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Epigenetic analysis of Paget’s disease of bone identifies differentially methylated loci 

that predict disease status 

 

Impact 

PDB associated differences in DNA methylation are reproducible and reflect key environmental 

modulators of bone homeostasis including viral processes, vitamin D metabolism as well as 

mechanical sheer load. 
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Abstract 

Paget’s Disease of Bone (PDB) is characterized by focal increases in disorganized bone 

remodeling. This study aims to characterize PDB associated changes in DNA methylation profiles 

in patients’ blood. Meta-analysis of data from the discovery and replication set, comprising of 116 

PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 

4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional 

through eQTM analysis, were associated with functions related to osteoclast differentiation, 

mechanical loading, immune function, and viral infection. A multivariate classifier based on 

discovery samples was found to discriminate PDB cases and controls from the replication with a 

sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study 

has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may 

offer diagnostic markers for prediction of the disease.  
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Introduction 

Paget’s disease of bone (PDB) is characterized by increased but disorganized bone remodeling, 

which causes affected bones to enlarge, become weak and deform. The axial skeleton is 

predominantly involved, and commonly affected sites include the skull, spine, pelvis, femora and 

tibia. Paget’s disease is clinically silent until it has reached an advanced stage at which point 

irreversible damage to the skeleton has occurred (1). Bisphosphonates are an effective treatment 

(2) and can often improve bone pain but have a limited impact on other clinical outcomes in 

patients with advanced disease (3, 4). On a cellular level, PDB is characterized by increased 

osteoclast activity and biopsies from affected bone lesions exhibit increase in the number and 

size of osteoclasts.     

Genetic factors play an important role in classical PDB and in monogenic PDB-like syndromes 

(5, 6). Mutations in SQSTM1 are the most common cause of PDB but other susceptibility genes 

and loci have been identified through genome wide association studies (7-9). These include 

genes that play an important role in osteoclast differentiation such as CSF1, TNFRSF11A and 

DCSTAMP. Additionally, an expression quantitative trait locus (eQTL) in OPTN is associated with 

increased susceptibility to PDB (10). Functional analysis using mouse models showed that OPTN 

is a negative regulator of osteoclast differentiation and mice with loss of OPTN function develop 

PDB-like bone lesions with increasing age (10, 11).  

 

Environmental factors also play a role, as evidenced by the fact that the disease is focal in nature 

and its incidence and severity has diminished in recent years (12). Several environmental triggers 

have been suggested including persistent viral infection, repetitive mechanical loading of the 

skeleton, low dietary calcium intake, environment pollutants and vitamin D deficiency (6).  

The possible role of persistent viral infection with measles and distemper has been studied 

experimentally. for example, expression of the measles virus nucleocapsid protein in osteoclasts 

was found to trigger PDB-like phenotype in mice (13, 14). However, clinical studies which have 

sought to detect evidence of viral proteins and nucleic acids in humans with PDB have yielded 

conflicting results (2). 

Accumulating evidence suggests that environmental and lifestyle factors can influence gene 

expression and clinical phenotype in various diseases through epigenetic mechanisms such as 

changes in DNA methylation.  To gain insights into the role of epigenetic DNA methylation in PDB, 

we have conducted genome-wide profiling of DNA methylation in a cohort of 253 PDB patients 

and 280 controls and evaluated the predictive role of epigenetic markers in differentiating patients 

with PDB from controls.  
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Results 

Characteristics of study cohort 

Table 1 shows descriptive statistics for the study cohort. PDB cases in the discovery set were 

slightly older and included more males compared to controls but no difference in age or gender 

distribution was found in the replication set. The number of patients with SQSTM1 mutations was 

similar in the discovery and replication set and accounts for approximately 14% of PDB cases.   

 

Differentially methylated Sites (DMS) 

Figure 1 shows the study design and summary of differential methylation results. After adjusting 

for all confounders, differential methylation analysis of the discovery set revealed 419 DMS with 

FDR < 0.05, 57 of which reached statistical significance (FDR < 0.05) in the replication set (Table 

S1). Meta-analysis of the DMS from discovery and replication revealed 14 Bonferroni significant 

DMS (P< 1.17 x 10-7; Table 2). The direction of effect for all replicated DMS was identical in the 

discovery and replication set and shows hypermethylation in PDB cases compared to controls.  

