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Abstract

Most  species  encounter  large variations  in  abiotic  conditions  along their  distribution

range.  Climate,  and  in  particular  temperature,  varies  along  clinal  gradients,  which

determines  phenotypic  plasticity,  local  adaptations  and  associated  physiological

responses of most terrestrial ectotherms, such as insects and spiders. This study aimed

to determine how the biogeographic position of populations and the body size of two

wandering spiders set their limits of cold (freezing) resistance. Using an ad-hoc design,

we sampled relatively large numbers of individuals from four populations of Dolomedes

fimbriatus and one population of the sister species  Dolomedes plantarius originating

from contrasting climatic areas (temperate and continental climate), and compared their

supercooling ability as an indicator of cold resistance. Results indicated that spiders

from northern (continental) populations had higher cold resistance than spiders from a

southern (temperate) populations.  Larger spiders had a lower supercooling ability in

northern  populations.  The red-listed  and rarest  D. plantarius was slightly  less  cold-

tolerant  than the more common  D. fimbriatus,  and this might be of importance in a

context of climate change that could imply colder overwintering habitats in the north due

to reduced snow cover protection.
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Introduction

The  ability  of  a  species  to  cope  with  variations  in  abiotic  conditions  influences  its

distribution range (Gaston 2003). Abiotic factors, and among them temperature, shape

the  geographic  range  of  ectotherm species,  and  this  is  even  more  relevant  in  the

context of global warming (Somero 2012, Addo-Bediako et al. 2000). Some ecthoterms

survive freezing and are freeze tolerant whereas other ectotherms are freeze intolerant.

Freezing tolerant species, like some alpine species, tend to freeze at relatively high

subzero temperatures with ice nucleators and cryoprotectants, inducing and protecting

against freezing stress respectively, instead of having high supercooling abilities, i.e.

low supercooling point (SCP) (Duman 2001, Bale 2002, Duman et al. 2004). Freeze

intolerant arthropods, which include freeze-avoidant, chill tolerant, chill-susceptible and

opportunistic-survival classes, can exhibit deep supercooling ability, ranging from -15 to

-25°C (Danks 2004), by producing polyols and antifreeze proteins (Duman 2001, Bale

2002).

Many different measures are used to illustrate the thermal performance of populations

(Sinclair et al. 2015). It could be depicted by a thermal performance curve representing

how a temperature gradient influences arthropod activity (Sinclair et al. 2012, 2015). As

the  estimation  of  thermal  performances  is  influenced  by  many  factors  such  as

phenotypic  plasticity  (Schulte  et  al.  2011)  or  evolutionary  adaptation  (Jensen  et  al.

2019), measuring an anchor point like the SCP is useful to assess the cold tolerance
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class of species. Indeed, the SCP represents the lower lethal temperature (LLT) for

freezing-avoidant species and is still a useful indicator for chill-tolerant species as SCP

and LLT are almost similar for them (Bale 1996). However, many ectotherms classified

as chill-susceptible or opportunistic-survival, die at temperatures well above SCP, the

latter being less resistant than the former (Overgaard and MacMillan 2017, Bale 2002).

Even though the ecological value of the SCP has been debated (Renault et al. 2002,

Ditrich et al. 2018), it is still a useful metric to explore and describe the cold tolerance

strategy of poorly studied species, such as spiders (Sinclair et al. 2015).

Latitude and winter conditions influence the temperature gap between the SCP and the

lower lethal temperature (Addo-Bediako et al. 2000, Vernon and Vannier 2002). Indeed,

based  on  cold  hardiness  strategies  defined  by  Bale  (1996),  opportunistic-survival

animals are mainly found in tropical and semi-tropical regions, chill susceptible and chill-

tolerant in temperate and sub-polar regions and freeze avoidant in region with severe

cold winter conditions.

