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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) tumors can originate either from acinar or ductal cells 

in the adult pancreas. We re-analyze multiple pancreas and PDAC single-cell RNA-seq datasets 

and find a subset of non-malignant acinar cells, which we refer to as acinar edge (AE) cells, 

whose transcriptomes highly diverge from a typical acinar cell in each dataset. Genes up-

regulated among AE cells are enriched for transcriptomic signatures of pancreatic progenitors, 

acinar dedifferentiation, and several oncogenic programs. AE-upregulated genes are up-regulated 

in human PDAC tumors, and consistently, their promoters are hypo-methylated. High expression 

of these genes is associated with poor patient survival. The fraction of AE-like cells increases 

with age in healthy pancreatic tissue, which is not explained by clonal mutations, thus pointing to 

a non-genetic source of variation. We also find edge-like states in lung and liver tissues, 

suggesting that sub-populations of healthy cells across tissues can exist in pre-malignant states. 

Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with ~8% survival rate 

at 5 years1. Pathogenesis of PDAC, and in particular, the cell-of-origin for PDAC, is not yet fully 

resolved, thus impeding development of robust therapies. Recent work has demonstrated that in 

mice, PDAC tumors can be driven from both acinar and ductal cells2, where an acinar-to-PDAC 

transformation is mediated by acinar-ductal metaplasia (ADM)3.  

 

A classical view of cancer posits that oncogenesis is mediated by a series of somatic mutations in 

key oncogenes and tumor suppressors, accompanied by clonal selection4,5. While this clonal 

genetic model is widely accepted as one of the dominant pathways to oncogenesis, epigenetic 

alterations also play a key role. Indeed, transcriptional and epigenetic heterogeneity in the 

progenitor cell population forms the basis for later malignant transformation6, where such 

heterogeneity has been shown to be crucial for pre-malignant pancreatic lesions to progress to 

PDAC7,8. Furthermore, in a clonal cellular population, pervasive transcriptional fluctuations, in 

conjunction with complex regulatory networks, can result in a distinct meta-stable cellular states9–
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11. For instance, in a clonal population of blood progenitors, high SCA1-expressing cells 

preferentially commit to the myeloid lineage, whereas cells with low SCA1 expression commit to 

proerythrocytes10. Taken together, this suggests a potential non-genetic basis for early stages of 

tumorigenesis, driven by transcription fluctuation across clonal cells, that results in a distinct cell 

state primed for malignant transformation in the favorable environment11. Oncogenic mutations 

can further amplify this non-genetic heterogeneity, as seen in breast epithelial cell cultures where 

oncogenic mutations increase the rate of switching between non-stem and stem-like epithelial 

cells12. An interplay between genetic and epigenetic alterations is likely to underlie complete 

malignant transformation13. 

 

In this work, we investigated the potential role of transcriptional heterogeneity in pancreatic 

epithelial cells in priming PDAC. We analyzed a published single-cell transcriptomic dataset 

comprising 57,730 cells from 24 PDAC tumors and 11 pancreas samples from patients having 

non-PDAC indications14. We found that non-malignant acinar cells contained a sub-population, 

which we refer to as edge cells (following the terminology in Li et. al15), whose transcriptomes 

diverge from the average acinar cell and show features of pre-malignancy. In particular, genes that 

are differentially up-regulated among the acinar edge cells are enriched for transcriptomic 

signatures of pancreatic progenitors and acinar dedifferentiation, as well as several oncogenic 

programs such as Kras signaling, fatty acid metabolism, and epithelial-mesenchymal transition 

(EMT). Furthermore, in human PDAC tumors, the genes up-regulated in acinar edge cells are up-

regulated and consistently, their promoters are hypo-methylated. Higher expression of these genes 

also associates with PDAC patient survival. This suggests potential clinical relevance of these 

early malignancy priming events in acinar cells. Finally, we validate the existence of acinar edge 

cells in additional independent pancreatic datasets and additionally find that the fraction of edge-

like cells increases with age in healthy pancreatic tissue, thus providing a potential mechanism 

linking the known increase of PDAC incidence with age1.  Intriguingly, we see strong functional 

similarity between transcriptional drift from non-edge to edge acinar cells and those previously 

reported in healthy to pre-malignant lung transformation16, suggesting that our observations in 

PDAC may possibly be more general. Indeed, beyond the pancreas, we found edge-like states 

among epithelial cells in non-malignant lung and liver tissues.  

 

Overall, our work suggests that transcriptional heterogeneity among non-malignant epithelial cells 

may be large enough for a fraction to exist in a dedifferentiated, pre-malignant state. Since genes 

up-regulated in this pre-malignant state also increased in expression with age, this may help 

explain the higher incidence rate of tumors with age in these tissues, in addition to other putative 

mechanisms associated with the increase in cancer risk with aging17. 

Results 

Normal acinar cells include a transcriptionally divergent Edge subpopulation shifted toward 

a malignant state 

We obtained processed gene-wise read counts from RNA-seq profiling of 57,730  pre-annotated 

cells across 24 PDAC and 11 non-PDAC samples14. The non-PDAC samples were taken from the 

normal pancreatic sites (Table S1 in Peng et. al14 ) of patients with other conditions: 

neuroendocrine tumors (n=3), solid pseudopapillary tumors (n=3), serous cystic neoplasia (n=1), 
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mucinous cystic neoplasia (n=2), duodenal intraepithelial neoplasia (n=1) and small intestine 

papillary adenocarcinoma (n=1). We processed the data using Seurat v3.018, following which we 

used doubletFinder19 to discard 2,877 potentially doublet cells, leaving us with 54,853 cells. These 

cells comprised 10 annotated types -- T cells, B cells, Macrophages, Stellate cells, Fibroblasts, 

Endothelial cells, Acinar cells, Ductal cells (Type 1 and Type 2) and Endocrine cells. A UMAP 

plot of the data shows that the annotated cell types are well-separated (Fig. S1). In the original 

annotations of the data, Ductal cell type 2 refers to malignant ductal cells, to contrast them with 

non-malignant ductal cells (Type 1).  

