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Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by topological

changes in large-scale functional brain networks. These networks are commonly analysed using

undirected correlations between the activation signals of brain regions. However, this approach

suffers from an important drawback: it assumes that brain regions get activated at the same time,

despite previous evidence showing that brain activation features causality, with signals being typ-

ically generated in one region and then propagated to other ones. Thus, in order to address this

limitation, in this study we developed a new method to assess whole-brain directed functional

connectivity in patients with PD and healthy controls using anti-symmetric delayed correlations,

which capture better this underlying causality. To test the potential of this new method, we com-

pared it to standard connectivity analyses based on undirected correlations. Our results show that

whole-brain directed connectivity identifies widespread changes in the functional networks of PD

patients compared to controls, in contrast to undirected methods. These changes are characterized

by increased global efficiency, clustering and transitivity as well as lower modularity. In addition,

changes in the directed connectivity patterns in the precuneus, thalamus and superior frontal gyrus

were associated with motor, executive and memory deficits in PD patients. Altogether, these find-

ings suggest that directional brain connectivity is more sensitive to functional network changes

occurring in PD compared to standard methods. This opens new opportunities for the analysis of

brain connectivity and the development of new brain connectivity markers to track PD progression.
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I. INTRODUCTION

Parkinson’s disease (PD) is a complex neurodegenerative disorder characterized by a

wide range of motor and non-motor symptoms such as memory, executive, visuospatial or

olfactory deficits [13, 32]. The presence of such diverging symptoms suggests that the brain

changes occurring in PD cannot be directly linked to the dysfunction of a single brain region

but rather to widespread changes in functional connectivity between many regions or brain

networks [47].

Functional connectivity can be measured using functional magnetic resonance imaging

(MRI), a non-invasive technique that detects changes in blood oxygen level dependent

(BOLD) signals, which are considered to reflect the underlying neuronal brain activity [7].

In PD patients, several studies have shown that motor and non-motor symptoms can arise

due to the loss of integrity in these functional connections [21, 58]. In particular, abnor-

mal functional connectivity in the basal ganglia–thalamocortical network [4, 9, 27] has been

linked to motor symptoms in PD, whereas changes in the default mode, dorsal-attention,

fronto-parietal, salience and associative visual networks [1, 3, 21, 25, 49, 59, 63] have been

shown to correlate with cognitive and executive deficits in these patients.

In the past few years, several studies have used functional MRI to assess the functional

brain connectome, a whole-brain network that summarizes the complete set of pairwise

functional connections in the brain [8]. This network consists of set of nodes, or brain

regions, connected by edges, representing the strength of the functional connections. This

connectivity network can then be analyzed using graph theory by computing several global

and local measures that reflect whether brain regions are efficiently connected by short

network paths (global efficiency) or are well integrated into their neighborhood (clustering)

or community (modularity) [53]. These analyses have shown significant changes in the

global efficiency, local efficiency and clustering coefficient in the whole brain [2, 26] or

within specific networks in PD patients [36, 39, 64]. Changes in the nodal network topology

of prefrontal and supplementary motor areas as well as the striatum and thalamus [16,

38, 55, 67] have also been reported in PD patients, sometimes in association with clinical

measures [37, 56].

Despite being useful to assess network changes in PD, these studies were based on the

assumption that brain activity in different brain regions occurs simultaneously and there-
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fore can be captured by same-time undirected correlations in the activation signals between

them. As such, they do not convey information about the directionality of the interaction be-

tween brain regions [20], which is important due to an increasing number of studies showing

that directed brain activity patterns are altered in PD. These directed patterns have been

assessed using dynamic causal modelling [33, 52], structural equation modelling [45, 51],

psycho-physiological interactions [68] or Granger causality [22, 66] methods. Due to the

complex nature and longer computational time required by these methods, their applica-

tion is currently limited to the assessment of brain connectivity between a few regions or to

the analysis of functional MRI data acquired during a specific task, which normally relies

on a priori hypotheses of which brain regions should be tested. Moreover, several gener-

alizations for the assessment of directed whole-brain connectivity have also been recently

proposed [18, 19, 24, 48, 50], however their applicability to neurodegenerative diseases has

not been evaluated and, to our knowledge, they do not provide connectivity information

from multiple timescales. Therefore, an intuitive and computationally light method that

can analyze whole-brain directed resting-state connectivity patterns at different timescales

is currently missing.