A Manhattan plot of the results is shown in Figure 2-A. 

 

Differentially methylated regions (DMR) 

Besides analyzing individual sites, our region-based analysis was intended to uncover densely 

hyper/hypo-methylated regions across the genome in PDB as well as identifying instances where 

the effect from individual sites is moderate, yet accumulatively significant. We tested natural 

concentrations of sites within CpG islands but also gene bodies and promoter regions, justified 

by the fact that promoter methylation often suppresses transcription whilst that from the gene 

body often stimulates gene expression (Figure 1). 

Evaluation of the 25,773 CpG islands on the array, revealed 978 DMR that were significantly 

differentially methylated (FDR < 0.05) in the discovery set, 111 of which replicated at the same 

significance level in the replication set (Table S2). Stringent Bonferroni multiple testing correction 

revealed 4 islands that remained significant following discovery and replication, and these were 

located near LTB, SKIV2L, EBF3 and CCND1 (Table 3).  

Gene body analysis revealed 258 (FDR < 0.05) replicated DMR out of a total of 947 differentially 

methylated genes initially identified in the discovery set (Table S3). Six gene body DMR reached 

significance after Bonferroni correction in both the discovery and replication set (Table 3). In the 

context of promoter regions, evidence for FDR significant association with the disease was 

equally observed in the discovery and replication set for 27 promoters DMR (Table S4), but none 

reached significance after Bonferroni correction. Figure 2-B&C show a regional plot for DMR LTB 
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and HSPA13 from island and gene body analysis respectively, highlighting the co-occurrence of 

multiple differentially methylated sites along each region.  

 

Mapping common regulatory patterns of DNA methylation into functional networks 

To gain further insight into the pathology of PDB, we explored common methylation patterns 

amongst functional keywords identified as significantly over-represented amongst the Pooled 

sites. Figure 3 shows a graphical representation of these functional networks. In addition to bone-

related cells, there is a strong presence of immune cells linked to key biological processes 

including proliferation, differentiation, autophagy and cell death. Furthermore, virus, cytokines, 

and interferon-gamma were among the over-represented keywords. The process of ubiquitination 

lies at the center of the graph with the largest number of links in the network.  

 

Diagnostic capacity of differentially methylated markers  

In order to determine whether differentially methylated markers might be of diagnostic value, we 

performed OPLS-DA in the discovery and replication cohorts. The results are summarised in 

Figure 4. The OPLS-DA procedure was first performed using the combined set of significant DMS 

and DMR identified from the discovery set (Pooled sites; n=2847, refer to methods for further 

details) and when the classifier was tested on the replication set, it yielded an AUC of 92.8%. To 

identify sites with the highest predictive ability, we applied the Net Regularization Extension of the 

Generalized Linear Model approach on the Pooled sites which highlighted 95 sites (Best subset 

sites; Table S5), out of the 2847 initial Pooled sites, as best discriminatory of PDB cases and 

controls (Figure 1). The OPLS-DA procedure performed on this Best subset resulted in an AUC 

of 82.5%. A rather superior performance in comparison to similarly trained classifiers based on 

the DMS (AUC=67%), islands DMR (AUC = 76%), or promoter DMR (AUC = 79%) analyses. On 

the other hand, the AUC from a classifier restricted to the DMR gene bodies was 92% which is 

similar to that obtained from the whole Pooled sites (AUC 92.8, Figure 3).  