 

If a given non-malignant cell cluster, say X, passes the two statistical filters below, we state that 

X contains edge cells (Figures 1A). The first filter – heterogeneity test – checks if a subset of cell 

in X have significantly diverged from X’s medoid in Principal Component (PC) space. These PCs, 

which we call Normal PCs, are computed based on transcriptomes only in X to capture gene 

expression variation within X. If X passes the filter, we consider the 10% of cells farthest from 

X’s medoid as candidate edge cells. The second filter – proximity test – checks if the candidate 

edge cells are significantly closer to the malignant cluster than the remaining cells in X. The 

proximity test is based on PC coordinates computed from cells in both X and the malignant cluster, 

which we call Pooled PCs. Technically, the heterogeneity test can also be carried out in Pooled PC 

space. However, since Pooled PCs also capture gene expression differences between X and the 

malignant cluster, they do not provide an unbiased measure of heterogeneity within X.  

 

We assessed all 9 non-malignant cell types and found that only acinar cells harbored edge cells, 

having uniquely passed both heterogeneity and proximity tests (Fig. 1B). The existence of edge 

cells in the acinar population is not due to copy number alterations (CNA) as the acinar cells were 

shown not to harbor CNAs, in contrast to malignant ductal cells (Fig. S2 in Peng et. al14). The non-

malignant ductal cells passed the heterogeneity test but not the proximity test, suggesting that 

ductal cells are highly heterogeneous but that the candidate ductal edge cells do not significantly 

drift towards malignancy. For clarity, we henceforth refer to the candidate edge ductal cells as 

outlier ductal cells.   

 

We performed several controls to ensure that the acinar edge population (Fig. 1C) did not arise 

from common artefacts related to single cell sequencing. Since our analysis is based on acinar cells 

pooled  across non-PDAC and tumor-adjacent PDAC samples, we ascertained that PDAC-adjacent 

acinar cells are not  driving the observed edge-ness in the pooled acinar population (Fig. S2A), nor 

were edge acinar cells likely to be mis-annotated malignant cells (Fig. S2B) as they still expressed 

acinar cell marker genes. We observed a greater library size and number of transcribed genes in 

edge acinar cells which may be indicative of their dedifferentiated state20. We nevertheless 

ascertained that the observed differences in library size and expressed gene counts (Fig. S2C) 

between edge and non-edge acinar populations did not drive the edge behavior. Likewise, four of 

the non-PDAC samples (samples N1, N2, N3, and N7) had neoplastic indications, which may 

potentially drive the edge population in pooled samples. However, this was not the case as multiple 

other samples contributed to the edge cell population (Fig. 1D and Supplementary Section S1). 

There was no significant difference in the cell cycle status between edge and non-edge acinar cells 

(Supplementary Section S1), suggesting that cell cycle difference did not drive the edge state. 

Furthermore, genes known to be up-regulated during tissue dissociation21 were not among the 

genes significantly up-regulated in edge acinar cells.  
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We note that our computational approach bears similarities to trajectory analysis, where cells 

whose transcriptomes represent a transition between two cell types can be detected. We thus 

assessed an analogous trajectory-based pipeline based on Monocle322 for detecting edge cells, 

where pseudotime values of cells were used to carry out the heterogeneity and proximity tests. 

This alternative strategy (Supplementary Section 2, Fig. S2D), however, failed to detect edge 

acinar cells, suggesting that pseudotime values were not suitable for these tests. 

 

Overall, these results reveal an edge subpopulation uniquely in non-malignant acinar cells that 

have transcriptionally drifted away from the acinar medoid and toward malignant ductal cells. In 

contrast, ductal cells possess an outlier ductal sub-population that drift away from the ductal 

medoid but do not drift towards a malignant state. 

Edge acinar cells diverge from a normal acinar phenotype and represent a pre-malignant 

state 

Edge acinar cells expressed PRSS1, a marker of acinar cells, at much lower levels than non-edge 

acinar cells (Fig. S2B, p < 10-62). To further check if edge acinar cells differentially expressed 

markers of dedifferentiation, we assessed the expression of genes curated by Baldan et. al23 that 

are up- and down-regulated during acinar dedifferentiation. Four genes (RBPJ,HNF1B,SOX9, 

MYC) that are up-regulated during dedifferentiation are also up-regulated in edge acinar cells, 

while five genes (AMY2A,RBPJL,SYCN,CPA1,CTRC) that are down-regulated during 

dedifferentiation are also down-regulated in edge acinar cells (Fig. 2A). Acinar dedifferentiation 

precedes acinar-ductal metaplasia -- the conversion of acinar to ductal cells during pancreatic 

injury -- which in turn is potentially a precursor to PDAC24.  We checked expression changes of 

the genes STAT3, SEL1L, CBL, KLF4, CTNND1, ICAM1, DCLK1 and CDKN1A, which are known 

to increase in expression during acinar-to-ductal metaplasia3. With the exception of SEL1L, all 

other genes were up-regulated in edge-acinar cells (Fig. 2A).  
 