Here, we present a method based on anti-symmetric lagged correlations to assess resting-

state, whole-brain directed functional networks. First, we obtain a lagged correlation adja-

cency matrix for each patient by calculating the pairwise lagged correlations between all pairs

of brain regions. Then, the anti-symmetric correlations was derived as the anti-symmetric

part of the lagged correlation adjacency matrix. We demonstrate that the topological or-

ganization of these functional networks is more sensitive to pathological changes related to

PD when compared to functional networks built by standard undirected methods.

II. RESULTS

A. Construction of directed functional networks

Due to previous evidence showing temporal lags in the activation signals between connected

brain regions [23, 31, 43], we calculated directed functional connectivity between brain re-

gions using lagged Pearson’s correlations. In this approach, a brain region is considered to

have a directed interaction with other brain regions if its activation time series has simi-
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FIG. 1. Different methods used to calculate functional networks. (a) For illustration

purposes, we show an example of the time activation series of only 5 nodes. (b) Lagged correlation

functional networks can be estimated by calculating the lagged Pearson’s correlation coefficient

between these time series, at different lags. Here, the lagged adjacency matrix and corresponding

network are calculated at lag of 1. The lagged adjacency matrix can be written as a sum of a (c)

anti-symmetric and (d) symmetric matrices. Finally, for comparison we show the commonly used

method of zero-lag correlation (e). In all matrices, redder colors and thicker lines indicate stronger

connections.

lar properties with the time-shifted version of the second brain region’s activation pattern.

Moreover, as brain activity is a dynamic process that changes over time [29], we evaluate

directed functional connectivity at multiple temporal lags, thereby exploring the functional

activation of the brain at different time scales (“Methods: Lagged correlation”).

Figure 1 illustrates the different methods we use to calculate the functional connectivity

networks for a set of 5 brain regions and their activation time series (Fig. 1a). The connec-

tivity matrix and the corresponding network calculated by the lagged correlation adjacency

method for these 5 brain regions are shown in Fig. 1b. It shows that the lagged correlation

method evaluates the directed connection between two regions in both directions; a pair
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of elements in the lagged adjacency matrix (namely, (i, j) and (j, i)) encode the estimated

directed influence of brain region i to brain region j and vice versa. As any other square

matrix, the lagged correlation adjacency matrix can be uniquely expressed as the sum of

a symmetric and anti-symmetric matrix. Specifically, the anti-symmetric matrix captures

the directionality of the functional network, identifying the relevant directed connections

between the couples of brain regions (Fig. 1c). We call this method “anti-symmetric corre-

lation” (“Methods: Anti-symmetric correlation”).

To highlight the effectiveness of the directed networks in detecting topological changes

between controls and PD patients, we compare our method with two undirected network

approaches. In the first approach, functional connectivity is evaluated as the symmetric

matrix extracted from the lagged correlation adjacency matrix (Fig. 1d), in which the undi-

rected connection between two regions is the sum of the weights of the two corresponding

directed connections (“Methods: Symmetric correlation”). Secondly, we also compare our

method with the conventional approach to quantify functional connectivity, in which the

connectivity strength between two regions is estimated by calculating the zero-lag Pearson’s

correlation coefficient (Fig. 1e) between their activation time series (“Methods: Zero-lag

correlation”).

We tested the ability of all 4 methods to detect topological changes in PD patients in a

cohort of 95 PD patients and 15 controls with functional MRI scans from the Parkinson’s

Progression Markers Initiative (“Methods: Participants”). The nodes in the adjacency ma-

trices corresponded to the 200 brain regions derived from the Craddock atlas [14], while the

edges were calculated according to the four methods described above, yielding 4 different

weighted adjacency matrix for each participant. For each adjacency matrix, we calculated

a binary matrix where the correlation coefficient was considered 1 if it was above a certain

threshold, and 0 if it was below. We performed the thresholding at the complete available

range of network densities (D) of the anti-symmetric correlation (Dmin = 1%, toDmax = 50%

in steps of 1%) and we compared the network topologies across that range. The negative

correlation coefficients and self-connections were excluded from the analysis by setting them

to zero.
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FIG. 2. Connectivity strength distribution at different temporal lags. Histograms show

the distribution of connectivity strengths of the average adjacency matrices for controls (top row)

and PD patients (bottom row) as a function of different temporal lags. The individual subject

connectivity matrices were calculated using (a) lagged analyses, (b) anti-symmetric analyses and

(c) symmetric analyses. Only the lags used in the analysis are shown in this figure.