Body size influences and is influenced by the animal’s stage, its body fat content or the

concentration of ice-nucleating bacteria, which affect the SCP (David and Vannier 1996,

Johnston and Lee 1990, Colinet et al. 2007). The size of animals also changes along

latitudinal and altitudinal clines. Both an increase and a decrease of body size towards

northern  latitude  were  observed  and  theorised  under  the  Bergmann  and  converse

Bergmann rules respectively (Blanckenhorn and Demont 2004). For ectotherms, these

two rules were first opposed (Voorhies 1996, Mousseau 1997) but it seems that both
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larger and smaller individuals at northern latitudes is possible and the two rules are

eventually not exclusive (Blanckenhorn and Demont 2004), possibly co-existing in close

species (e.g. in artic wolf spiders, see Ameline et al. 2018). The latitudinal size cline is

of importance as body size also influences cold hardiness (Ansart et al. 2014), e.g. with

smaller arthropods having better supercooling capabilities than larger ones (Sømme

1982, David et al. 1996, Colinet et al. 2007, Sinclair et al. 2009). Hence, a negative

relationship between ectotherms size and the ability to supercool has been reported

(Lee and Costanzo 1998). Consequently, smaller individuals could benefit from colder

temperatures under harsher winter conditions at northern latitudes.

Most  studies  investigating  latitudinal  clinal  changes  of  arthropods’  physiological

tolerance focused on differences between species rather than among populations of the

same species (Spicer and Gaston 1999 but see, e.g. Jensen et al. 2019). Physiological

tolerance is a basal trait in arthropods, but it has evolved many times (Sinclair et al.

2003). Most of the knowledge on cold tolerance of arthropods comes from the study of

insects,  and different mechanisms might influence the cold hardiness of insects and

arachnids.  Indeed,  Anthony  and  Sinclair  (2019)  showed  divergent  cryoprotective

dehydration,  the action of  losing water  by evaporation at  low temperature,  between

insects  and  arachnids  and  the  absence  of  coma  under  hypoxic  conditions  is  also

remarkable  in  spiders  (Pétillon  et  al.  2009).  To  our  knowledge,  not  all  spiders  are

freezing  tolerant  (Nentwig  2012).  The  same  cold  hardiness  classes  are  used  to
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categorise freezing intolerance of spiders and insects. Indeed, some spiders are freeze-

avoidant, others chill-tolerant or chill susceptible (Kirchner 1973, Anthony et al. 2019).

Although latitudinal variations in the cold hardiness of arachnids have been the subject

of  recent  attention  (e.g.  Anthony et  al.  2019),  studies  comparing  populations  within

species  are  lacking  (but  see  e.g.  Murphy  et  al.  2008),  this  despite  the  recognised

importance of comparative approaches (e.g. see Ansart et al. 2014). Tough sampling

conditions at high latitude in the northern hemisphere may limit sampling of a sufficient

number of individuals and thus prevent studies from considering the northern part of a

species range.

In  this  study,  we assessed the  variation  in  cold  resistance,  estimated through SCP

ability of different populations and species of fishing spiders (Araneae, Pisauridae) with

contrasted distributions. We hypothesised that (i) northern populations of  Dolomedes

fimbriatus have lower SCP values than southern populations, (ii) the size of spider in the

north  is  positively  related  to  the  SCP,  and  (iii)  the  species  reaching  the  northern

latitudes (here  D. fimbriatus)  has lower SCP values than the more southern limited

species (D. plantarius: Monsimet et al. 2020), potentially due to their relatively smaller

body size. These hypotheses were experimentally tested in two European Dolomedes

species using relatively high numbers of field-collected spiders for representative results

and robust statistics.
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Materials and Methods

Case study species and sampling locations

The fishing spiders, Dolomedes plantarius and Dolomedes fimbriatus are widespread in

Europe  with  a  northern  range  limit  in  Fennoscandia.  D.  plantarius has  a  lower

population  density  and  is  red-listed  at  the  European  scale  (World  Conservation

Monitoring  Centre  1996).  The  latitudinal  contrast  encompassed  two  different

biogeographic positions, characterizing two different climatic areas (continental, coded

C hereafter  versus temperate, coded T). Individuals sampled at their range limit were

compared with others from a central latitude of the distribution. We sampled two sites

with D. fimbriatus and one site with D. plantarius in Fennoscandia (C1, C2 and C3; fig.