The acinar cell response during pancreatic injury has been suggested to represent a reversion to a 

multipotent embryonic progenitor state25. We checked if genes active in pancreatic progenitors 

were also expressed in edge acinar cells by processing (see Methods) a single-cell RNA-seq dataset 

of human fetal (15.4 weeks gestational age) pancreatic tissue26. We found a SOX9+PTF1A+NKX6-

1+RBPJ+ cluster and a SOX9+PTF1A+ cluster (Figures S3A,B) that are likely to represent 

multipotent and bipotent embryonic progenitor states, respectively27. We created multipotent and 

bipotent progenitor gene sets from genes up-regulated in the two clusters and scored all acinar 

cells for activity of both gene sets using AUCell28. We found that both gene sets were significantly 

more active in edge acinar cells than non-edge acinar cells (Fig. 2B). In contrast, among ductal 

cells, outlier ductal cells did not show higher activity of either of these gene sets compared to non-

outlier ductal cells.    

 

Since edge acinar cells are transcriptionally closer to malignant ductal cells than non-edge cells, 

we checked if the non-edge to edge transition involved known pathways of tumorigenesis. To 

interpolate intermediate states between non-edge and edge states, we divided acinar cells into three 

equal-sized bins based on their distance from the acinar cluster medoid. We tested genes 

monotonically increasing n expression across these bins for enrichment of genes from 50 Hallmark 

gene sets and 14 gene sets from the CancerSEA29 database.  Out of 19,276 genes expressed in 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.425042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425042


acinar cells, 3,273 genes exhibited a monotonic increase in expression from the first to the third 

bin and were enriched for 43 of the 64 gene sets (q-value < 0.1). We compared our gene expression 

changes during the non-edge to edge acinar transition with a recent study documenting 

transcriptomic changes over seven stages of pre-malignancy in the human lung16. Interestingly, 

our findings in acinar cells were highly consistent with those in lung pre-malignant transformation. 

In Mascaux et. al16, the expression of 58% (1848/3366) of genes increased monotonically across 

the pre-malignant stages, and were enriched for 25 Hallmark gene sets, with 15 gene sets in 

common with the 43 gene sets in our study (Fig 2C). This included genes related to Myc targets, 

mTOR signaling, IL2 STAT5 signaling, TNF-alpha signaling via NFKB, response to IFN-gamma, 

EMT, and UV response.   

 

Next, we investigated four potential paths between non-outlier acinar to malignant cell states (Fig 

2D). We identified the genes monotonically increasing in expression along each of these paths and 

identified enriched oncogenic pathways (Fig. S3C) among these genes. We observed most 

oncogenic changes (33 pathways enriched) along the path “non-edge acinar -> edge acinar -> 

malignant” (Fig. 2D). We contrasted this with two other paths, namely, “non-edge -> edge -> 

outlier ductal -> malignant” and “non-edge -> edge -> all ductal cells -> malignant”, where 

respectively only 8 and 5 pathways were enriched. This contrast suggests that ductal cells may not 

always be an intermediate transition state between edge acinar and malignant ductal cells.  

 

We next analyzed transcription factor (TF) activity of acinar cells within each of the three acinar 

cell bins to understand the transcriptional networks potentially driving the edge acinar state. We 

processed ATAC-seq data from adult acinar tissue30 to first identify 230 TFs (Supplementary Table 

1) whose binding motifs  are enriched in ATAC-seq peaks near genes expressed in acinar cells; 

this analysis also provides putative target gene sets for each TF. We then used AUCell to estimate 

the fraction of cells in each bin having an active gene set for each of the 230 TFs. We found 50 

TFs whose gene sets show the most variable activity among all bins (Fig. 2E, see Table S2 for a 

complete table of all 230 TFs), which can be divided into two groups that are either monotonically 

increasing or decreasing from Bin 1 to Bin 3. The RBPJ gene set showed high activity in Bin 3, 

which, along with the increase in RBPJ expression in edge acinar cells, provides a putative 

mechanistic link to the re-activation of embryonic progenitor genes in edge acinar cells27. The 

activity of several KLF factors increased in Bin 3, including KLF5, whose knock-out is known to 

reduce proliferation in low-grade PanIN cell lines31.  HES1 activity, which maintains acinar 

plasticity32, also increased from Bin 1 to Bin 3.  

 

Thus, edge acinar cells differentially up-regulate markers of acinar dedifferentiation and acinar-

ductal metaplasia, in addition to the reactivation of genes expressed in embryonic pancreas 

progenitor cells. This is concomitant with the activation of several oncogenic processes, driven by 

key TFs, during transition from a non-edge to edge acinar cell state.  More surprisingly, there is a 

substantial commonality between the processes up-regulated in transition from a non-edge to edge 

acinar cell state and those up-regulated during lung pre-malignant progression.  

Genes up-regulated in edge acinar cells are predictive of PDAC survival 

We created gene sets consisting of genes significantly up-regulated and down-regulated in edge 

acinar cells (Edge-Up and Edge-Down) and outlier ductal cells (Outlier-Up and Outlier-Down), 

compared to their respective non-edge and non-outlier counterparts, and analyzed their RNA-seq 
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expression and promoter methylation in both healthy pancreatic tissues and human PDAC tumor 

samples. We found that Edge-Up genes were up-regulated, while Edge-Down genes were down-

regulated in PDAC tumors from the TCGA database, compared to healthy pancreatic tissues from 

the GTEx database (Fig. 3A). Consistent with gene expression, we found significant 

hypomethylation at promoters of Edge-Up and hypermethylation of Edge-Down gene promoters 

in PDAC samples (Fig. 3B).  This suggests that gene expression and methylation changes in acinar 

edge cells foreshadow changes in PDAC tumors in a consistent manner.  