B. Average group networks show different behavior across different temporal lags

We calculated group-representative adjacency matrices at different temporal lags by av-

eraging the weighted, subject-specific adjacency matrices. The histograms of the connection

weights are shown in Figure 2 for the lagged (Fig. 2a), anti-symmetric (Fig. 2b) and

symmetric (Fig. 2c) correlations as a function of different temporal lags. Fig. 2 shows a

general decrease of the strength of directed connectivity in PD patients for all analyses at

all lags when compared to healthy controls. Furthermore, in PD patients, we observe that

the connectivity strength distribution becomes narrower with increasing temporal lags for

all analyses. This observation indicates that, with higher temporal lags, more nodes have

similar functional connectivity strength. Therefore, large temporal lags are unsuitable for

the analysis of between-group topological differences because they cannot capture any vari-

ations in the directional flow in the network, restricting our analysis to small temporal lags
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in the range 1− 7.

C. Differences in global topology

FIG. 3. Differences between controls and PD patients in global network measures. Plots

showing the differences between controls and PD patients in the global efficiency, local efficiency,

clustering coefficient, transitivity and modularity using (a) lagged correlation, (b) anti-symmetric

correlation, (c) symmetric correlation and (d) zero-lag correlation methods. The plots show the

upper and lower bounds of the 95% confidence intervals (CI) in blue, and the differences in the

network measures between groups in orange circles as a function of network density. The differences

are considered statistically significant if they fall outside the CIs.

To assess the ability of these methods to detect global network changes between patients

and controls, we calculated the global efficiency, local efficiency, clustering coefficient, tran-

sitivity and modularity (Fig. 3, left to right columns). Only the anti-symmetric correlation

method showed widespread significant differences between PD patients and controls in net-

work measures; this entails that the differences are contained in the anti-symmetric part of

the lagged correlation matrix. These differences consisted of increases in the clustering co-
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efficient and transitivity in the PD group compared with controls at several higher network

densities (clustering coefficient: 16% - 50%; transitivity: 20% - 50%). The global and local

efficiency also showed differences between patients and controls, being increased in PD pa-

tients across most network densities (global efficiency: 2% - 50%; local efficiency: 6% - 50%).

Finally, we also found significant decreases in the modularity in PD patients compared with

controls, which were only present at higher network densities (21% - 50%). In contrast, the

undirected and lagged correlation methods did not show any significant differences between

any of the global network measures between PD patients and controls. Fig. 3 summarizes

the results obtained for the temporal lag 1; the corresponding results for lags 2 - 7 are shown

in supplementary figures S1 - S6.

D. Differences in nodal topology

FIG. 4. Differences between controls and PD patients in nodal network measures.

Visual display of the nodes that show significant differences between controls and PD patients

in network measures using the anti-symmetric correlation method. For simplicity, here we show

only the regions that were significant at the middle network density D = 25% at the temporal

lags indicated in the figure. Differences between groups were evaluated using non-parametric

permutation tests. Only regions that show significant differences after correcting for multiple

comparisons (FDR at q=0.05) are plotted.

Furthermore, using the anti-symmetric correlation method, we also identified directed

connectivity changes in several brain regions in PD patients compared to controls (Fig. 4).
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These regions included the precuneus, which showed increases in the in-global efficiency and

decreases of the out-degree at various temporal lags; the thalamus, which showed decreases

of overall connectivity in PD patients at lags 4 and 5; the superior frontal gyrus, which

showed an increased outflow connectivity in PD patients; and the fusiform, which showed

increases in the in-global efficiency in PD patients at lag 7. The other three analysis methods

were not able to identify any significant between-group differences.