1),  which  characterise  the  northern  population,  subject  to  a  continental  climate.  In

addition,  we  sampled  two  sites  with  D.  fimbriatus in  France  (T1  and  T2;  fig.  1),

representing the centrally distributed populations exposed to a temperate climate. Given

the conservation status of D. plantarius in Europe, we chose to limit our sampling of this

species to the area where it is most abundant (Fennoscandia).

As the SCP is influenced by the developmental stage (Aitchison 1984, Anthony et al.

2019),  we  sampled  only  juvenile  spiders  of  both  sexes.  The  peak  of  the  breeding

season of European Dolomedes is in late July (Smith 2000). Females keep egg sacs

several weeks before building a nursery web where eggs will  hatch and from which

spiderlings will later spread out into the surroundings. Juvenile spiders overwinter, but
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not adults,  similarly to other species in the genus (Guarisco 2010). We sampled  D.

fimbriatus by sweep-netting the vegetation on sunny and windless days. We sampled D.

plantarius on the water surface by visual hunting, and active hunting by perturbing the

water surface. We sampled,  and latter tested the SCP of about 24 spiders at  each

sampling site (n = 24,24,21,26,24 for C1,C2,C3,T1,T2 respectively, table 1).

Measurement of the supercooling point

To  determine  the  SCP,  we  placed  the  spiders  in  centrifuge  tubes,  which  were

submerged in a cryostat bath (Polystat CC3, Huber Kältemaschinenbau AG, Germany)

filled with heat transfer fluid (Thermofluid SilOil, Huber, Germany). The temperature of

the bath was slowly reduced at a rate of 0.5°C min−1 to reach a target temperature of -

30°C. To monitor the temperature of the spiders, we placed a K-type thermocouple in

direct contact with the spider opisthosoma, secured with Parafilm® and connected to a

Testo 175T3 temperature data logger (Testo SE& Co.,  Germany).  We recorded the

temperature every ten seconds. The SCP was defined as the temperature at the onset

of  the  freezing  exotherm produced by  the  latent  heat  (see fig.  2 for  representative

exotherms).

As the number of spiders tested per day was limited by the capacity of the instrument (4

spiders at a time), we later accounted for the time lag between capture and test in our

models (variable Diff).
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Measurement of spider body size

We measured the spiders’  body size after the SCP experiment to avoid injuring the

spiders and biasing the results. We took a picture of the spider’ back together with a

measuring tape for measuring the body size later in the ImageJ software (Schneider et

al. 2012). We measured the highest length and largest width of the carapace (prosoma)

which are commonly used as proxy for whole body size, fitness and metabolic rate in

spiders (Jakob et al. 1996, Penell et al. 2018).

Data treatment

The carapace width and length were highly correlated (rho = 0.83, Pearson correlation

test), so we used the carapace length as a proxy of body size (Jakob et al. 1996) and

referred to as body size hereafter.

Comparison of SCP across latitudes (D. fimbriatus)

We used the data from the four D. fimbriatus populations to assess the effect of latitude,

and called the model “modClim” in the following. We modelled the SCP with several

candidate linear models including predictor variables Diff  (time between capture and

SCP  measurements),  site,  climate  (continental/temperate,  as  defined  by  the

biogeographic location), sex and body size. We also considered the interaction between

climate and body size and/or the interaction between body size and site (See appendix

1 for the list of candidate models).
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Comparison of SCP between species (northern populations)

We used  D. fimbriatus and  D. plantarius from Scandinavia  to  compare  the  SCP of

species from northern populations, and called the model modSp in the following. We

modelled the SCP with several candidate linear models with variables Diff, site, species,

sex and body size, as well as the interaction between species and body size and/or the

interaction between body size and site (See appendix 2 for the list of candidate models).