 

When we repeat these analyses for ductal Outlier-Up and Outlier-Down gene sets, 

counterintuitively (since outlier ductal cells do not exhibit a drift towards malignancy), we found 

a similar trend as for acinar cells, where Outlier-Up genes were up-regulated while Outlier-Down 

genes were down-regulated in PDAC tumors (Fig. S3E), and Outlier-Up gene promoters were 

hypomethylated (Fig. 3B), though Outlier-Down gene promoters were not hypermethylated. We 

scrutinized these counter-intuitive observations and found that this is likely because over half the 

Outlier-Up genes were also Edge-Up genes, with only 8 Outlier-Up (and 177 Outlier-Down genes) 

being ductal-specific in their expression pattern. Removal of these overlapping genes eliminates 

these trends in RNA-seq and methylation patterns (Fig 3).  

 

We further assessed, using a Cox proportional-hazards model, whether the four gene sets’ activity 

in PDAC tumors are associated with patient survival. As shown in Fig. 3C and Fig. S3E, both 

Edge-Up and Outlier-Up gene sets have a significant hazard ratio (q-value < 0.1), but Edge-Up 

gene set has a higher hazard ratio than Outlier-Up genes. Notably, neither Edge-Down nor Outlier-

Down gene sets are significantly associated with survival. As above, repeating the survival analysis 

based on ductal-specific Outlier-Up genes does not show significant association with survival. We 

also performed Cox regression for oncogenic gene sets in CancerSEA and found that a majority 

of these sets were predictive of survival, albeit with a lower hazard ratio than the Edge-Up gene 

set.  

 

These results suggest that the genes increasing in expression in the edge-acinar state were key to 

tumor progression and are in line with our findings (Fig. 2C) that several oncogenic processes are 

enriched only among genes increasing in expression during the non-edge to edge transformation.  

Acinar edge cells are found in independent healthy pancreas samples 

We checked if edge states can be found among acinar cells in published single-cell datasets of 

human pancreatic tissues. We re-analyzed published SMART-seq33 (GSE81547) and CEL-seq34 

(GSE85241) single-cell RNA-seq datasets of healthy human pancreas samples. To check for the 

presence of edge cells, we used AUCell to score acinar cells in both datasets based on our  signature 

gene set. We then declared each cell as edge or non-edge based on the Global_k1 activity threshold 

computed by AUCell. First, similar to Fig. 2A, we compared the log-fold changes of acinar-ductal 

metaplasia and acinar dedifferentiation markers between edge and non-edge acinar cells (Fig. 4A). 

In GSE81547, all 9 dedifferentiation markers, and 6 out of 9 ADM markers, showed consistent 

fold-changes with edge acinar cells. In GSE85241, 6 out of 9 dedifferentiation markers, and 4 out 

of 9 ADM markers, showed consistent fold-changes with edge acinar cells.  

 

Since PDAC risk increases with age, we checked if there was an age-dependent increase in the 

fraction of edge cells in these datasets. Since our edge signature is derived from patients spanning 
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five decades of age, to remove any age-associated confounding factor from our edge signature, we 

carried out a linear regression of gene expression against age (along with the number of expressed 

genes and cell cycle scores as covariates). This removed 8 genes from the acinar edge signature 

that were increasing in expression with age (FDR < 0.1). When we used AUCell to determine edge 

cells in both GSE81547 and GSE85241 datasets using this refined signature, we found a significant 

age-dependent increase in the fraction of edge cells (R2 = 0.66, p = 0.02) across both datasets (Fig. 

4B).  

 

Since tissues also accumulate somatic mutations during aging, we assessed whether the edge cell 

state may be driven by somatic mutations, i.e., whether edge cells harbor differential somatic 

mutations. We called variants in acinar cells using the GATK Best Practices pipeline (Methods). 

The number of somatic mutations in these cells agreed with estimates of somatic mutations rates 

in pancreas tissue in GTEx data35. We found that edge acinar cells had more somatic mutations 

than non-edge acinar cells in GSE81547 but not in GSE85241 (Fig. 4C). The differences between 

both datasets likely stem from differences in their library sizes, with GSE81547 being sequenced 

to a much higher depth36. Nonetheless, in both datasets, all these mutations were rare, and were 

present, on average, in 2.18% and 3.47% of non-edge and edge cells in GSE85241, and in 6.34% 

and 8.53% of edge cells, respectively in GSE81547 (Figures 4D,E), which does not support a 

clonal origin for edge cells. This modest difference in mutation frequency between edge and non-

edge cells is not significant based on sampling that preserves the number of edge and non-edge 

cells in each sample. Further, none of the mutations in edge and non-edge cells were classified as 

oncogenic driver mutations in the COSMIC cancer gene census (v92)37. 

 

We compared the edge cells from these two datasets with the edge cells found in our reference 

dataset. We used Seurat to integrate acinar cells across all three datasets and found that the edge 

cells (and non-edge cells) overlapped each other in UMAP space (Fig. 4F). Further, within both 

GSE81547 and GSE85241 acinar cells, the edge cells were significantly farther from their 

respective medoids than non-edge cells (Fig. 4G). Thus, the edge states in each of these datasets 

are similar and represent a transcriptional drift away from the normal acinar state in each of them. 

 

These findings validate the existence of edge-like acinar subpopulation cells in additional datasets, 

where they consistently exhibit expression profiles of ADM and dedifferentiation markers as in 

the PDAC dataset. Furthermore, we observe a strong correlation between frequency of edge cells 

and age.  