E. Correlation analysis with clinical measures in PD patients

All global network measures were significantly associated with the UPDRS-III motor

scores and executive scores (Letter-Number sequencing test) across all lags. In addition, the

clustering and transitivity also correlated with executive scores (symbol digit modalities test)

at lag 1, whereas global efficiency correlated with memory (Hopkins verbal learning test)

at lag 5. Global and local efficiency, clustering and transitivity correlated with visuospatial

scores (Benton’s judgment of line orientation test) at lag 7. The correlation coefficients

between the global measures and corresponding clinical test scores and the associated p-

values that remained significant after adjusting for multiple comparisons (FDR, q = 0.05)

are summarized in Supplementary Tables S1-S17.

Regarding the nodal network measures, the out-degree of the precuneus was significantly

associated with olfactory function (UPSIT smell identification test) at lags 2 (p− value =

0.003; r = −0.31) and 3 (p− value = 0.006; r = −0.28). Furthermore, memory (Hopkins

verbal learning test) significantly correlated with the out-degree in the precuneus at lag

3 (p− value = 0.048; r = 0.21) as well as the thalamus at lag 4 (p− value = 0.025;

r = 0.23). The degree of the thalamus correlated with visuospatial scores (Benton’s judgment

of line orientation test) at lags 4 (p− value < 0.001; r = −0.36) and 5 (p− value = 0.031;

r = −0.23). Finally, the fusiform’s in-global efficiency was associated with the semantic

fluency tests at lag 7 (p− value = 0.049; r = 0.21).

F. Effect of dopaminergic medication on functional network topology

To evaluate the effect of levodopa-equivalent doses on functional network organization we

compared the networks of medicated patients to those who were not receiving medication
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FIG. 5. Differences between medicated and non-medicated PD patients in nodal net-

work measures. Plots showing the differences between medicated and non-medicated PD pa-

tients in nodal network measures evaluated at network density D = 25% at different temporal

lags, in the case of anti-symmetric correlation. Differences between groups were evaluated using

non-parametric permutation test. Only regions that show significant differences after correcting

for multiple comparisons (FDR at q=0.05) are plotted.

(details about the two subgroups are shown in Table S18). We did not find any differences

in the global network topology between these groups. Regarding nodal topology, there were

significant increases in the out-global efficiency in the precuneus, superior parietal lobule and

superior occipital gyrus at lag 1, significant decreases of the in-degree in the precuneus at

lag 2, and increases of the in-degree of thalamus at lags 2 and 3 in medicated patients versus

non-medicated ones (Fig. 5). Of note, none of these results overlapped with the results of

the main analyses.

G. Influence of mild cognitive impairment on functional network topology

Due to previous evidence showing that PD patients with mild cognitive impairment (MCI)

show more widespread network changes compared to cognitively normal patients [2, 25],

we performed an additional analysis to compare these two groups (patient characteristics

for both subgroups are shown in Table S19). Only one significant difference was found in

the cerebellum, which showed significant degree decreases in patients with MCI at lag 3

compared to cognitively normal patients.
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III. DISCUSSION

In this study we propose a new method to analyze directed functional connectivity that

uses the information stored in the temporal lags between the activation of brain regions.

To our knowledge, there are currently no methods that allow assessing directed functional

connectivity across the entire brain at multiple timescales and studying the corresponding

topological changes. Our anti-symmetric correlation method was developed to address this

gap, showing that whole-brain directed connectivity is useful to characterize the connectomes

of patients with PD by detecting widespread functional alterations that were not identifi-

able by conventional zero-lag methods. In addition, we found that the changes identified

by the anti-symmetric correlation method were associated with motor, executive and mem-

ory deficits in patients, suggesting they are clinically meaningful. Altogether, our findings

indicate that the directional flow in brain activation signals contains exclusive information

that is not captured by other methods, and could potentially be used as a new marker of

functional network changes in PD.

Functional connectivity describes the statistical dependencies in the activation patterns

between brain regions, and is closely associated with behavior and cognitive functions [62].

Such statistical dependencies can be quantified using a vast amount of measures derived from

graph theory, which typically consider two regions to be connected if the Pearson correlation

between their activation signals is strong. However, this method is hindered by the fact that

it only captures linear, simultaneous and undirected dependencies between brain regions.

There is evidence showing that the relationship between brain regions is not always linear

and that there are often delays between their activation signals [23, 31, 43]. Thus, capturing

the information stored in these temporal delays or lags is crucial to obtain a more accurate

characterization of the brain’s functional connectivity.