Statistical Analysis

We used packages rstanarm (Goodrich et al. 2020), modelbased (Makowski et al. 2020)

and bayestestR (Makowski  et  al.  2019a) in R (R Core Team 2020) to  fit  the linear

models in a Bayesian framework. We used a normal distribution centred on 0 and a

standard deviation of 2.5 as weakly informative priors (rather than using flat priors, see

Gelman et al. 2008, Gelman and Shalizi 2013). We fitted the models using four chains

and  4000  iterations.  We  used  leave-one-out-cross-validation  value  (LOO  value)  to

compare the predictive accuracy of fitted models, and to select the most accurate model

(Vehtari et al. 2017). We checked the convergence of the models both visually and by

making sure that Rhat value was not larger than 1.1 (Gelman and Rubin 1992).

Following Makowski et al. (2019b), we used the probability of direction (pd), which is the

probability that the posterior distribution of a parameter is strictly positive or negative, to

describe the existence of an effect of an explanatory variable. We used the percentage
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of the full  region of practical equivalence (ROPE) lower than 1% as an index of the

significance of an effect. We represented the uncertainty with a credible interval of 89%.

Results

General results

The SCP of the spiders varied from −2.6 to −16.4°C, with an average of −7.8±2.3°C

(n=119). Fig.  2 shows typical cooling curves of  Dolomedes fimbriatus (from C2) and

Dolomedes plantarius (from C3) with exotherms of about 8 and 6.5°C and a SCP of -9.3

and -7.5°C respectively. None of the spiders tested survived freezing.

The body size of juveniles of  D. plantarius was on average 5.36±0.69mm while body

size of D. plantarius was 4.28±0.56mm in the South and 4.53±0.47mm in the South.

Validation and selection of models

All of our candidate models converged (Rhat < 1.1). According to LOO values, some

models were considered equivalent (Appendices 1 & 2). The modClim model with the

lowest LOO value and therefore the highest predictive power included variables Diff

(time between capture and test), climate, body size and the interactive effect of climate

and body size (table 2). For modSp model, the best model included Diff, species, body

size and the interactive effect of body size and species.
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Comparison of SCP across latitudes (D. fimbriatus)

Regarding  modClim  (table  2),  the  SCP  of  individuals  of  southern  and  northern

populations significantly differed (pd = 99%, <1% in ROPE, fig. 3) and were −6.6±2.3°C

(min. −11.5°C, max. −2.6°C; n=50) and −9.05±2.31°C (min. −6.30°C, max. −2.30°C,

n=48), respectively. The SCP significantly increased with the spider’s body size (pd =

96%, <1% in ROPE, median = 8.4 [0.6; 16.5]), which means that larger spiders had

higher SCP than smaller spiders.  The effect  of  spiders'  body size on the SCP was

significantly different between the two climatic areas (pd = 98%, <1% in ROPE; fig. 4).

Namely, the SCP increased with the body size of spiders in the northern climate (pd =

96%, <1% in ROPE, median = 8.33 [0.15; 15.56]) while the relation between SCP and

body size in the South was not different from 0 (<1% in ROPE but pd < 90%).

Comparison of SCP between species (northern populations)

Regarding  modSp (table  3),  the  SCP significantly  increased with  body size of  both

species  together  (pd  =  98%,  <1%  in  ROPE,  Median  =  9.1  [2.0;  15.9];  fig.  5).

Nonetheless, the effect of body size on the SCP was not different between species (pd

=  93%).  The  SCPs  of  individuals  of  D.  plantarius and  D.  fimbriatus of  northern

populations  likely  differed  (pd  =  95%,  1%<ROPE<2.5%)  and  was  -7.56±0.32  (min.

−9.4°C, max. −4.4°C; n=21) for D. plantarius (for D. fimbriatus, see above). We did not

find a significant effect of Diff for modSp (ROPE = 23%).
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Discussion

Our study showed that the SCP of northern fishing spiders from a continental climate

was lower than the SCP of southern  Dolomedes from a temperate climate. The SCP

was  positively  related  to  body  size  for  both  species,  but  this  relationship  differed

between  the  two  climates  for  D.  fimbriatus.  Finally,  we  found  that  the  SCP  of

Dolomedes fimbriatus was slightly lower than that of Dolomedes plantarius.