 

Functional enrichment analysis of the 95 Best subset was consistent between IPA and GO with 

many genes annotated to the following broad functional terms: immune function; bone lesions 

and bone homeostasis, and viral processes. Several identified genes fell into more than one 

category. Overlaying the IPA knowledge-based repository of molecular interactions identified a 

handful of functional links between the genes located in the Best subset sites, highlighting 

important functional subnetworks (Figure 5-A). Additionally, we found that the effect size (absolute 

difference in DNA methylation between controls and PDB cases) was significantly higher for sites 

from the Best subset (mean ± SD; 0.011 ± 0.019) compared to the rest of those in the Pooled 
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sites (0.007 ±  0.01; P-value = 1.9 x 10-3). The magnitude of effect from each site in the Best 

subset, as calculated by the Elastic-Net Regularization Extension of the Generalized Linear 

Model, is color-coded in Figure 5-B. 

 

eQTM analysis 

eQTM analysis showed that the the Bonferroni significant DMS cg10964367 was associated 

with the expression level of ARHGEF10 (P = 3.9 x10-9). Additionally, cg26724726 from gene 

body analysis was associated with the expression of LTB (P= 1.10 x 10-5) and 8 of the Best 

subset sites were associated with the expression of nearby genes (Table S6).  
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Discussion 

The present study is the first to investigate DNA methylation profiles in Paget’s disease of bone. 

DNA methylation profiles from PDB patients were compared to controls and Meta-analysis of 

discovery and replication revealed 14 genome-wide significant DMS. Many were located within 

or near genes with functional relevance to the pathogenesis of PDB including bone-related 

functions, such as osteoclast differentiation, or functions related to environmental triggers 

associated with PDB such as viral infection and mechanical loading. TNK1 is a tyrosine kinase 

that has a pivotal role in innate immune responses by regulating the Interferon-stimulated genes 

downstream of the JAK-STAT pathway (15). It has previously been associated with 

frontotemporal dementia (16) which can co-exist with Paget’s disease (17). MOSC2 is a member 

of the membrane-bound E3 ubiquitin ligase family that regulates endosome trafficking (18) Less 

is known about the specific functions of transcription factors NKX6-2 and LBX1 in bone 

metabolism, but mutations in the latter are associated with Scoliosis  HS6ST3 plays a key role in 

the synthesis of heparan sulfate that potentiates key growth factors including the bone 

morphogenic protein BMP and Wnt (19). PENK encodes for proenkephalin, the precursor of a 

range of effector molecules including pain-associated pentapeptide opioids as well as modulators 

of osteoblast differentiation (20). Interestingly, PENK knockout mice have abnormal bone 

structure and mineralization (21). MAF was found to promote osteoblast differentiation and 

heterozygous deletion of MAF in mice results in age-related bone loss associated with 

accelerated formation of fatty marrow (22). SPATA18 is expressed in a variety of cancers 

including osteosarcoma and its transcription is induced by p53 (23). TAL1 has been found to 

regulate osteoclast differentiation through suppression of their fusion mediator DCSTAMP (24). 

The Zinc finger protein ZIC1 has a role in shear flow mechanotransduction in osteocytes (25). 

Expression of ZIC1 in human was found to be increased in loaded compared to unloaded bone 

and the increased expression in loaded bone is associated with reduced methylation in several 

CpGs in ZIC1 (26).  NFYB confers chromatin access to other transcriptional regulators and is 

known to be involved in transition through cell cycle (27). Finally, the centrosomal ARHGEF10 

has a role in the formation of mitotic spindle during mitosis (28).  

Our analysis was extended to identify regions with frequent methylation changes in PDB amongst 

adjacent sites. Genomic regions have traditionally been evaluated in epigenetics studies based 

on linear combinations of methylation data from residing sites or through meta-analysis of 

effects/p-values from an initial site-level differential methylation analysis. The novel approach 

presented in this study is advantegous in to ways: First, our method allows for sites to be hyper 

or hypo methylated along the same region unlike the linear combination approach where 
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opposing effects could neutralize one another. Second, it draws strength from the collective 

effects of neighbooring sites whilst avoiding the limitations of the site-level analysis approach. 

Four Bonferroni significant DMR were identified in islands which were located near the following 

genes: LTB, a cytokine shown to simulate osteoclast activity (29); SKIV2L, with an RNA helicase 

activity, thought to be involved in blocking translation of viral mRNA and has been implicated in 

regulating host responses to viral infections (30); EBF3 which is involved in bone development 

and B cell differentiation (31) and CCND1, a Wnt target that was reported to be upregulated in 

response to mechanical loading of bone (32).  