To demonstrate that the anti-symmetric correlation method is useful to characterize

functional connectivity, we tested its performance on a cohort of PD patients and healthy

controls. Our method detected an abnormal global topology in the functional connectomes

of PD patients, characterized by increases in global efficiency, local efficiency, clustering

and transitivity as well as decreases in the modularity when compared to healthy controls.

The increases in global efficiency can be interpreted in light of previous studies showing

that brain networks with a random organization have shorter network paths and greater
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global efficiency [57]. In addition to PD patients [16, 38, 61], this phenomenon has been

shown to also occur in the networks of patients with schizophrenia [17] and Alzheimer’s dis-

ease [60], being associated with executive impairment and other cognitive deficits [57]. On

the other hand, the increases of clustering and transitivity in the networks of PD patients

indicate an increase in the number of directed cyclic connections within local neighborhoods.

This formation of closed triangles between neighboring regions increases the segregation and

fragmentation of the functional networks, which has also been reported in some studies in

patients with PD [2, 26]. These changes were accompanied by lower modularity, suggesting

that the fragmentation occurring in the networks of PD patients did not result in well-

defined communities, which is normally regarded as a sign of brain pathology [41]. Thus,

our findings show that the changes occurring in PD patients reflect both increased integra-

tion and segregation in the directed functional networks. These changes were associated

with worse performance on various clinical and cognitive tests measuring motor function,

executive abilities, memory and visuospatial functions, suggesting that changes in global

directed activation patterns can be an indicator of worse clinical progression in PD.

In addition to global network changes, we also observed alterations in the topology of spe-

cific brain regions. For instance, the precuneus showed an increase in the in-global efficiency

and a decrease in the out-degree, which were associated with memory and olfactory deficits.

These findings are in line with previous evidence showing that the precuneus is a brain hub

that plays an important role in memory, attention and other cognitive functions [12]. Several

studies have shown changes in the functional connectivity patterns of the precuneus in PD

patients [15, 16, 26, 63]. Our findings offer an additional insight into the nature of these

alterations. In particular, they indicate a specific shift to an increased number of in-coming

connections accompanied by a decrease in the number of outgoing connections. This imbal-

ance between in- and out-connectivity could possibly alter the role of the precuneus in the

patients’ networks, making it an inefficient hub. Furthermore, this abnormal local topology

could result in changes in the connectivity patterns within DMN and its strong connections

with the olfactory system [34], leading to deficits in memory and loss of smell commonly

experienced by PD patients.

Moreover, an increase of the in-global efficiency was observed in the fusiform gyrus, which

was associated with semantic fluency. Similar changes have been previously observed in the

connectivity of the fusiform gyrus, which could lead to deficits in visual processing functions
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and decreased performance in the verbal fluency tasks [6, 11].

Finally, in our study, the superior frontal gyrus also had an increased outflow connec-

tivity in PD patients, while the thalamus displayed a decreased overall connectivity, which

correlated with memory and visuospatial deficits. Such changes in the functional activity of

the frontal cortex have been associated with deficits in executive functions in PD patients,

for example working memory, cognitive flexibility and problem solving. Due to its strong

connections with the striatum, these deficits have also been linked with dysfunction of the

frontostriatal networks [44, 46]. Being a part of the basal ganglia thalamo-cortical network,

the thalamus carries information from the basal ganglia to the cerebral cortex, making it

an important hub in functional brain networks [30]. As such, the thalamus plays an im-

portant role in many functions, such as motor abilities, visually-guided actions, learning

and memory [54, 65]. Thus, our results provide further support the role of the thalamus

in contributing to functional abnormalities in the networks of PD patients and the various

motor and non-motor deficits they present.

There is ample evidence showing that brain connectivity is a dynamic process that changes

over time [29, 35]. An advantage of the anti-symmetric correlation method is its ability to

calculate functional connectomes at different temporal lags, allowing to analyse functional

connectivity as a dynamic process that can change across multiple temporal scales. Although

we found an uniform global topology across all lags, the changes in regional topology varied

substantially between different temporal scales. These results suggest that, in PD patients,

the general efficiency in information transfer is maintained at multiple temporal scales by

conserving the global topological properties of the functional network. However, as different

sets of brain regions co-activate at different temporal lags, the local topology of the regions

varies with the value of the lags. As a result, abnormal regional changes are shown in distinct

regions at different temporal lags in PD patients compared to controls. The connectivity

values of these different regions were associated with worse performance in motor and cog-

nitive tests, suggesting that motor and cognitive deficits in PD patients may be associated

with brain connectivity changes occurring at different temporal scales.