Edge-like variation in non-malignant liver and lung tissues 

Alveolar type 2 (AT2) cells are believed to be the cell-of-origin38 of lung adenocarcinoma (LUAD) 

tumors. However,  application of our original pipeline on scRNA-seq data from non-malignant 

(AT2) and LUAD samples39 did not detect an edge sub-population among AT2 cells, or any other 

non-malignant lung epithelial cluster. We then modified our original pipeline to check if any 

individual principal components reflected significant gene expression heterogeneity and a drift 

towards malignancy. Here, heterogeneity and the proximity tests are done for individual Normal 

and Pooled PCs respectively, and an additional test of collinearity between the qualifying Normal 

PC and the qualifying Pooled PCs (Fig. 5A, Methods). We note that multiple Normal PCs can 

show heterogeneity and drifts towards malignancy, reflecting the activation and inhibition of 

different gene sets in a subset of non-malignant cells. With this refined pipeline, we found that 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.425042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425042


Normal PC5 of AT2 cells defined an edge population that showed a drift towards a malignant cell 

cluster (Tumor State 2) along Pooled PC 1, which is collinear with Normal PC5 (Correlation 

coefficient = 0.82, q-value < 10-9). Additionally, Normal PC1 of Club cells, and Normal PCs 1 and 

2 of AT1 cells, also represented drifts towards malignancy.  

Next, we tested non-malignant liver epithelial cells for an edge-subpopulation that show a drift 

towards liver hepatocellular carcinoma (LIHC). We pooled single-cell RNA-seq data from healthy 

liver40 and LIHC samples41 to create a dataset with both healthy and malignant cells (caveats with 

this dataset are discussed in Supplementary Section S3). We found that Normal PC2 of two 

hepatocyte clusters, Hep2 and Hep3, exhibited drifts towards malignancy along Pooled PC1 and 

PC4, respectively. 

 

We used each of these Normal PCs that exhibited a drift toward malignancy to define an “edge-

like” population as before and tested the genes up-regulated in the edge-like cells for enrichment 

of Hallmark and CancerSEA gene sets (Supplementary Figure S3D). We found that edge-like AT2 

cells (based on Normal PC5) and AT1 cells (based on Normal PC2) were enriched (Fisher test, p 

= 0.042 and p=0.05, respectively) for gene sets active in lung cancer progression in the Mascaux 

et. al study (Fig 5B). This was however not the case for edge cells identified in Hep2 and Hep3 

cell types. 

 

Overall, while we did not find prominent edge cells in lung and liver based on global 

transcriptomic shifts, our results nevertheless suggest significant heterogeneity in specific 

oncogenic programs in non-malignant epithelial cells of lung and liver.  

 

 

Figures 

 

 
Fig. 1. Testing the presence of an edge sub-population among non-malignant cells in scRNA-

seq data. (A) Within each non-malignant cluster, every cell’s distance from the cluster medoid (in 

Normal PC space) is calculated, and the resulting distance distribution is tested for positive 
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skewness. In the proximity test, we test if the 10% of non-malignant cells farthest from their own 

medoid (black, termed outlier cells) are significantly closer, in the Pooled PC space, to the 

malignant cluster medoid (dark purple) than the remaining 90% of cells (orange). If both test 

conditions hold, the outlier cells are called edge cells. For both tests, examples of the distributions 

of skewness and the proximity ratio are shown for acinar and ductal cells, as well as their respective 

control populations (B) Violin plots of medoid distance distribution skewness values (top) and 

malignant proximity ratio (bottom) after shuffling is performed 100 times for each indicated 

cluster. Filled circles indicate skewness and proximity ratio values of actual cells, where blue and 

red indicate a significant (< 0.05) or insignificant p-value for each test. (C) UMAP plots of edge 

and non-edge acinar cells (left) and non-outlier and outlier ductal cells (right). (D) UMAP plots of 

acinar cells colored by their sample of origin (34 samples in total, as acinar cells from one sample 

were discarded as they were likely doublets).  

  

 
Fig. 2. Functional analysis of acinar edge cells. (A) Bars indicate log-fold changes between edge 

and non-edge acinar cells. (B) The Y-axis is the gene set activity, computed by AUCell, of multi-

potent and bi-potent progenitor gene sets across cells in acinar and ductal cell sub-populations 

shown on the X-axis. **** indicates a p-value less than 10-4. (C) Gene sets enriched among genes 

increasing monotonically in expression during lung cancer progression (Mascaux et. al, left) and 

from Bin 1 to Bin 3 of the non-edge to edge acinar transition (right). (D) The number of oncogenic 
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gene sets enriched among genes increasing in expression along the cell state transitions indicated 

by arrows. (E) The fraction of acinar cells in each bin that have an active regulon of the TF 

indicated along the columns. These are the 50 most variably activated regulons across the three 

bins (Table S1 contains the whole list of 230 regulons).  

 

 
 

Fig. 3. Acinar Edge and Ductal Outlier genes in TCGA PDAC. (A) RNA-seq expression z-

scores in PDAC samples (using GTEx pancreas RNA-seq as a reference) of up-regulated (red), 

down-regulated (blue) and remaining (green) genes in edge-acinar cells and outlier-ductal cells. 

Genes in the Outlier-Up and Outlier-Down datasets are filtered to remove overlapping Edge-Up 

and Edge-Down genes. (B) Methylation z-scores among PDAC using methylation samples from 

healthy samples as a reference (see Methods) of gene promoters in A, (C) Log of Hazard ratios 

obtained from Cox regression of gene sets in TCGA PDAC samples.  
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Fig. 4. Acinar edge cells in independent datasets and links with aging. (A) Bars indicate log-

fold changes between edge and non-edge acinar cells in GSE81547 and GSE85241. Markers in 

red and blue fonts are known to be up-regulated and down-regulated, respectively, during ADM 

(CDKN1A to STAT3) and dedifferentiation (MYC to CTRC). Matching color of the marker text 

and the bar indicates that the observed log-fold change matches the expected gene expression 

change of the marker. (B) Scatter plot of fraction of edge-acinar cells with the age of the tissue 

donor in GSE81547 and GSE85241. (C) Number of mutations in edge and non-edge acinar cells 

in GSE81547 and GSE8524. (D,E) Histogram of the fraction of edge cells and non-edge cells that 

contain a somatic mutation. (F) UMAP visualization of acinar cells from GSE81547, GSE85241 

and the reference dataset from which the edge signature was derived. (G) Distance of edge (red) 

and non-edge (cyan) cells from the medoid acinar cell in PCA space computed separately for 