Additionally, six Bonferroni significant DMR in gene bodies were identified.  These were located 

within genes with functions related to mitosis and ciliogenesis (SDCCAG8) (33); TGFB1-mediated 

signaling (RBPMS) (34); calcium signaling (CACNA1B) (35); protein ubiquitination (HSPA13) 

(36); cytoskeletal organization (PARD3B) (37) and histone acetylation (BRD1) (38).  

The Pooled sites identified from the discovery set were able to discriminate cases and controls 

with a considerable accuracy when tested on the replication set. The Best subset analysis allowed 

the identification of a smaller subset of sites trading off the classification accuracy with the number 

of explanatory sites.  The AUC of 82.5%, based on the 95 discriminatory sites from the best 

subset analysis, is promising and future experiments are warranted to study its clinical 

applicability.  

In terms of disease pathology, the DNA methylation data reflected many environmental triggers 

thought to be involved in PDB. Some of the genes amongst the DMS and the 95 Best subset 

were associated with immune antiviral responses (Figure 5 & Table S5). This is of interest since 

a previous study in the PRISM cohort showed that levels of antibodies to Mumps virus were 

significantly higher in PDB cases compared to controls (39). Although we and others have failed 

to detect evidence of ongoing virus infection in PDB, the above data is consistent with the 

hypothesis that host immune responses to infection may be altered in PDB.   

Differential methylation of ZIC1 and CCND1 indicate possible differences between cases and 

controls in these genes which are involved in mechano-transduction, a process which has been 

implicated in localisation of bone lesions in PDB (39, 40).  Our study also highlighted genes that 

regulate the cell cycle, vesicular transport and cytoskeletal reorganization as being potentially 

involved in PDB. Other genes were identified that play a role in immune cell function and these 

were strongly represented in the best subset of differentially methylated sites. This lends support 

to the hypothesis that PDB may be a disorder with an osteoimmunological basis (41) and should 

prompt further work to investigate host-environment interactions including studies of the 

microbiome in this complex but fascinating disease (42).  
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Apart from providing new insights into the potential links between genes and environment in 

regulating susceptibility to PDB, this study has revealed the potential role of methylation signals 

as a biomarker for disease susceptibility. Potent bisphosphonates such as zoledronic acid can 

return the abnormalities of bone remodeling to normal in a large proportion of patients with PDB 

(4, 43). Unfortunately PDB often remains clinically silent until it has reached an advanced stage 

by which point irreversible skeletal damage may already have occurred (5). This study raises the 

possibility that epigenetic markers, possibly when combined with genetic profiling would be worth 

exploring as means of assessing the risk of developing PDB in people with a family history of the 

disorder so that early intervention can be considered where clinically appropriate.  

 

One limitation of the study is the fact that the identified methylation changes were not shown to 

occur in the osteoclasts which are the cells of main interest in Paget's pathogenesis. This is 

primarily justified by the difficulty to collect bone tissue from PDB patients in a similarly sized 

cohort. Moreover, showing an epigenetic signature to PDB in the blood adds to the increasing 

evidence in the literature pointing to the possibility of pathogenic immune processes lying at the 

heart of PDB. More importantly, a predictive epigenetic signature in a readily accessible tissue 

such as the blood has clinical implication, also considering the silent nature of PDB and the 

possibility of avoiding much of the adverse symptoms of the disease with early diagnosis. Finally, 

one needs to consider that blood also contains progenitors of bone cells and that white blood 

cells share a similar ancestry with osteoclasts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.425216doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425216
http://creativecommons.org/licenses/by/4.0/


 11 

Materials and methods 

 

Study Subjects  

The DNA samples were derived from UK-based PDB patients and controls who took part in the 

PRISM trial (Paget’s Disease: Randomized Trial of Intensive versus Symptomatic Management 