In order to assess which temporal scales were most relevant for our analysis, we plotted

the connectivity weight profiles of the average connectivity matrices for both controls and

PD patients. For large delays, the connection weight histograms of both groups were narrow.

This shows that large temporal lags are unable to capture variations in the directed activation
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flow in the network, instead assigning similar weights to a large number of connections.

Therefore, in order to be able to capture this functional variation, we restricted our analysis

to small temporal lags in the range 1-7, in agreement with previous studies using multivariate

models to analyse directed functional connectivity [22].

Although the current study has several strengths, some limitations should also be recog-

nised, which present opportunities for future work. Although we tested the anti-symmetric

correlations on a well characterized sample of PD patients, our findings should be replicated

in larger and independent cohorts. In particular, several patients in the current cohort

underwent functional MRI while on medication, which has previously been shown to influ-

ence brain connectivity [15, 45, 67]. In this study, we assessed the effects of medication

on our results by performing correlation analyses between the levodopa-equivalent doses

and the topological graph measures, as well as comparing the networks of medicated and

non-medicated patient groups. Our analyses showed that there was no association between

medication doses and topological measures, and there were no differences in the global mea-

sures between the medicated and non-medicated patients. The only significant results that

were observed in medicated compared to non-medicated groups was an increase of the out-

global efficiency in the superior occipital gyrus, superior parietal lobule and precuneus at

lag of 1, a decrease in the in- degree of precuneus at lag 2 and increases in the in-global

efficiency and the in-degree of thalamus at lags 2 and 3. Since these regions did not overlap

with the measures or regions that showed differences between PD patients and controls in

our main analysis, most likely they did not influence our results. In addition, it has also been

demonstrated that PD patients with mild cognitive impairment have a different functional

connectivity pattern when compared to cognitively normal patients [1–3, 38]. As 20% of

the PD patients in our study were diagnosed with MCI, we also performed an additional

analysis to compare them with the cognitively normal PD patients. We found no topological

differences in the directed functional connectomes between the two groups, suggesting that

the presence of MCI also did not affect the main results. This result is in contrast with

previous studies showing that the presence of MCI has an effect on network topology in

patients with PD [2, 38]. This discrepancy is probably associated with the differences in

clinical characteristics between our sample and the cohorts used in previous studies.

Despite these limitations, in this study we show that the information stored in the tem-

poral activation lags can be used to assess the directed connections between all the brain
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regions of the functional connectome. Our findings show that these directed connections

can detect specific topological changes in PD patients at multiple temporal scales, offering

increased sensitivity to PD-related changes compared to undirected methods. These find-

ings suggest that our method could potentially be used to improve the diagnosis of PD or

identify patients with worse disease progression.

IV. METHODS

A. Participants

This study included 95 PD patients and 15 controls from the Parkinson’s Progression

Markers Initiative (PPMI) database [40] (Table 1). For up-to-date information on the study,

visit www.ppmi-info.org. PD patients were diagnosed within 2 years of the screening visit,

were entirely untreated at enrollment, had a Hoehn and Yahr [28] stage of I or II, and were

required to have a dopamine transporter deficit on DaTSCAN imaging. Only subjects with

a functional MRI scan that passed quality control before and after image preprocessing were

included. Motor symptoms were assessed using the unified Parkinson’s disease rating scale

(UPDRS) and olfactory function was evaluated using the smell identification test (UPSIT).

In addition, all subjects completed several cognitive tests that assessed visuospatial functions

(15-item version of the Benton’s judgment of line orientation test), verbal memory (total

immediate recall and delayed recall of the Hopkins verbal learning test-revised, HVLT-R),

executive functions (the letter number sequencing test, semantic and phonemic fluency tests)

and attention (symbol digit modalities test (SDMT). The total levodopa-equivalent doses

were recorded for all PD patients.