GSE81547 and GSE85241 datasets.  
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Fig. 5. Edge heterogeneity in lung epithelial cells and hepatocytes. (A) Schematic of three-

stage pipeline to detect directions of edge heterogeneity. Each Normal PC is tested for positive 

skewness, and each PC that passes the test is used to define an outlier cell population. For each 

outlier population, each pooled PC is then used to compute distances between non-malignant and 

malignant cells and carry out the proximity test, with all PCs tested for collinearity with the Normal 

PC used to define the outlier cells. Collinearity is defined as the Spearman correlation between the 

Normal and Pooled PC scores of all non-malignant cells in the cluster. Those skewed Normal PCs, 

which are collinear (FDR < 0.1) with a Pooled PC that passes the proximity test represent 

directions of edge heterogeneity within the non-malignant cluster. The bar plots shown are from 

running the three-stage test on Alveolar Type 2 (AT2) cells, where Normal PC 5 is used to define 

outlier cells (B) Normalized enrichment scores of gene sets (those that are active during lung 

cancer progression in Mascaux et. al) along Normal PCs passing all three tests amongst Club, AT1 

and AT2 cells in lung, and Hep2 and Hep3 cells in liver. The Normal and Pooled PC pair that pass 

the heterogeneity tests and proximity tests are indicated, along with the collinearity score between 

the two qualifying PCs. The collinearity scores all have a q-value < 0.1.  

Discussion 

Here we show the existence of a subset of non-malignant acinar cells that we refer to as edge 

cells15, that are transcriptionally distinct from a typical acinar cell, and significantly closer to 

malignant PDAC cells. This phenomenon is observed broadly across individuals and in multiple 

datasets. Although edge cells do not seem to be driven by clonal somatic mutations, interestingly, 

we see evidence of increased prevalence of edge cells with age, and consistently, an enrichment 

of edge-up-regulated genes among genes increasing in expression with age. 

 

One way to interpret the observed global transcriptional drift in acinar edge cells toward 

malignancy is that there are overlapping oncogenic programs that individually show heterogeneity 

in the non-malignant cell population and are broadly concordant with each other. Ultimately, an 
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increased transcriptional activity along multiple oncogenic programs in a subset of cells is revealed 

as the edge cells by our approach. Our results also reveal significant heterogeneity involving 

several oncogenic programs in non-malignant epithelial cells of lung and liver. 

 

There is a significant overlap between pathways activated in the non-edge to edge transitions in 

acinar cells on the one hand, and those activated during pre-malignant progression in the lung on 

the other. In acinar edge cells, we see an up-regulation of the targets of transcription factors RBPJ, 

HES1, and KLF5 targets, which are known to mediate acinar cell plasticity32 and a reversion to a 

multi-potent pancreatic progenitor state27. This suggests a role for known transcriptional networks 

playing a role in the transition to an edge state. It has been proposed, and experimentally shown, 

that transcriptional fluctuations within complex regulatory networks can result in a clonal 

population existing in multiple phenotypic states9,10,42. In cancer cells, such fluctuations can cause 

cells to switch between drug-sensitive and drug-resistant states43 in a manner that can be perturbed 

by targeting key transcription factors44.  

 

Once a cell transitions to an edge state, how long a cell spends in an edge state, and whether the 

edge state persists after cell division, may additionally involve epigenetic mechanisms. DNA 

methylation and epigenetic inheritance through histone modifications represents one such potent 

mechanism45,46. Coupled single cell transcriptomics and DNA methylation data from the same 

acinar cell, which is needed to precisely assess the role of DNA methylation in sustaining the edge 

cell population, is currently not available. However, we found that the promoters of genes that are 

up-regulated in the edge acinar cells relative to non-edge cells, were hypomethylated in PDAC 

tumors, and the converse was true for genes down-regulated in edge acinar cells, suggesting a 

potential role of epigenetics in maintaining the edge cell state. 

 

A potential role of the tissue environment, and DNA methylation, in giving rise to edge cells is 

further supported by our observed link between age and the fraction of edge cells in healthy acinar 

cells. Aging is the greatest risk factor for most cancers47. While clonal expansion of somatic 

mutations does occur with age in certain tissues such as skin and oesophagus48, we found no 

evidence of clonal expansion in the edge acinar cells. Beyond the role of mutations, epigenetic 

changes from age-related hypomethylation49 likely contribute to the stability and rate of switching 

to an edge state with age.  

 

While we have demonstrated, in multiple contexts, that a specific edge cell subpopulation in 

healthy tissues is transcriptionally distinct and is significantly closer to malignant cells, it is not 

clear if, and precisely how, the edge cells may contribute to tumorigenesis. Many processes that 

robustly change with age, such as genomic stability, telomere attrition, metabolism, and cellular 

senescence, are also mechanistically linked to cancer17. One possibility is that the edge cells are in 

an epigenomic state that is more sensitive to oncogenic mutations. For instance, cigarette smoke 

alters DNA methylation patterns in epithelial cells and sensitizes them towards KRAS-induced 

transformation13. Thus, even though the emergence of the edge transcriptional state may not be 

driven by mutations, the edge state may be more sensitive to oncogenic transformation with age-

associated transcriptomic changes being more sensitive to such mutations50,51. 

 

Overall, our results support the notion of an edge transcriptomic state in healthy tissues that is pre-

malignant. Pancreatic acinar cells likely switch between edge and non-edge states, although the 
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time spent by cells in either state is unclear. Establishing the stability of these states would require 

the tracing of lineages of acinar cells to infer the regulatory changes underlying the switching 

process. 
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Methods 

 

The code necessary for reproducing these results are available at https://github.com/hannenhalli-

lab/pdac_edge .  