(ISRCTN12989577) (44). The PRSIM trial is a multi-center study in which participants were 

recruited from 27 different clinical centers across the United Kingdom. The epigenetic analysis 

was conducted in 253 cases with clinical and radiological evidence of PDB and 280 controls who 

were spouses of PDB cases (n=135) or subjects who had been referred for investigation of 

osteoporosis but had normal bone density upon examination by dual energy X-ray absorptiometry 

(n=131). The cohort was randomly divided into a discovery and replication set comprising of 

comparable numbers of cases and controls (Figure 1). According to the study by Tsai and Bell, a 

10% difference in the mean of CpG methylation level between cases and controls at genome-

wide significance level of 10-6 requires 112 individuals in each group to achieve 80% EWAS power 

(45). On this basis, our discovery set comprising of 116 cases and 130 controls is adequately 

powered and the results are further validated in an equally sized replication set. 

 

DNA methylation profiling 

Genomic DNA was extracted from peripheral blood using standard protocols. Bisulfite conversion 

was performed on 500µg of DNA using Zymo EZ-96 DNA methylation Kit (Zymo Research, USA). 

DNA methylation profiling was performed using the Illumina Infinium HumanMethylation 450K 

array (Illumina, USA) by following the manufacturer’s protocol. The R package RnBeads version 

1.10.8 was used for quality control (8). Samples with low methylated or unmethylated median 

intensity (<11.0) were excluded (n=35) along with samples with sex mismatch between reported 

and predicted sex (n=0). Probes with the following criteria were excluded: detection P value 

>0.05, cross reactive probes, containing a SNP within 3 bp of nucleotide extension site, or those 

located on sex chromosomes. Additionally, 723 sites were further excluded from the dataset for 

previously established association with smoking (46). A total of 56,356 probes were excluded 

from the initial 485,512 leaving 429,156 CpGs for analysis (Figure 1). The final dataset used for 

analysis comprised of 232 PDB cases and 260 controls. The Enmix method (47) was used for 

background correction whilst SWAN was used to achieve between and within array normalization. 

For all downstream analysis, the M-values, derived using the formulae log2((methylated 

signal+1)/(unmethylated signal+1)), were used. 

 

Statistics 
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An overview of the analysis performed in this study is shown in Figure 1, in what follows we 

provide details of each analysis step: 

- Differential methylation analysis of sites 

In order to account for the heterogenous cellular composition of the measured samples, the 

counts of the following cell types CD14 monocytes, CD19 B-cells, CD4 T-cells, CD56 NK cells, 

CD8 T-cells, eosinophils, granulocytes and neutrophils were estimated using the Houseman 

reference method (48), part of the RnBeads pipeline. The reference methylome was obtained 

from previously published methylation data measured from sorted blood cells comprising 47 

samples (49). These reference samples were normalized together with our data to make sure 

that extrapolation of cell type information was unaffected by differences between the two datasets.   

we performed Surrogate variable analysis (SVA) which captures additional unknown sources of 

variation based on joint methylation patterns amongst the different sites that do not correlate with 

the disease. The top 10 significant SVA components were extracted from the data using the SVA 

functionality in RnBeads. 

In all statistical models described below, the term confounders refer to the following covariates: 

age, sex, array, bisulfite conversion batch, array scan batch, blood cell composition from the 

Houseman method(48) and the top 10 surrogate variant analysis (SVA) components. The term 

phenotype denotes the control/PDB state of each sample. The term region is used to describe 

clusters of sites along the genome including CpG islands, gene bodies and promoters. CpG 

islands were delineated in the illumina array manifest file as well as RnBeads annotation libraries. 

Gene bodies and promoters were manually assigned. More specifically, sites mapping to the 

transcription start site (TSS) according to the manifest were attributed to a promoter region whilst 

those falling at the 5’ untranslated region or gene body were assigned to a gene body region.  