The SCP of  D. fimbriatus decreased with  increasing  latitude,  while  juveniles  of  the

species  did  not  differ  in  size.  In  this  study,  we  tested  four  populations  from  two

biogeographic locations which characterised different climates and latitudes along the

species distribution range. The northern populations, at the range limit, experience cold

winters with permanent snow cover, whereas the southern populations, from a more

central latitude of the range, experience warmer winters with only rarely a snow cover.

The northern and southern locations are characterised by temperate and continental

climate respectively (Kottek et al. 2006) and the corresponding range of temperatures

might explain the decrease in SCP towards the North. Indeed, temperature influences

cold hardiness in arthropods, including spiders (Nentwig 2012) and a poleward increase

in  thermal  tolerance  is  observed  in  many  ectotherms  (Sunday  et  al.  2011).  An

acclimation  to  warmer  temperatures,  as  for  southern  spiders,  can  also  reduce  the

tolerance to cold conditions (Jensen et al. 2019). At the same time, northern spiders

could benefit from their cold acclimation by being more active during cooler periods in
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summer  (Everatt  et  al.  2013).  The  diurnal  range  also  differs  along  the  latitudinal

gradient; i.e. northern populations stand more substantial variation in the diurnal activity

range.

The impact of diurnal activity range, together with temperature, are essential cues to

determine the cold resistance of ectotherm arthropods (e.g. soil dwelling collembolan

Orchesella cincta see Jensen et al. 2019, or Paaijmans et al. 2013, Seebacher et al.

2015). These might have impacted spiders differently at the time of our experiments

(late  summer/  early  autumn),  as  northern  Dolomedes are  confronted  to  earlier  and

harsher  winter.  These  two  cues  have  been  shown  to  impact  the  overwintering  of

another  Dolomedes species, from North America (D. triton; Spence and Zimmermann

1998), and might similarly impact the overwintering of D. fimbriatus. To our knowledge,

Dolomedes species are inactive during winter (Aitchison 1984). Schmidt (1957) noted

that D. fimbriatus overwinters twice before reaching the adult stage. He also noted that

juveniles  spend  the  winter  in  dry  vegetation  at  high  strata,  which  is  probably  the

overwintering habitat  of the southern spiders we tested here. However, the northern

Dolomedes we tested endure temperatures colder than the SCP measured in this study.

For this reason, we hypothesised that, similarly to Dolomedes triton in Canada (Spence

and Zimmermann 1998), spiderlings and juveniles overwinter under the snow. Indeed,

the temperature in the subnivean layer, which is between the soil surface and the base

of the snowpack, is warmer and more stable than the air temperature above the snow,

and protect species from temperatures lower than their SCP (Marchand 1982).
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Dolomedes, like other spider species, are not freezing tolerant as none of the spiders

tested survived freezing. Cold-hardiness of Dolomedes is important for winter survival.

Based on the cold hardiness classification of Bale (1996) and Bale (2002) (see also

appendix 3 for a summarised classification), we hypothesise that  Dolomedes, at least

from the northern populations, are either chill-susceptible or freeze-avoidant. The main

difference between these two cold hardiness classes is the ability to survive damages

caused by cold injuries.  Freezing-avoidant species survive until  freezing,  while chill-

tolerant  die  sooner  due  to  chill  injuries.  Spiders  from  a  close  family  (Pardosa,

Lycosidae) at northern latitudes are from the same cold hardiness class (Anthony and

Sinclair 2019). Nonetheless, we only tested the SCP and more measurements, such as

the lower lethal temperature, would be necessary to define the cold hardiness class

more precisely. The cold hardiness class of  Dolomedes might also vary between the

two biogeographic positions  as  demonstrated for  the  butterfly  Piries rapae which  is

either  freeze-tolerant  or  freezing-avoidant  depending  on  the  latitude  (Li  and

Zachariassen 2007).