Processing PDAC scRNA-seq data (CRA011600). We downloaded processed single-cell RNA-

seq read counts and cell type annotations from (ftp://download.big.ac.cn/gsa/CRA001160). Out of 

57,730 cells, we removed 2,877 cells that were declared as doublets with doubletFinder v3.0 

(assuming a prior 5% doublet rate). In all downstream calculations, we used the default Seurat 

(v3.0) normalization scheme implemented in FindNormalize (with a scale factor of 10,000) to 

normalize library size variation across cells. 

Two-stage statistical test for an edge sub-population. Our procedure for testing whether a non-

malignant cell cluster harbors an edge sub-population consisted of two tests --- the skewness and 

the proximity tests. 

Heterogeneity test: We selected the 1000 most variable genes (using Seurat’s default 

FindVariableFeatures function) in the non-malignant cell cluster, z-score normalized their 

expression, and computed a 50-dimensional PC embedding for each cell; we refer to these PCs as 

Normal PCs to underscore that they are computed only from the non-malignant cell cluster. We 

then computed the distance of each cell from the cluster medoid based on Euclidean distance. The 

10% of cells that are farthest from the medoid are termed outlier cells. We quantified heterogeneity 

as the skewness, s, of the distance distribution using the medcouple estimator from the robustbase 

package in R. To compute the statistical significance of s, we create 100 control cell clusters by 

shuffling each of the 50 Normal PC coordinates across all cells in the original cluster. For each 

control cluster, we compute the skewness as above, and based on a Gaussian fit of these 100 control 

skewness values, we estimated the empirical p-value of s. We used a p-value threshold of 0.01 to 

consider the cell cluster heterogeneous and proceed to the next test. 

Proximity test: Here we determine whether the outlier cells in the non-malignant cluster are 

significantly closer to the malignant cell cluster than non-outlier cells. We carry out PCA jointly 

on both malignant cells and non-malignant cells, using 1000 most highly variable genes across 

these cells.  We refer to these PCs as Pooled PCs. We then define the malignant cell cluster’s 

medoid using the Euclidean distance metric, and compute the proximity ratio, R, as the ratio 

between the average distances of outlier cells (in the Pooled PC space) to the malignant cluster 
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medoid to that of the non-outlier cells. A value of R < 1 implies that the outlier cells are closer to 

malignancy than non-outlier cells. We compute the statistical significance of R by randomly 

choosing 10% of the non-malignant cells as outlier cells, and re-compute R using these control 

outlier cells. We repeat this process 100 times, fit a Gaussian to the obtained ratios and estimate 

the empirical p-value of observing a value less than R. If this p-value is less than 0.01, the outliers 

are labelled as edge cells.  

Modified three-stage statistical test for finding edge heterogeneity. The three-stage pipeline 

retains the heterogeneity and proximity tests and incorporates a third collinearity test. 

Heterogeneity test: We computed 5 Normal PCs based on the 1000 most variably expressed genes 

within the non-malignant cluster of interest. Using each PC individually, as above, we defined the 

medoid cell, computed the distance of each cell from the medoid, followed by skewness of the 

distance distribution, s, and its significance based on shuffling the expression separately amongst 

cells in each sample (this sample-aware shuffling removes any potential bias caused by inter-

sample heterogeneity). The p-values of s computed for all 5 PCs are corrected using the Benjamini-

Hochberg FDR procedure. Each Normal PC with an FDR < 0.1 is chosen to define outlier cells, 

i.e., 10% of cells farthest from the cluster medoid.  

Proximity test: 5 Pooled PCs are computed based on the 1000 most variably expressed genes across 

the pooled non-malignant and malignant clusters. For each outlier cell population (defined by a 

particular Normal PC qualifying the Heterogeneity test), the proximity ratio of the outlier cells, R, 

and its p-value, is computed separately for each pooled PC as above. The FDR is then computed 

for each pooled PC, and the set P of all Pooled PCs with an FDR < 0.1 are retained. 

Collinearity test: We compute a 5x5 correlation matrix of Spearman correlation coefficient 

between every Normal and Pooled PC score pair across all cells in the non-malignant cluster that 

qualify both heterogeneity and proximity tests. The p-values of each correlation is corrected using 

the FDR method. For each skewed Normal PC, if there exists at least one collinear Pooled PC with 

a low proximity ratio (with a correlation FDR < 0.1), then the Normal PC is a direction of edge 

heterogeneity.  

Processing fetal pancreas data. We downloaded the cell-by-gene read count matrix from the 

GEO database (accession number GSE141087). We first removed cells that had more than 10% 

of their reads aligned to mitochondrial genes, after which we removed doublets using 

DoubletFinder v3.0 (50 principal components, 5% doublet rate and p_N = 0.25). We normalized 

the read counts using Seurat’s default FindNormalize function, after which we selected 1000 most 

highly variable genes and carried out PCA with 50 PCs. We then clustered the cells using the 

FindClusters function in Seurat (resolution = 0.8, k = 30 neighbors in PC space for constructing 

the neighborhood graph). We then scored each cluster based on the average normalized expression 

of markers27 for bi-potent progenitors (Nkx6-1+Sox9+) and multi-potent progenitors (Nkx6-

1+Sox9+Ptf1a+Pdx1+), yielding 668 bi-potent and and 297 multi-potent progenitor cells. We then 

used the FindMarkers function from Seurat to find genes that were up-regulated in these two 

progenitor clusters yielding 1,237 and 956 up-regulated genes (adjusted p-value < 0.1) in the bi-

potent and multi-potent progenitor clusters, respectively, which were then used as gene sets to 

score all acinar and ductal cells using AUCell.  