B. Image acquisition

All subjects were scanned on a 3 Tesla Siemens scanner using an echo planar functional

MRI sequence with the following parameters: 212 time points, repetition time = 2400

milliseconds, echo time = 25 milliseconds, field of view = 222 mm, flip angle = 80 degrees

and 3.3 mm isotropic voxels. During the scanning session, subjects were instructed to keep

their eyes open and to not fall asleep.
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CTR

(n = 15)

PD

(n = 95)

CTR vs PD

(p value)

Age

(years)
72.1 (8.3) 68.0 (10.5) 0.15

Gender

(% male)
86.7% 68.4% 0.13

Education

(years)
16.7 (2.3) 15.3 (2.9) 0.06

UPDRS-III

test scores
1.2 (1.4) 21.3 (10.7) < 0.001

HY stage

(1-2)
− 68 - 27 −

LEDD

(% medicated)
− 67.4% −

LEDD

(dose)
− 405.3 (207.0) −

Cognitive status

(% MCI)
− 20% −

TABLE 1. Characteristics of the sample. Means are followed by standard deviation in paren-

thesis. Permutation tests with 10000 permutations were used to compare groups for age, gender,

education, UPDRS-III scores, LEDD dose and Hoehn and Yahr stage. CTR, controls; PD, Parkin-

son’s disease; UPDRS-III, Unified Parkinson’s disease rating scale–Part III; HY stage, Hoehn and

Yahr stage; LEDD, levodopa equivalent dose.

C. Image preprocessing

All images were preprocessed using the statistical parametric mapping software (SPM12,

https://www.fil.ion.ucl.ac.uk/spm/). Briefly, after removing the first 5 volumes, all images

were realigned and slice-time corrected. Then, the six rigid motion parameters as well as

the white matter and cerebrospinal fluid signals were regressed from all images, which were
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subsequently normalized to MNI space and band-pass filtered. The mean timeseries of each

brain region included in the 200-node Craddock atlas was extracted for each individual.

D. Lagged correlation

The lagged correlation between the activation time series of two brain regions (j and k)

with activation time courses xj and xk respectively, is calculated as the Pearson’s correlation

coefficient between xj and lagged versions of xk evaluated as a function of the temporal lag.

The lag is the number of repetition times by which xk is shifted with respect to xj before

calculating the correlation. Therefore, the strength of the functional connectivity between

the brain regions j and k at a given delay d is calculated as:

ρj→k(d) =
1

N − d− 1

N−d∑
i=1

(
x

′
j − µ(x

′
j)

σ(x
′
j)

)(
x

′

k − µ(x
′

k)

σ(x
′
k)

)
,

where N is the total number of measurements, x
′
j represents the first N−d measurements of

xj and x
′

k represents the last N − d measurements of xk; µ(x
′
j) and σ(x

′
j) are the mean and

standard deviation of x
′
j respectively, µ(x

′

k) and σ(x
′

k) are the mean and standard deviation

of x
′

k.

In this construction, xk is shifted by d time steps with respect to xj, therefore the corre-

lation coefficient ρj→k(d) is an estimation of the directed functional connectivity from region

j to region k due to temporal precedence. By repeating this calculation for all pairs of

nodes, we obtain the weighted directed lagged correlation functional network. This network

was subsequently binarized at the specified range of densities in order to compare network

topologies between the two groups. In this matrix, the directed connection between a pair

of nodes j and k is represented by a pair of elements (j, k) and (k, j) that quantify the

estimated directed influence of brain region j to brain region k and vice versa.

E. Anti-symmetric and symmetric correlations

Being a square matrix, the lagged correlation matrix calculated as outlined above can be

written as a sum of univocally defined symmetric and anti-symmetric matrices. Therefore,

from the lagged correlation matrix L, one can calculate the corresponding anti-symmetric

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.04.425206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425206
http://creativecommons.org/licenses/by-nc-nd/4.0/


matrix A as:

A = L− LT,

where LT denotes the transpose of L. As described previously, all negative connections

are set to zero. Calculated in this way, the anti-symmetric analysis represents any directed

correlation between two regions j and k with a single entry in the adjacency matrix, which

summarizes both the direction and the magnitude of the directed influence.

The symmetric matrix can be calculated as

S = L+ LT.

Symmetric matrices do not convey any information about the direction of the functional

connections. The magnitude of a connection is calculated as the sum of the connection

weights in the directed connections between nodes that run in both directions. The advan-

tage of this method when compared to the zero-lag correlation method is that it can be

evaluated at various temporal lags, therefore allowing a more direct comparison with the

corresponding directed methods.