Even if  Dolomedes from the two areas did not differ in body size, we found an overall

decrease of the SCP with increasing spider body size. Smaller individuals being more

cold tolerant than bigger ones is a general trend for ectotherm animals (e.g. for ants see

Hahn  et  al.  (2008),  for  beetles  see  Johnston  and  Lee  (1990)).  This  trend  is  also

observed  for  spiders  with  smaller  instars  being  more  tolerant  to  cold  than  larger
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juveniles and adults (Almquist 1970, Bayram and Luff 1993), and it might explain our

extreme SCP measures down to -16.8 °C for one D. fimbriatus from Fennoscandia.

The  decline  in  supercooling  abilities  with  increasing  latitude  was  nonetheless  not

observed in southern D. fimbriatus. The size of southern spiders, that have higher SCP,

seemed to be less related to SCP. This difference in strategy between temperate and

colder habitats has been reported in other species from the closely-related family of

Lycosidae  (Ameline  et  al.  2018).  The  northern  spiders  have  a  shortened  breeding

season, which can impact life history traits such as body size (Bowden et al. 2015). The

smaller  fishing  spiders  under  continental  climate  could  be  advantaged  as  they  can

survive colder winters. After the winter, northern fishing spiders could accelerate their

development  because  cold-adapted  ectotherms have  a  higher  metabolic  rate  in  an

environment with limited energy (Sinclair et al. 2012).

We found slightly higher resistance to cold temperature in D. fimbriatus compared to D.

plantarius (for populations at similar latitudes), which might be partly due to the smaller

size of  D. fimbriatus. In turn, this difference between species might explain the wider

northward  distribution  of  D.  fimbriatus compared  to  that  of  D.  plantarius.  It  indeed

appears that specialist species are larger under harsher conditions because they are

more adapted to their environment (Ameline et al. 2018). A larger size implies a smaller

cold resistance here, which might be detrimental in this case. Nonetheless, the SCPs

measured in this study were close to those measured for phylogenetically close spiders
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(from the same Lycosoidea superfamily) from northern latitudes (Anthony and Sinclair

2019). These values are considered as medium cold resistance (Nentwig 2012).

Climate change impacts spiders in various ways. At northern latitudes, subnivean layer

is supposedly a non-freezing environment with quite stable temperatures (Pruitt 1957)

but snow density and length of the snow season impacts the stability of these conditions

(Pauli  et  al.  2013,  Bale  and  Hayward  2010).  While  air  temperature  increases  with

climate change, the subnivean layer may become colder (Wipf and Rixen 2010). This

paradox is already negatively impacting invertebrates (Williams et al. 2015, Slatyer et al.

2017).  Even though we found that  fishing spiders from continental  climate tolerated

colder temperatures than spiders from temperate climate, the lowest SCP was higher

than the lowest air temperature measured historically in Fennoscandia. A weakened

subnivean shelter could negatively impact northern populations and even more so for

the  rare  D. plantarius which  is  less  cold resistant.  Another  impact  of  the  increased

length of the snow free season could be a second clutch in northern  Dolomedes, as

reported in the arctic Lycosidae Pardosa glacialis (Høye et al. 2020).

We found that the cold tolerance of fishing spiders varied among populations, between

climates and between species. Nonetheless, the difference in SCP between the two

species was not striking. Sample another population of D. plantarius could support the

slight difference found between species, but we tried to limit the impact of sampling on

populations  of  this  red-listed  species  (World  Conservation  Monitoring  Centre  1996).

