Binary variable describing
whether or not a plant hosts a
nitrogen-fixing bacteria

cat. 11067 2217 29 8311 200 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 88]
[142, 143, 145, 148, 149]
[57, 150, 151, 152, 160]
[58, 59, 60, 94, 280]
[61, 62, 63, 183, 184]
[64, 95, 185, 189, 242]
[65, 80, 81, 193, 332]
[66, 82, 99, 197, 360]
[100, 100, 101, 199, 231]
[67, 203, 206, 232, 286]
[104, 220, 314]

photosynthetic_
pathway

Type of photosynthetic pathway
displayed by plants

cat. 13535 1113 22 9319 204 [48, 49, 50, 51, 52]
[53, 54, 55, 56, 88]
[144, 145, 148, 149, 150]
[57, 58, 59, 113, 350]
[60, 61, 62, 63, 242]
[64, 95, 97, 243, 253]
[65, 81, 193, 288, 384]
[66, 82, 100, 100, 101]
[67, 104, 206, 231, 232]
[314]

salt_tolerance Salt-tolerance categories; Also
see ’soil_salinity_tolerance’ for
studies reporting actual soil
salinity levels taxa can tolerate.
Kew data on salt tolerance
included in ’water_tolerance’
trait

cat. 7788 0 2 6869 174 [314, 350]

soil_salinity_
tolerance

Maximum salinity tolerated by
a taxon, reported as the
conductivity of the soil

num. 99 0 1 99 34 [350]
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