Gene set enrichment comparison to Mascaux et. al. We divided the acinar cells into three bins 

based on their distances from the acinar medoid in PC space. We z-scored the expression of each 
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gene across all acinar cells and picked genes that were monotonically increasing in expression 

from the first to the third bin. We carried out a Fisher test for over-representation for 64 gene sets 

(50 Hallmark gene sets and 14 CancerSEA gene sets), after which we carried out an FDR 

correction and picked gene sets with a q-value < 0.1 as significant. 

Motif enrichment and network analysis. We downloaded acinar-specific ATAC-seq reads from 

GEO (GSM1606431). Reads were trimmed with trimgalore (v0.6.5) and aligned to the human 

genome (hg19) using BWA52 (v0.7.17). MACS253 (v2.2.6) with default parameter settings was 

used to call peaks with a q-value < 0.05 

To find a list of motifs enriched near acinar-expressed genes, we used the SPRY-SARUS motif 

scanner54 to scan the central 100 bp region of ATAC-seq peaks for matches to motifs in the 

JASPAR 2020 vertebrate motif collection55. Out of 746 motifs, we restricted our scans to 589 

motifs that involved a TF that was expressed in at least 10% of all acinar cells. We split the ATAC-

seq peak regions into foreground or background sets depending on whether or not the peaks were 

at most 10kb upstream of a gene expressed in at least one acinar cell. We scanned both sets of 

regions for motif matches (p-value < 10-4) and carried out a Fisher test of over-representation 

among the foreground sequences for each motif. We then computed q-values for each TF and 

retained TFs with a q-value <  0.1.  

For each retained enriched TF, we created gene sets that consisted of its putative gene targets in 

the foreground set. We scored each gene set’s activity in each acinar cell using AUCell and used 

AUCell’s internal Global_k1 threshold to declare a gene set as active or inactive in each acinar 

cell. We then computed the fraction of acinar cells in each of the 3 bins with an active gene set, 

with the same cell - bin assignment that was computed in Fig. 2C.  

Processing aging pancreas single-cell RNA-seq data. We downloaded processed single-cell 

RNA-seq read counts from GEO GSE81547 and GSE85241. For GSE81457, we used prior 

annotations of cell types from the original publication33 to find transcriptomes of acinar cells. For 

GSE85241, we clustered cells using Seurat with the same parameters as we used for the fetal 

pancreas scRNA-seq data. As in the original publication, we picked the cluster with the highest 

PRSS1 expression as the acinar cell cluster.  

Variant calling. We called variants in acinar cells from the raw sequencing reads in GSE81547 

and GSE85241 datasets using the GATK best practices workflow. We then removed variants that 

were (a) shared across donors, (b) were annotated in dbSNP v138, ( c ) had fewer than 5 reads 

aligning to the locus or had fewer than 3 reads supporting the alternate allele.  

Processing lung and liver scRNA-seq data.  

Lung: For the lung adenocarcinoma set, we downloaded processed read counts and cell type 

annotations from GSE131907. The malignant cells were annotated as tS1, tS2 or tS3 (Tumor States 

1,2 and 3). We chose tS2 cells as the malignant reference since they represented a more 

transformed malignant state39.  

Liver: Healthy liver data was downloaded from https://github.com/BaderLab/HumanLiver  in the 

form of a Seurat object that contained cell type annotations and read counts for each cell. Processed 

hepatocellular carcinoma read counts and annotations were downloaded from GSE125449. 

Differential expression analyses between edge and non-edge cells. In acinar and ductal cell 

populations, genes differentially expressed respectively in edge and outlier cells were found using 

the “LR” test in the Seurat FindMarkers function, where the p-value associated with each log-fold 
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change was estimated after controlling for cell cycle scores, number of expressed genes and inter-

sample variation between cells. 

In AT2 and Hep2 cells, we found the LR and Wilcoxon tests in the Seurat FindMarkers function 

to be overly conservative in computing the significance of log-fold changes. Hence, for these two 

cell types, we employed MAST56 to find differentially expressed genes between edge and non-

edge cells after controlling for inter-sample variation between cells (effects of cell cycle and 

number of expressed genes was negligible and thus not modelled).  

Survival analysis of TCGA cancer patients. For each cancer type investigated here, we obtained 

the mRNA expression (in TPM units) and clinical data for TCGA cancer patients from UCSC-

xena browser (https://xena.ucsc.edu/). We used Cox regression to model the overall survival of 

patients by using the median expression of each signature gene set (y-axis of Fig. 3C) as an 

explanatory variable. Additionally, we used the age of patients as covariate and stratified the model 

based on their gender to control for these potential confounders. The resulting p-values were 

corrected for multiple comparisons using the FDR method and hazard ratios were plotted on log 

scale. 

Expression analysis in bulk tumor data. For each cancer type investigated, we z-scored the 

expression of each gene in TCGA cancer patients based on its mean and standard deviation in 

normal samples of corresponding tissue from Gtex and used the averaged z-scores to compare 

different gene sets. Prior to z-scoring, we performed quantile normalization in order to make the 

two datasets comparable. 

DNA methylation analysis in bulk tumor data. We used 450k DNA methylation data of cancer 

and normal samples from array-expression for pancreas57 and from GEO database for lung 

(GSE66836) and liver (GSE54503) samples. The coordinates of 450k methylation array probes 

were obtained using the COHCAP library in R and were mapped to the 5kb upstream promoter 

region of each gene using bedtools. We used the mean and standard deviation of aggregated 

methylation of each promoter in normal samples to compute the z-scores of the same in the cancer 

samples and plotted the averaged z-scores to compare different gene sets. 
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