Moreover,  we assessed cold tolerance based on measuring the SCP only and from
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spiders sampled in late summer / early autumn. Sampling  Dolomedes is challenging

especially at northern latitudes in winter.  Nonetheless, studying life history traits like

cold  resistance  is  valuable  to  explore  and  predict  the  distribution  of  understudied

invertebrates (Mammola et al. 2020), especially by integrating ecophysiology of species.
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Tables

Table  1:  Description  of  the  climatic  conditions  at  the  sampling  sites,  based  on  the

Köppen-Geiger climate classification (Kottek et al. 2006). N: number of spiders tested;

SCP: mean SCP ± SD; Length: mean length of the carapace +-SD; Mean temp: annual

mean temperature; Diurnal range: mean diurnal range (extracted from Fick and Hijmans

(2017)).

Sites Species N Country Climate SCP (°C) Length (mm) Mean
Temp

Diurnal
range

C1 D. fimbriatus 24 Norway Continental -9.08±0.45 4.13±0.52 2.56 9.50

C2 D. fimbriatus 24 Sweden Continental -9.06±0.4 4.43±0.56 5.52 8.54

C3 D. plantarius 21 Sweden Continental -7.56±0.32 5.36±0.69 6.05 7.78

T1 D. fimbriatus 26 France Temperate -7.78±0.4 4.62±0.46 11.62 7.03

T2 D. fimbriatus 24 France Temperate -5.39±0.4 4.44±0.48 11.14 6.30
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Table  2: Parameter estimates of the most accurate model explaining the SCP values

between different climatic areas for D. fimbriatus (modClim, see appendix 1). CI: 89%

credible intervals, pd: probability of direction, ROPE: percentage of the full  region of

practical equivalence. Diff:  time difference between date of capture and date of test;

Temperature:  climate variable (continental  climate in  the intercept);  Temperate:Body

size: interactive effect of the climate and body size.

Estimate CI low CI high pd ROPE (%) Rhat

(Intercept) -8.3 -12.3 -4.7 1.00 0.0 1.0

Diff -0.3 -0.4 -0.2 1.00 23.1 1.0

Temperate 8.1 3.2 12.8 0.99 0.4 1.0

Body size 8.4 0.6 16.5 0.96 0.9 1.0

Temperate:Body size -14.3 -24.7 -2.8 0.98 0.4 1.0
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Table  3: Parameter estimates of the most accurate model explaining the SCP values

between the  two species  in  continental  climate  (modSp,  see appendix  2).  CI:  89%

credible intervals, pd: probability of direction, ROPE: percentage of the full  region of

practical equivalence. Diff: time difference between date of capture and date of test; D.

plantarius:  species  variable  (D.  fimbriatus  in  the  intercept);  D.  plantarius:Body size:

interactive effect of species and body size.

Estimate CI low CI high pd ROPE (%) Rhat

(Intercept) -9.77 -13.8 -5.6 1.00 0.0 1.0

Diff -0.22 -0.4 -0.0 0.97 42.8 1.0

D. plantarius 4.80 0.1 9.4 0.95 1.6 1.0

Body size 9.10 2.0 15.9 0.98 0.5 1.0

D. plantarius:Body size -8.65 -17.4 1.0 0.93 0.8 1.0
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Figures

Figure 1: Location of sampling sites for Dolomedes fimbriatus (blue squares) and 

Dolomedes plantarius (red square) in France and Fennoscandia.
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Figure 2: Cooling curves of D. plantarius (one spider from C3, in yellow) and D. 

fimbriatus (one spider from C2, in purple) recorded during a cooling experiment. The 

SCP (dotted line) is followed by the exotherm (dark-red arrows), a sudden increase in 

the measured temperature due to the release of latent heat linked to the phase change 

during freezing.
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Figure 3: Marginal posterior means of SCP (white dot) estimated under modClim for the 

two different climatic areas and its 89% credible interval (white bar). Red dots represent 

the original data and the violin distributions represent a density plot.
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Figure 4: Predicted effect of D. fimbriatus body size on the SCP, and its 89% credible 

interval, for the two different climatic areas under modClim. Purple: predictions for the 

continental climate, green: predictions for the temperate climate; dots represent original 

data.
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Figure 5: Predicted effect of body size of D. plantarius and D. fimbriatus on the SCP in 

Scandinavia, and its 89% credible interval, under modSp. Dots represent original data.
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