A general linear model based on the limma moderated standard error (50) was used to assess 

differentially methylated sites (DMS) between cases and controls using the model: CpG site ~ 

phenotype + confounders. The model was first run on all sites in the discovery set and all DMS 

with a significant FDR (< 0.05) in the discovery set were assessed in the replication set. Meta-

analysis looking at the combined effect from both discovery and replication was performed on 

this subset using the R package Metafor (51). The Bonferroni adjusted genome wide 

significance threshold of P=1.17 x 10-7 (0.05/429,156) was used.   

 

- Differential methylation analysis of regions 

Differentially methylated regions (DMR) were analyzed using binomial regression, member of the 

family of the generalized linear models, in two steps: 
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First the parameters of the null model, excluding the sites, were estimated as follows: 

phenotype ~ confounders……………………………………………………...[1] 

Next, all n sites within a given region (island/gene body/promoter) were incorporated into the 

model as follows: 

phenotype ~ confounders + CpG site1 + CpG site2 +…. + CpG siten ……..[2] 

The difference in the deviance (equivalent to the residuals in the linear model) between the null 

model [1] and the full model [2] follows a χ2 distribution with n degrees of freedom. A P-value for 

the effect of the region given n sites was calculated accordingly. The analysis effectively tests for 

the significance of improvement in the model fit with the addition of the methylation data from the 

region of interest. The generalized linear model outlined above was run initially on the discovery 

set. The model was then repeated on the replication set on regions that were significant in the 

discovery set at FDR < 0.05. A similar approach was used to derive the Bonferroni significant 

regions. Visualization of the effect of individual sites from selected DMR was conducted using R 

package coMET (52). 

- Consolidating the DMS and DMR 

In the Generalized Linear Model for region effect outlined in model formulae [2], the beta values 

from the individual sites are indicative of the sites’ level of association with the phenotype. This is 

effectively similar to the General Linear Model used for site-level analysis but with the important 

discrepancy that each site is being assessed while accounting for possible contributions of 

neighboring sites to the global effect of the region. We therefore extracted all the beta values form 

the full model in [2] from all the DMR. We then applied fdr based multiple testing correction on 

the pvalues corresponding to these beta values from fitting the model in [2] for each selected 

DMR separately. Sites with fdr < 0.05 were pooled with the DMS to create a unified list of 

significantly methylated sites or Pooled sites (Figure 1). 

- Discriminant analysis 

Discriminant analysis was performed to assess the ability of the Pooled sites to tell apart cases 

from controls. We also used the Elastic-Net Regularization Extension of the Generalized Linear 

Model, provided by the R package Glmnet (53), to identify the best subset of discriminatory sites 

(designated Best subset) of the list of Pooled sites.  We trained an Orthogonal Projection to Latent 

Structures Discriminant Analysis (OPLS-DA) classifier (54), implemented in the software SIMCA 

ver. 15 (Umetrics, Sweden), on the discovery data from Pooled and Best subset sites separately. 

Each model was then tested on the replication set and its performance was further assessed 

based on the area under curve (AUC) value from receiver operating characteristic (ROC) curve 

analysis.  The sensitivity and specificity measures of the test were estimated based on a 
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classification threshold equal to the median of the predicted scores by the OPLS-DA classifier. 

The Best subset sites were analyzed further to reveal enrichment in biological functions. This was 

conducted using Ingenuity Pathway Analysis (IPA) (Qiagen, Germany) as well as the Gene 

Ontology (GO) R package topGO (55) based on the Fisher’s exact test statistics.  

- Partial correlation analysis of Pooled sites 

Correlations in methylation patterns between CpG sites hold valuable information about how 

different biological functions are linked together in PDB. To this end, partial correlations between 

the Pooled sites were derived using the R package ggm (56). In parallel, the extensive GO 

functional annotations enriched amongst the genes associated with the Pooled sites were 

manually reduced to a manageable, yet representative, set of keywords: For instance, GO 

categories ‘regulation of proliferation’, ‘positive regulation of proliferation’ and ‘negative regulation 

of proliferation’ were all reduced to ‘proliferation’. The fisher’s exact test statistics was then used 

to assess whether the Pooled sites associated with a given keyword were correlated (based on 

the ggms) with their counterparts from another functional keyword more often than can be 

accounted for by chance alone. Fisher’s test p-values < 0.05 after FDR multiple testing correction 

were used to create pairs of functionally related keywords. The software Cytoscape (57) was 

used to visualize these associations. 