F. Zero-lag correlation method

In the standard zero-lag correlation method, the functional connectivity between two

nodes j and k with respective activation time series xj and xk is quantified by the Pearson’s

linear correlation coefficient at lag of 0, calculated as:

ρjk = cov(xj, xk)/(σjσk),

where cov(xj, xk) represents the covariance of the corresponding activation time series and

σj and σk are their respective standard deviations. The functional networks are built by

calculating the Pearson’s coefficient between all pairs of nodes in the network.

G. Definition of graph measures

All graph measures were calculated using the Brain Analysis using Graph Theory soft-

ware [42] (BRAPH, http://braph.org/). In the case of directed binary networks, the in-

degree of a node is defined as the number of inward edges going into a node. The out-degree
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of a node is the number of outward edges originating from a node. Denoting the network

adjacency matrix with A and its elements as aij, the in- and out-degrees or a node i are

expressed as:

dini =
∑
j 6=i

aji,

douti =
∑
j 6=i

aij.

The degree of a node is expressed as the sum of the node’s respective in- and out-degrees:

di = dini + douti .

A direct path between two nodes i and j is the sequence of directed edges that need to be

traversed in order to reach j starting from i. The directed distance
−→
Dij is the number of

edges contained in the shortest directed path from i to j. The regional out-global efficiency

of a node i, denoted by eout(i), is defined as the average inverse distance from i to all other

nodes in the network, when considering only directed paths originating from i. Analogously,

the regional in-global efficiency of node i, ein(i), is the average of the inverse distance to i

from all other nodes in the network over directed paths ending at i. The global counterparts

of these measures in a network with N nodes can be calculated as the average of the regional

out- and in-efficiency of all nodes:

Ein =
1

N

∑
i∈N

ein(i) =
1

N

∑
i∈N

∑
j∈N,j 6=i

−−→
D−1ji

n− 1

Eout =
1

N

∑
i∈N

eout(i) =
1

N

∑
i∈N

∑
j∈N,j 6=i

−−→
D−1ij

n− 1

We furthermore calculate the regional in- and out- local efficiency of a node i defined as

the corresponding global efficiency measure evaluated on the subgraph consisting of nodes

that are neighbors of i. The in- and out-local efficiency of the network, LEin and LEout

respectively, is calculated by averaging the corresponding measures over all nodes in the

network. We define the network’s total global efficiency (E) and local efficiency (LE) as the

mean of the in- and out- efficiency measures:

E =
1

2
(Ein + Eout),

LE =
1

2
(LEin + LEout).
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The clustering coefficient Ci, of node i, reflects the fraction of the neighbors of i that are

also connected with each other. It can be calculated as the fraction of completed triangles

that are present around i. In directed networks, we consider a triangle to be completed if

its constituent edges form a cycle in either direction. Therefore, we calculate the clustering

coefficient as

Ci =
(A3)ii

dindout −
←→
di
,

where din and dout are the in- and out-degree respectively, and
←→
di is the number of bilateral

edges between i and its neighbors:

←→
di =

∑
j 6=i

aijaji = A2
ii

The transitivity indicates the number of triangles present within the complete network.

As such, it is calculated as:

T =
3 x total number of triangles

dtot(dtot − 1)− 2 x diag(A2)
,

where again we consider a triangle to be completed only if the three directed edges form a

cycle, and diag(A2) is the sum of the diagonal elements in the A2 matrix.

The modularity quantifies the degree at which a given network can be subdivided into

clearly separated communities that have large density of within-community edges and small

number of between community edges. Modularity was calculated using Louvain algo-

rithm [10].

H. Statistical analysis

The statistical significance of the differences between the groups was assessed by per-

forming non-parametric permutation tests with 10000 permutations, which were considered

significant for a two-tailed test of the null hypothesis at p < 0.05. Additionally, the re-

gional network results were adjusted for multiple comparisons by applying false discovery

rate (FDR) corrections at q < 0.05 using the Benjamini-Hochberg procedure [5] to control

for the number of regions. Non-parametric permutation tests with 10000 permutations were

also used to assess between-group differences in demographic variables. All analyses included

age, gender and the 6 rigid-body motion parameters as covariates.
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