 

Expression quantitative trait methylation (eQTM) analysis 

To assess the effect of DNA methylation at CpGs sites on the expression of nearby genes, we 

used data from the BIOS QTL browser (58).  
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Figure 1. Study design and analysis workflow. Differentially methylated sites (DMS) and differentially 
methylated regions (DMR) were analyzed using, the General/Generalized linear model respectively, in the 
discovery set. Those reaching FDR < 0.05 were tested in the replication set to identify DMS/DMR  that 
replicate at the same significance level. The DMS and the important sites within DMR were pooled together 
giving rise to the Pooled sites (refer to methods), of these a best PDB discriminatory subset was obtained 
using the Lasso and Elastic-Net regression. A multivariate classifier based on the discovery measurement 
of the Pooled/Best subset sites yielded an AUC value of 92.8% and 82.5% respectively when tested in the 
replication.  
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Figure 2. Differential methylation analysis comparing controls to PDB patients (n=246). A) Site 
analysis, a Manhattan plot showing the chromosomal positions (x-axis) versus the -log10 (P) of significant 
DMS and adjacent sites. For the Bonferroni significant sites however, the meta-analysis P-values are 
shown instead and highlighted in color. The horizontal dashed line indicates the Bonferroni corrected 
significance threshold (P< 1.17 x 10-7). B&C) Region analysis, showing the multitude of significantly 
hypermethylated (red) and hypomethylated (blue) sites from LTB (Bonferroni replicated from island 
analysis) and HSPA13 (Bonferroni replicated from gene body analysis). The dashed lines represent the 
fdr < 0.05 threshold for each region which depends on the number of sites within the region (refer to 
methods).  
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Figure 3: Translating the methylation data into functional network. Nodes are functional, cellular, 
molecular and sub-cellular keywords from GO annotations enriched amongst the Pooled sites. An edge 
between two nodes indicates that differentially methylated genes associated with the keyword in node 1 
are significantly partially correlated with their counterparts from node 2 more often than can be accounted 
for by chance.  
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Figure 4. The orthogonal partial least squares discriminant analysis (OPLS-DA) was performed using the 
Pooled sites identified from the discovery set (n=246). (A) Classifier trained on all 2847 pooled sites with 
FDR < 0.05 (Pooled sites) from the discovery set. (B) Testing the classifier on the replication set. (C) ROC 
curve analysis yielded an overall sensitivity of 0.84, specificity of 0.81 and AUC=0.928. (D) Classifier 
trained on the Best subset sites from Glmnet analysis (n=95) using the discovery set. (E) Testing the 
classifier on the replication set. (F) ROC curve analysis showed an overall sensitivity of 0.77, specificity of 
0.74 and AUC=0.825. The Scatter plots in A,B,C&D show the predictive component that discriminates 
PDB cases from controls (x-axis) versus the orthogonal component representing a multivariate 
confounding effect that is independent of PDB (y-axis).  
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Figure 5: Functions of genes mapped near the Best subset of differentially methylated sites 

identified through the Elastic-Net Regularization Extension of the Generalized Linear Model. A) An IPA 

based network showning a subset of these genes with functional interactions (edges) or mapping to one 

of three functional classes: immune, viral and bone homeostasis. B) An overview of GO biological 

processes significantly enriched amongst the Best subset together with their beta values from the Glmnet 

R package implementing the extended Generalized Linear Model in question. 
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Tables 

Table 1. Descriptive statistics of the study cohort 
 Discovery  Replication 

 PDB Case Control  PDB Case Control 

Number 116 130  116 130 

Age (years), mean  SD 72.1  7.5* 70.0 7.4*  72.5  8.7 72.3  8.2 
Males, n (%) 65 (56.0)* 48 (36.9)*  59 (50.9) 53 (40.8) 
Females, n (%) 51 (44.0)* 82 (63.1)*  57 (49.1) 77 (59.2) 
SQSTM1 Mutation n (%) 16 (13.8) 0 (0)  17 (14.6) 0 (0) 

*P<0.05 comparing Paget’s disease (PDB) cases to controls. 

 

Table 2. Differentially methylated CpG sites (DMS) in Paget’s disease of bone 

CpG Site Discovery Replication Meta-analysis Annotations 

Probe ID Chr Position Δ Beta* P Value Δ Beta* P Value Δ Beta* P Value 
Nearest 

gene 

cg10290814 17 7284330 -0.018 1.2X10-6 -0.015 1.4x10-4 -0.017 2.3x10-10 TNK1 

cg19361865 1 220922163 -0.014 5.4x10-6 -0.012 9.7x10-5 -0.013 7.6x10-10 MOSC2 

cg09152582 1 88928362 -0.021 2.1x10-5 -0.018 3.5x10-5 -0.019 1.1x10-9 PKN2-AS1 

cg09260089 10 134599860 -0.024 4.6x10-5 -0.024 1.2x10-4 -0.024 9.5x10-9 NKX6-2 

cg24879273 10 102989645 -0.026 4.9x10-5 -0.016 1.7x10-4 -0.021 1.4x10-8 LBX1 

cg03839709 13 96743492 -0.014 2.7x10-4 -0.014 3.4x10-5 -0.014 1.8x10-8 HS6ST3 

cg16419235 8 57360613 -0.036 1.9x10-4 -0.029 8.3x10-5 -0.032 3.1x10-8 PENK 

cg04317962 16 79623625 -0.017 1.4x10-6 -0.019 2.9x10-3 -0.018 3.1x10-8 MAF 

cg01429039 4 52918065 -0.023 1.8x10-4 -0.020 1.1x10-4 -0.021 3.5x10-8 SPATA18 

cg03885399 1 47691550 -0.020 4.4x10-6 -0.014 3.6x10-3 -0.017 4.7x10-8 TAL1 

cg04738965 3 147127662 -0.037 4.0x10-5 -0.028 7.1x10-4 -0.033 6.2x10-8 ZIC1 

cg10954182 12 104532377 -0.016 1.9x10-4 -0.009 2.1x10-4 -0.013 7.8x10-8 NFYB 

cg10964367 8 1771973 -0.025 1.3x10-4 -0.019 3.8x10-4 -0.022 9.4x10-8 ARHGEF10 

cg12739454 1 164290833 -0.018 2.4x10-4 -0.012 2.4x10-4 -0.015 1.1x10-7 - 

*Δ Beta represents the difference in DNA methylation in cases as compared to controls (Beta Control-Beta PDB). 

Position in base pairs in reference to human genome build 37 (GRCh37). Chr, chromosome; CpG, cytosine-

phosphate-guanine. All Pvalues are genome-wide significant based on Bonferroni corrected pvalue < 0.05. 

 

Table 3. Differentially methylated regions (DMR) in Paget’s disease of bone 
Region Chr Number of sites Discovery P-Value* Replication P-value* Gene 

Island 6 53 1.40 x 10-2 3.25 x 10-4 LTB 
Island 6 59 4.11 x 10-3 2.47 x 10-3 SKIV2L;RDBP 
Island 10 49 2.65 x 10-3 4.72 x 10-3 EBF3 
Island 11 49 3.57 x 10-3 9.52 x 10-3 CCND1 
Gene Body 1 52 2.01 x 10-5 3.14 x 10-5 SDCCAG8 
Gene Body 9 36 6.09 x 10-3 1.20 x 10-2 CACNA1B 
Gene Body 8 51 2.49 x 10-2 4.39 x 10-3 RBPMS 
Gene Body 21 5 3.19 x 10-2 2.88 x 10-3 HSPA13 
Gene Body 2 52 3.80 x 10-2 2.39 x 10-3 PARD3B 
Gene Body 22 34 4.49 x 10-2 7.10 x 10-3 BRD1 

*P-values are adjusted for multiple testing using the Bonferroni method 
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